Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine
Simple Summary
Abstract
1. Introduction
2. Types of Artificial Gastrointestinal Tract Models
2.1. Overview of Available Models
2.2. Static Versus Dynamic Models
2.3. Animal-Specific GIT Models
2.4. Animal-Specific aGIT Model’s Environment
3. Applications for Veterinary Medicine
3.1. Disease Modeling and Host–Pathogen Interaction Studies
3.2. Drug Development and Testing
3.3. Toxicology and Risk Assessment
4. Technical and Methodological Considerations
4.1. Model Design
4.2. Validation of Models
5. Future Perspectives and Advancements
5.1. Integration with ‘Omics’ Techniques
5.2. Advancements in Bioengineering
5.3. Expansion to Novel Species and Need for Models Mimicking Poultry, Aquaculture, Pets, etc.
5.4. What Needs to Be Done or Cannot Be Done by Using aGIT Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
16S rRNA gene sequencing | Amplicon-based sequencing method that is used to identify and classify bacteria present in bulk and complex biological samples |
aGIT | Artificial gastrointestinal tract |
DOAJ | Directory of open access journals |
GIT | Gastrointestinal tract |
HPLC | High-performance liquid chromatography |
LD | Linear dichroism |
MDPI | Multidisciplinary Digital Publishing Institute |
NGS | Next-generation sequencing |
Omics | High-performance analytical methods used to study the various types of molecules that make up a living organism, including DNA, RNA, proteins, and metabolites |
qPCR | Quantitative PCR |
SCFAs | Short-chain fatty acids |
TLA | Three-letter acronym |
uNDF | Undigested NDF |
References
- Celi, P.; Cowieson, A.J.; Fru-Nji, F.; Steinert, R.E.; Kluenter, A.-M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Wunderlich, G.; Bull, M.; Ross, T.; Rose, M.; Chapman, B. Understanding the microbial fibre degrading communities & processes in the equine gut. Anim. Microbiome 2023, 5, 3. [Google Scholar] [CrossRef]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg. 2022, 63, E255–E266. [Google Scholar] [CrossRef]
- Costa, C.M.; de Carvalho, N.M.; de Oliveira, D.L.; Madureira, A.R. A Critical review on in vitro and ex vivo models of the intestinal epithelium of humans and monogastric animals. Gastrointest. Disord. 2024, 6, 337–358. [Google Scholar] [CrossRef]
- Gościniak, A.; Eder, P.; Walkowiak, J.; Cielecka-Piontek, J. Artificial gastrointestinal models for nutraceuticals research—Achievements and challenges: A practical review. Nutrients 2022, 14, 2560. [Google Scholar] [CrossRef] [PubMed]
- Arora, T.; Mehta, A.K.; Joshi, V.; Mehta, K.D.; Rathor, N.; Mediratta, P.K.; Sharma, K.K. Substitute of animals in drug research: An approach towards fulfillment of 4R’s. Indian J. Pharm. Sci. 2011, 73, 1–6. [Google Scholar] [CrossRef]
- Zaefarian, F.; Cowieson, A.J.; Pontoppidan, K.; Abdollahi, M.R.; Ravindran, V. Trends in feed evaluation for poultry with emphasis on in vitro techniques. Anim. Nutr. 2021, 7, 268–281. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Jiang, R.; Wang, Y.; Zhang, Y.; Wu, R.; A, X.; Du, H.; Tian, J.; Wei, X.; et al. Development of an alternative in vitro rumen fermentation prediction model. Animals 2024, 14, 289. [Google Scholar] [CrossRef] [PubMed]
- Deyaert, S.; Moens, F.; Pirovano, W.; van den Bogert, B.; Klaassens, E.S.; Marzorati, M.; Van de Wiele, T.; Kleerebezem, M.; Van den Abbeele, P. Development of a reproducible small intestinal microbiota model and its integration into the SHIME®-system, a dynamic in vitro gut model. Front. Microbiol. 2023, 13, 1054061. [Google Scholar] [CrossRef]
- Van de Wiele, T.; Van den Abbeele, P.; Ossieur, W.; Possemiers, S.; Marzorati, M. The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Germany, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Arnold, J.W.; Roach, J.; Azcarate-Peril, M.A. Emerging technologies for gut microbiome research. Trends Microbiol. 2016, 24, 887–901. [Google Scholar] [CrossRef]
- Anjum, M.; Laitila, A.; Ouwehand, A.C.; Forssten, S.D. Current perspectives on gastrointestinal models to assess probiotic-pathogen interactions. Front. Microbiol. 2022, 13, 831455. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, P.; Weiskirchen, S.; Weiskirchen, R. Effects of probiotics on gut microbiota: An Overview. Int. J. Mol. Sci. 2024, 25, 6022. [Google Scholar] [CrossRef]
- Popov, I.V.; Einhardt Manzke, N.; Sost, M.M.; Verhoeven, J.; Verbruggen, S.; Chebotareva, I.P.; Ermakov, A.M.; Venema, K. Modulation of swine gut microbiota by phytogenic blends and high concentrations of casein in a validated swine large intestinal In vitro Model. Vet. Sci. 2023, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Falduto, M.; Smedile, F.; Zhang, M.; Zheng, T.; Zhu, J.; Huang, Q.; Weeks, R.; Ermakov, A.M.; Chikindas, M.L. Anti-obesity effects of chenpi: An artificial gastrointestinal system study. Microb. Biotechnol. 2022, 15, 874–885. [Google Scholar] [CrossRef]
- Anadón, A. Perspectives in veterinary pharmacology and toxicology. Front. Vet. Sci. 2016, 3, 82. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B 2019, 9, 1113–1144. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Shikoray, L.; Mohamed, M.-Y.I.; Habib, I.; Matsumoto, T. Veterinary drug residues in the food chain as an emerging public health threat: Sources, analytical methods, health impacts, and preventive measures. Foods 2024, 13, 1629. [Google Scholar] [CrossRef]
- Liu, W.; Fu, D.; Zhang, X.; Chai, J.; Tian, S.; Han, J. Development and validation of a new artificial gastric digestive system. Food Res. Int. 2019, 122, 183–190. [Google Scholar] [CrossRef]
- Ashammakhi, N.; Nasiri, R.; Roberto De Barros, N.; Tebon, P.; Thakor, J.; Goudie, M.; Shamloo, A.; Martin, M.G.; Khademhosseni, A. Gut-on-a-chip: Current progress and future opportunities. Biomaterials 2020, 255, 120196. [Google Scholar] [CrossRef]
- Wang, R.; Mohammadi, M.; Mahboubi, A.; Taherzadeh, M.J. In-vitro digestion models: A critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021, 12, 3040–3064. [Google Scholar] [CrossRef]
- Li, Y.; Kong, F. Simulating human gastrointestinal motility in dynamic in vitro models. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3804–3833. [Google Scholar] [CrossRef] [PubMed]
- Duque-Soto, C.; Quintriqueo-Cid, A.; Rueda-Robles, A.; Robert, P.; Borrás-Linares, I.; Lozano-Sánchez, J. Evaluation of different advanced approaches to simulation of dynamic in vitro digestion of polyphenols from different food matrices—A systematic review. Antioxidants 2022, 12, 101. [Google Scholar] [CrossRef]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef]
- Minekus, M.; Marteau, P.; Havenaar, R.; in’t Veld, J.H.J.H. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. 1995, 23, 197–209. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Grootaert, C.; Marzorati, M.; Possemiers, S.; Verstraete, W.; Gérard, P.; Rabot, S.; Bruneau, A.; El Aidy, S.; Derrien, M.; et al. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for bacteroidetes and Clostridium cluster IX. Appl. Environ. Microbiol. 2010, 76, 5237–5246. [Google Scholar] [CrossRef] [PubMed]
- Barroso, E.; Cueva, C.; Peláez, C.; Martínez-Cuesta, M.C.; Requena, T. The Computer-Controlled Multicompartmental Dynamic Model of the Gastrointestinal System SIMGI. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Germany, 2015; pp. 319–327. ISBN 978-3-319-16104-4. [Google Scholar]
- Alegría, A.; Garcia-Llatas, G.; Cilla, A. Static Digestion Models: General Introduction. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Germany, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Vinyard, J.R.; Faciola, A.P. Unraveling the pros and cons of various in vitro methodologies for ruminant nutrition: A review. Transl. Anim. Sci. 2022, 6, txac130. [Google Scholar] [CrossRef] [PubMed]
- Camacho, L.F.; da Silva, T.E.; Rodrigues, J.P.P.; Franco, M.D.O.; Detmann, E. A standard procedure for in vitro digestion using rumen fermenters: A collaborative study. Animals 2022, 12, 2842. [Google Scholar] [CrossRef]
- Minekus, M. The TNO Gastro-Intestinal Model (TIM). In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Germany, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Dickinson, P.A.; Abu Rmaileh, R.; Ashworth, L.; Barker, R.A.; Burke, W.M.; Patterson, C.M.; Stainforth, N.; Yasin, M. An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS J. 2012, 14, 196–205. [Google Scholar] [CrossRef]
- Mackie, A.; Mulet-Cabero, A.-I.; Torcello-Gómez, A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar] [CrossRef]
- Calero, V.; Rodrigues, P.M.; Dias, T.; Ainla, A.; Vilaça, A.; Pastrana, L.; Xavier, M.; Gonçalves, C. A miniaturised semi-dynamic in-vitro model of human digestion. Sci. Rep. 2024, 14, 11923. [Google Scholar] [CrossRef]
- Jung, S.-M.; Kim, S. In vitro models of the small intestine for studying intestinal diseases. Front. Microbiol. 2022, 12, 767038. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Seifert, J.; Camarinha-Silva, A. current perspectives of the chicken gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J. 2018, 16, 131–139. [Google Scholar] [CrossRef]
- Castillo, C.; Hernández, J. Ruminal fistulation and cannulation: A necessary procedure for the advancement of biotechnological research in ruminants. Animals 2021, 11, 1870. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.A.; Park, Y.; Gonzalez, M.; Duong, R.A.; Pandey, P.K.; Brooke, C.G.; Hess, M. A comparison of three artificial rumen systems for rumen microbiome modeling. Fermentation 2023, 9, 953. [Google Scholar] [CrossRef]
- Wetzels, S.U.; Eger, M.; Burmester, M.; Kreienbrock, L.; Abdulmawjood, A.; Pinior, B.; Wagner, M.; Breves, G.; Mann, E. The application of rumen simulation technique (RUSITEC) for studying dynamics of the bacterial community and metabolome in rumen fluid and the effects of a challenge with Clostridium perfringens. PLoS ONE 2018, 13, e0192256. [Google Scholar] [CrossRef]
- Karasov, W.H.; Douglas, A.E. Comparative digestive physiology. Compr. Physiol. 2013, 3, 741–783. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.M.; Moeser, A.J.; Blikslager, A.T. Porcine models of digestive disease: The future of large animal translational research. Transl. Res. J. Lab. Clin. Med. 2015, 166, 12–27. [Google Scholar] [CrossRef]
- Salem, H.M.; Saad, A.M.; Soliman, S.M.; Selim, S.; Mosa, W.F.A.; Ahmed, A.E.; Al Jaouni, S.K.; Almuhayawi, M.S.; Abd El-Hack, M.E.; El-Tarabily, K.A.; et al. Ameliorative avian gut environment and bird productivity through the application of safe antibiotics alternatives: A comprehensive review. Poult. Sci. 2023, 102, 102840. [Google Scholar] [CrossRef]
- Rodrigues, I.; Choct, M. The foregut and its manipulation via feeding practices in the chicken. Poult. Sci. 2018, 97, 3188–3206. [Google Scholar] [CrossRef]
- Bindari, Y.R.; Gerber, P.F. Centennial review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult. Sci. 2021, 101, 101612. [Google Scholar] [CrossRef]
- Forssten, S.D.; Morovic, W.; Nurminen, P. An in vitro model of the chicken gastrointestinal tract with special emphasis to the cecal microbiota. Poult. Sci. 2023, 102, 102654. [Google Scholar] [CrossRef] [PubMed]
- Oost, M.J.; Velkers, F.C.; Kraneveld, A.D.; Venema, K. Development of the in vitro cecal chicken ALIMEntary tRact mOdel-2 to study microbiota composition and function. Front. Microbiol. 2021, 12, 726447. [Google Scholar] [CrossRef]
- Mota de Carvalho, N.; Oliveira, D.L.; Saleh, M.A.D.; Pintado, M.E.; Madureira, A.R. Importance of gastrointestinal in vitro models for the poultry industry and feed formulations. Anim. Feed Sci. Technol. 2021, 271, 114730. [Google Scholar] [CrossRef]
- McGrath, A.P.; Horschler, D.J.; Hancock, L. Feline cognition and the role of nutrition: An evolutionary perspective and historical review. Animals 2024, 14, 1967. [Google Scholar] [CrossRef]
- Wu, G. Recent advances in the nutrition and metabolism of dogs and cats. Adv. Exp. Med. Biol. 2024, 1446, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Le Guillas, G.; Vanacker, P.; Salles, C.; Labouré, H. Insights to study, understand and manage extruded dry pet food palatability. Animals 2024, 14, 1095. [Google Scholar] [CrossRef]
- Jadhav, S.; Gaonkar, T.; Joshi, M.; Rathi, A. Modulation of digestibility of canine food using enzyme supplement: An in vitro simulated semi-dynamic digestion study. Front. Vet. Sci. 2023, 10, 1220198. [Google Scholar] [CrossRef]
- Collier, C.A.; Mendiondo, C.; Raghavan, S. Tissue engineering of the gastrointestinal tract: The historic path to translation. J. Biol. Eng. 2022, 16, 9. [Google Scholar] [CrossRef]
- Tanner, S.A.; Chassard, C.; Zihler Berner, A.; Lacroix, C. Synergistic Effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog. 2014, 6, 44. [Google Scholar] [CrossRef]
- Marzorati, M.; Van Den Abbeele, P.; Bubeck, S.S.; Bayne, T.; Krishnan, K.; Young, A.; Mehta, D.; DeSouza, A. Bacillus subtilis HU58 and Bacillus coagulans SC208 probiotics reduced the effects of antibiotic-induced gut microbiome dysbiosis in an M-SHIME® model. Microorganisms 2020, 8, 1028. [Google Scholar] [CrossRef]
- Fehlbaum, S.; Chassard, C.; Poeker, S.A.; Derrien, M.; Fourmestraux, C.; Lacroix, C. Clostridium difficile colonization and antibiotics response in PolyFermS continuous model mimicking elderly intestinal fermentation. Gut Pathog. 2016, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Naimi, S.; Zirah, S.; Taher, M.B.; Theolier, J.; Fernandez, B.; Rebuffat, S.F.; Fliss, I. Microcin J25 exhibits inhibitory activity against Salmonella Newport in continuous fermentation model mimicking swine colonic conditions. Front. Microbiol. 2020, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Makivuokko, H.; Nurmi, J.; Nurminen, P.; Stowell, J.; Rautonen, N. In vitro effects on polydextrose by colonic bacteria and caco-2 cell cyclooxygenase gene expression. Nutr. Cancer 2005, 52, 94–104. [Google Scholar] [CrossRef]
- Mazanko, M.S.; Popov, I.V.; Prazdnova, E.V.; Refeld, A.G.; Bren, A.B.; Zelenkova, G.A.; Chistyakov, V.A.; Algburi, A.; Weeks, R.M.; Ermakov, A.M.; et al. Beneficial effects of spore-forming Bacillus probiotic bacteria isolated from poultry microbiota on broilers’ health, growth performance, and immune system. Front. Vet. Sci. 2022, 9, 877360. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.V.; Algburi, A.; Prazdnova, E.V.; Mazanko, M.S.; Elisashvili, V.; Bren, A.B.; Chistyakov, V.A.; Tkacheva, E.V.; Trukhachev, V.I.; Donnik, I.M.; et al. A review of the effects and production of spore-forming probiotics for poultry. Animals 2021, 11, 1941. [Google Scholar] [CrossRef]
- Tazehabadi, M.H.; Algburi, A.; Popov, I.V.; Ermakov, A.M.; Chistyakov, V.A.; Prazdnova, E.V.; Weeks, R.; Chikindas, M.L. Probiotic bacilli inhibit Salmonella biofilm formation without killing planktonic cells. Front. Microbiol. 2021, 12, 615328. [Google Scholar] [CrossRef]
- Mack, S.; Barron, S.L.; Boys, A.J. Digesting Digestion: An Educational Laboratory to Teach Students about Enzymes and the Gastrointestinal Tract. J. Chem. Educ. 2023, 100, 907–913. [Google Scholar] [CrossRef]
- Asare, P.T.; Greppi, A.; Pennacchia, A.; Brenig, K.; Geirnaert, A.; Schwab, C.; Stephan, R.; Lacroix, C. In vitro modeling of chicken cecal microbiota ecology and metabolism using the PolyFermS platform. Front. Microbiol. 2021, 12, 780092. [Google Scholar] [CrossRef]
- Chang, M.H.; Chen, T.C. Reduction of Campylobacter jejuni in a simulated chicken digestive tract by lactobacilli cultures. J. Food Prot. 2000, 63, 1594–1597. [Google Scholar] [CrossRef]
- Card, R.M.; Cawthraw, S.A.; Nunez-Garcia, J.; Ellis, R.J.; Kay, G.; Pallen, M.J.; Woodward, M.J.; Anjum, M.F. An in vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. mBio 2017, 8, e00777-17. [Google Scholar] [CrossRef]
- Tso, K.-H.; Ju, J.-C.; Fan, Y.-K.; Chiang, H.-I. Enzyme degradation reagents effectively remove mycotoxins deoxynivalenol and zearalenone from pig and poultry artificial digestive juices. Toxins 2019, 11, 599. [Google Scholar] [CrossRef]
- Donalson, L.M.; Kim, W.K.; Chalova, V.I.; Herrera, P.; McReynolds, J.L.; Gotcheva, V.G.; Vidanović, D.; Woodward, C.L.; Kubena, L.F.; Nisbet, D.J.; et al. In vitro fermentation response of laying hen cecal bacteria to combinations of fructooligosaccharide prebiotics with alfalfa or a layer ration. Poult. Sci. 2008, 87, 1263–1275. [Google Scholar] [CrossRef]
- Gresse, R.; Chaucheyras-Durand, F.; Garrido, J.J.; Denis, S.; Jiménez-Marín, A.; Beaumont, M.; Van De Wiele, T.; Forano, E.; Blanquet-Diot, S. Pathogen challenge and dietary shift alter microbiota composition and activity in a mucin-associated in vitro model of the piglet colon (MPigut-IVM) simulating weaning transition. Front. Microbiol. 2021, 12, 703421. [Google Scholar] [CrossRef] [PubMed]
- Horvat, S.; Mahnic, A.; Makuc, D.; Pečnik, K.; Plavec, J.; Rupnik, M. Children gut microbiota exhibits a different composition and metabolic profile after in vitro exposure to Clostridioides difficile and increases Its Sporulation. Front. Microbiol. 2022, 13, 1042526. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Grootaert, C.; Pitart, J.; Vidovic, N.K.; Kamiloglu, S.; Possemiers, S.; Glibetic, M.; Smagghe, G.; Raes, K.; Van De Wiele, T.; et al. Aronia (Aronia melanocarpa) polyphenols modulate the microbial community in a simulator of the human intestinal microbial ecosystem (SHIME) and decrease secretion of proinflammatory markers in a Caco-2/Endothelial cell coculture model. Mol. Nutr. Food Res. 2018, 62, 1800607. [Google Scholar] [CrossRef]
- Blancquaert, L.; Vervaet, C.; Derave, W. Predicting and testing bioavailability of magnesium supplements. Nutrients 2019, 11, 1663. [Google Scholar] [CrossRef]
- Van Den Abbeele, P.; Ghyselinck, J.; Marzorati, M.; Villar, A.; Zangara, A.; Smidt, C.R.; Risco, E. In vitro evaluation of prebiotic properties of a commercial artichoke inflorescence extract revealed bifidogenic effects. Nutrients 2020, 12, 1552. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, A.; Martin, D.; Navarro Del Hierro, J.; Moreno-Arribas, M.V.; Muñoz, L.A. Intake of soluble fibre from chia seed reduces bioaccessibility of lipids, cholesterol and glucose in the dynamic gastrointestinal model Simgi®. Food Res. Int. 2020, 137, 109364. [Google Scholar] [CrossRef]
- Cueva, C.; Gil-Sánchez, I.; Tamargo, A.; Miralles, B.; Crespo, J.; Bartolomé, B.; Moreno-Arribas, M.V. Gastrointestinal digestion of food-use silver manoparticles in the dynamic SIMulator of the GastroIntestinal Tract (Simgi®). Impact on human gut microbiota. Food Chem. Toxicol. 2019, 132, 110657. [Google Scholar] [CrossRef]
- Dostal, A.; Lacroix, C.; Bircher, L.; Pham, V.T.; Follador, R.; Zimmermann, M.B.; Chassard, C. Iron modulates butyrate production by a child gut microbiota in vitro. mBio 2015, 6, e01453-15. [Google Scholar] [CrossRef]
- Blanquet, S.; Zeijdner, E.; Beyssac, E.; Meunier, J.-P.; Denis, S.; Havenaar, R.; Alric, M. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm. Res. 2004, 21, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Smeets-Peeters, M.J.E.; Minekus, M.; Havenaar, R.; Schaafsma, G.; Verstegen, M.W.A. Description of a dynamic in vitro model of the dog gastrointestinal tract and an evaluation of various transit times for protein and calcium. Altern. Lab. Anim. 1999, 27, 935–949. [Google Scholar] [CrossRef]
- Smeets-Peeters, M. Feeding FIDO: Development, Validation and Application of a Dynamic, in vitro Model of the Gastrointestinal Tract of the Dog; Wageningen University and Research: Wageningen, The Netherlands, 2000. [Google Scholar]
- Lee, C.-M.; Luner, P.E.; Locke, K.; Briggs, K. Application of an artificial stomach-duodenum reduced gastric pH dog model for formulation principle assessment and mechanistic performance understanding. J. Pharm. Sci. 2017, 106, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.T.; Calatayud, M.; Rotsaert, C.; Seifert, N.; Richard, N.; Van Den Abbeele, P.; Marzorati, M.; Steinert, R.E. Antioxidant vitamins and prebiotic FOS and XOS differentially shift microbiota composition and function and improve intestinal epithelial barrier in vitro. Nutrients 2021, 13, 1125. [Google Scholar] [CrossRef]
- Gil-Sánchez, I.; Cueva, C.; Tamargo, A.; Quintela, J.C.; De La Fuente, E.; Walker, A.W.; Moreno-Arribas, M.V.; Bartolomé, B. Application of the dynamic gastrointestinal simulator (Simgi®) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Res. Int. 2020, 129, 108790. [Google Scholar] [CrossRef]
- Fehlbaum, S.; Chassard, C.; Schwab, C.; Voolaid, M.; Fourmestraux, C.; Derrien, M.; Lacroix, C. In vitro study of Lactobacillus paracasei CNCM I-1518 in healthy and Clostridioides difficile colonized elderly gut microbiota. Front. Nutr. 2019, 6, 184. [Google Scholar] [CrossRef] [PubMed]
- Bothe, M.; Maathuis, A.; Bellmann, S.; Van Der Vossen, J.; Berressem, D.; Koehler, A.; Schwejda-Guettes, S.; Gaigg, B.; Kuchinka-Koch, A.; Stover, J. Dose-dependent prebiotic effect of lactulose in a computer-controlled in vitro model of the human large intestine. Nutrients 2017, 9, 767. [Google Scholar] [CrossRef]
- Míguez, B.; Vila, C.; Venema, K.; Parajó, J.C.; Alonso, J.L. Prebiotic effects of pectooligosaccharides obtained from lemon peel on the microbiota from elderly donors using an in vitro continuous colon model (TIM-2). Food Funct. 2020, 11, 9984–9999. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; Di, H.; Deng, Z.; Liu, J.; Wang, H. Gut health benefit and application of postbiotics in animal production. J. Anim. Sci. Biotechnol. 2022, 13, 38. [Google Scholar] [CrossRef]
- Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A Review. Animals 2021, 11, 3431. [Google Scholar] [CrossRef]
- Liu, C.; Ma, N.; Feng, Y.; Zhou, M.; Li, H.; Zhang, X.; Ma, X. From probiotics to postbiotics: Concepts and applications. Anim. Res. One Health 2023, 1, 92–114. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, V.; Panwar, R.; Ram, C. Efficacy of indigenous probiotic Lactobacillus strains to reduce cadmium bioaccessibility—An in vitro digestion model. Environ. Sci. Pollut. Res. 2017, 24, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Alava, P.; Tack, F.; Laing, G.D.; Van De Wiele, T. Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota. J. Hazard. Mater. 2013, 262, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Alava, P.; Du Laing, G.; Tack, F.; De Ryck, T.; Van De Wiele, T. Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon. Chemosphere 2015, 119, 757–762. [Google Scholar] [CrossRef]
- Laird, B.D.; James, K.J.; Van De Wiele, T.R.; Dodd, M.; Casteel, S.W.; Wickstrom, M.; Siciliano, S.D. An Investigation of the effect of gastrointestinal microbial activity on oral arsenic bioavailability. J. Environ. Sci. Health Part A 2013, 48, 612–619. [Google Scholar] [CrossRef]
- Yin, N.; Du, H.; Wang, P.; Cai, X.; Chen, P.; Sun, G.; Cui, Y. Interindividual variability of soil arsenic metabolism by human gut microbiota using SHIME model. Chemosphere 2017, 184, 460–466. [Google Scholar] [CrossRef]
- Joly, C.; Gay-Quéheillard, J.; Léké, A.; Chardon, K.; Delanaud, S.; Bach, V.; Khorsi-Cauet, H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the simulator of the human intestinal microbial ecosystem (SHIME®) and in the Rat. Environ. Sci. Pollut. Res. 2013, 20, 2726–2734. [Google Scholar] [CrossRef]
- Yuan, X.; Pan, Z.; Jin, C.; Ni, Y.; Fu, Z.; Jin, Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere 2019, 227, 425–434. [Google Scholar] [CrossRef]
- Ali, A.; AlHussaini, K.I. Pesticides: Unintended impact on the hidden world of gut microbiota. Metabolites 2024, 14, 155. [Google Scholar] [CrossRef]
- Réquilé, M.; Gonzàlez Alvarez, D.O.; Delanaud, S.; Rhazi, L.; Bach, V.; Depeint, F.; Khorsi-Cauet, H. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa. Environ. Sci. Pollut. Res. 2018, 25, 22529–22540. [Google Scholar] [CrossRef]
- Sharma, T.; Sirpu Natesh, N.; Pothuraju, R.; Batra, S.K.; Rachagani, S. Gut microbiota: A non-target victim of pesticide-induced toxicity. Gut Microbes 2023, 15, 2187578. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Wu, S.-B.; Morgan, N.K.; Crowley, T.M. Artificial gut and the applications in poultry: A review. Anim. Nutr. 2022, 10, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Solís-Cruz, B.; Hernández-Patlán, D.; Beyssac, E.; Latorre, J.; Hernandez-Velasco, X.; Merino-Guzman, R.; Tellez, G.; López-Arellano, R. Evaluation of chitosan and cellulosic polymers as binding adsorbent materials to prevent aflatoxin B1, fumonisin B1, ochratoxin, trichothecene, deoxynivalenol, and zearalenone mycotoxicoses through an in vitro gastrointestinal model for poultry. Polymers 2017, 9, 529. [Google Scholar] [CrossRef]
- Zavala-Franco, A.; Hernández-Patlán, D.; Solís-Cruz, B.; López-Arellano, R.; Tellez-Isaias, G.; Vázquez-Durán, A.; Méndez-Albores, A. Assessing the aflatoxin B1 adsorption capacity between biosorbents using an in vitro multicompartmental model simulating the dynamic conditions in the gastrointestinal tract of poultry. Toxins 2018, 10, 484. [Google Scholar] [CrossRef]
- Kolawole, O.; Meneely, J.; Greer, B.; Chevallier, O.; Jones, D.S.; Connolly, L.; Elliott, C. Comparative in vitro assessment of a range of commercial feed additives with multiple mycotoxin binding claims. Toxins 2019, 11, 659. [Google Scholar] [CrossRef]
- Tassone, S.; Fortina, R.; Peiretti, P.G. In vitro techniques using the DaisyII incubator for the assessment of digestibility: A review. Animals 2020, 10, 775. [Google Scholar] [CrossRef]
- Tassone, S.; Renna, M.; Barbera, S.; Valle, E.; Fortina, R. In vitro digestibility measurement of feedstuffs in donkeys using the DaisyII incubator. J. Equine Vet. Sci. 2019, 75, 122–126. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Cooper, S.R.; Freeman, D.W.; Lalman, D.L. Effect of yeast culture on in vitro fermentation of a high-concentrate or high-fiber diet using equine fecal inoculum in a Daisy II incubator1. J. Anim. Sci. 2007, 85, 2484–2491. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-C.; Croom, J.; Chuang, S.-T.; Chiou, P.W.S.; Yu, B. Development of a dynamic system simulating pig gastric digestion. Asian-Australas. J. Anim. Sci. 2008, 21, 1522–1528. [Google Scholar] [CrossRef]
- Tanner, S.A.; Zihler Berner, A.; Rigozzi, E.; Grattepanche, F.; Chassard, C.; Lacroix, C. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota. PLoS ONE 2014, 9, e94123. [Google Scholar] [CrossRef]
- Asare, P.T.; Greppi, A.; Geirnaert, A.; Pennacchia, A.; Babst, A.; Lacroix, C. Glycerol and reuterin-producing Limosilactobacillus reuteri enhance butyrate production and inhibit Enterobacteriaceae in broiler chicken cecal microbiota PolyFermS model. BMC Microbiol. 2023, 23, 384. [Google Scholar] [CrossRef] [PubMed]
- Ménard, O.; Picque, D.; Dupont, D. The DIDGI® System. In The Impact of Food Bioactives on Health; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Germany, 2015; pp. 73–81. ISBN 978-3-319-15791-7. [Google Scholar]
- Kazlauskaite, R.; Cheaib, B.; Heys, C.; Ijaz, U.Z.; Connelly, S.; Sloan, W.; Russel, J.; Rubio, L.; Sweetman, J.; Kitts, A.; et al. SalmoSim: The development of a three-compartment in vitro simulator of the atlantic salmon GI tract and associated microbial communities. Microbiome 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Abad-Guamán, R.; Carabaño, R.; Gómez-Conde, M.S.; García, J. Effect of type of fiber, site of fermentation, and method of analysis on digestibility of soluble and insoluble fiber in rabbits. J. Anim. Sci. 2015, 93, 2860–2871. [Google Scholar] [CrossRef] [PubMed]
- Valentine, M.E.; Karayilanli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in vitro long digestion methods and digestion rates for diverse forages. Crop Sci. 2019, 59, 422–435. [Google Scholar] [CrossRef]
Model Name | 1st Release | Type of Model | Core-Animals | Controlled Parameters | Sections of GI | Primary Applications | Reference |
---|---|---|---|---|---|---|---|
RUSITEC | 1970s | Dynamic | Cattle, Sheep | Temperature, anaerobic conditions, nutrient supply | Rumen | Microbial dynamics, metabolome studies | [39] |
Ankom DaisyII | 1994 | Static | Ruminants, non-ruminants | Temperature, digestion duration | Rumen, stomach | Digestibility studies | [101,102,103] |
TIM-based | 1999 | Dynamic | Dogs | pH, temperature, enzyme secretion, gastric emptying | Stomach, small intestine | Drug release, nutrient bioavailability | [76] |
Dynamic System Simulating Pig Gastric Digestion | 2008 | Dynamic | Pigs | pH, gastric fluid secretion, pepsin activity, digesta volume, mixing | Stomach | Protein digestibility in pigs; simulating gastric digestion | [104] |
PolyFermS | 2012 | Dynamic | Pigs, chickens | pH, temperature, anaerobic conditions, flow rates | Stomach, small intestine, colon | Microbial fermentation, nutrient digestion | [61,105,106] |
DIDGI | 2014 | Dynamic | Pigs | pH, temperature, enzyme secretion, chyme flow | Stomach, small intestine | Digestion kinetics, protein hydrolysis studies | [107] |
SalmoSim | 2020 | Dynamic | Atlantic Salmon | pH, temperature, feeding cycles | Stomach, pyloric caeca, midgut | Studying microbial activity, nutrient digestion in fish | [108] |
CALIMERO-2 | 2021 | Dynamic | Chickens | pH, temperature, transit times, and enzymatic activities | Stomach and intestines (ceca) | Nutrient absorption, feed additives | [46] |
MPigut-IVM | 2021 | Dynamic | Piglets | pH, temperature, redox potential, transit times, stirring speed | Colon | Impact of dietary changes and pathogenic bacteria on microbiota | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shebeko, S.K.; Drobot, H.Y.; Koshchaev, A.G.; Todorov, S.D.; Ermakov, A.M. Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine. Animals 2025, 15, 1222. https://doi.org/10.3390/ani15091222
Shebeko SK, Drobot HY, Koshchaev AG, Todorov SD, Ermakov AM. Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine. Animals. 2025; 15(9):1222. https://doi.org/10.3390/ani15091222
Chicago/Turabian StyleShebeko, Sergei Konstantinovich, Heorhii Yurievich Drobot, Andrey Georgievich Koshchaev, Svetoslav Dimitrov Todorov, and Alexey Mikhailovich Ermakov. 2025. "Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine" Animals 15, no. 9: 1222. https://doi.org/10.3390/ani15091222
APA StyleShebeko, S. K., Drobot, H. Y., Koshchaev, A. G., Todorov, S. D., & Ermakov, A. M. (2025). Application of Artificial Gastrointestinal Tract Models in Veterinary Medicine. Animals, 15(9), 1222. https://doi.org/10.3390/ani15091222