Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = Ru nanoparticle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

19 pages, 2158 KiB  
Article
Stability of an Ultra-Low-Temperature Water–Gas Shift Reaction SILP Catalyst
by Ferdinand Fischer, Johannes Thiessen, Wolfgang Korth and Andreas Jess
Catalysts 2025, 15(6), 602; https://doi.org/10.3390/catal15060602 - 18 Jun 2025
Viewed by 505
Abstract
For PEM fuel cell operation, high-purity hydrogen gas containing only trace amounts of carbon monoxide is a prerequisite. The water–gas shift reaction (WGSR) is an industrially applied mature operation mode to convert CO with H2O into CO2 (making it easy [...] Read more.
For PEM fuel cell operation, high-purity hydrogen gas containing only trace amounts of carbon monoxide is a prerequisite. The water–gas shift reaction (WGSR) is an industrially applied mature operation mode to convert CO with H2O into CO2 (making it easy to separate, if necessary) and H2. Since the WGS reaction is an exothermic equilibrium reaction, low temperatures (below 200 °C) lead to full CO conversion. Thus, highly active ultra-low-temperature WGSR catalysts have to be applied. A homogeneous Ru SILP (supported ionic liquid phase) catalyst based on the precursor complex [Ru(CO)3Cl2]2 has been identified to operate at such low temperature levels. However, in a hydrogen rich atmosphere, transition metal complexes are prone to form nanoparticles (NPs) when dissolved in ionic liquids (ILs). In this article, the behavior of an anionic SILP WGSR catalyst, i.e., [Ru(CO)3Cl3] dissolved in [BMMIM]Cl, in an H2-rich CO environment is described. The data reveal that during the WGSR, Ru nanoparticles form in the catalyst when very low CO concentrations are reached. The Ru NPs formation has been confirmed by transmission electron microscopy imaging and X-ray diffraction (XRD). Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Efficient Hydrogen Production from Ammonia Using Ru Nanoparticles on Ce-Based Metal–Organic Framework (MOF)-Derived CeO2 with Oxygen Vacancies
by Wenying Wu, Wenhao Yao, Yitong Liu, Senliang Xi and Teng Zhang
Molecules 2025, 30(11), 2301; https://doi.org/10.3390/molecules30112301 - 23 May 2025
Viewed by 600
Abstract
Ammonia is a promising hydrogen storage material because it is easy to store and decompose into COX-free hydrogen. A Ru-based catalyst exhibits good catalytic performance in ammonia decomposition, and enhancing the interaction between the Ru atoms and the support is an [...] Read more.
Ammonia is a promising hydrogen storage material because it is easy to store and decompose into COX-free hydrogen. A Ru-based catalyst exhibits good catalytic performance in ammonia decomposition, and enhancing the interaction between the Ru atoms and the support is an important way to further improve its catalytic activity. In this study, CeO2 was prepared by calcination using a cerium-based metal–organic framework (MOF) as the precursor, and the number of oxygen vacancies on the surface of CeO2 was regulated by hydrogen reduction. The XPS and Raman results showed that abundant oxygen vacancies were formed on the surface of these CeO2, and their number increased with an increase in the reduction time. The Ru/CeO2-4 h catalyst, using CeO2 reduced for 4 h as the support, exhibited good catalytic activity in ammonia decomposition, reaching 98.9% ammonia conversion and 39.74 mmol gcat−1 min−1 hydrogen yield under the condition of GHSV = 36,000 mL gcat−1 h−1 at 500 °C. The XAFS results demonstrated that Ru was stably anchored with oxygen vacancies on the surface of CeO2 via Ru-O-Ce bonds. Density functional theory calculations further showed that these bondings lower the reaction energy barrier for N-H bond cleavage, thereby significantly enhancing the catalytic activity. Full article
Show Figures

Figure 1

17 pages, 2846 KiB  
Article
Magnetic Bifunctional Ru-Enzyme Catalyst Allows for Sustainable Conversion of Cellulose Derivative to D-Sorbitol
by Boris B. Tikhonov, Daniil R. Lisichkin, Alexandrina M. Sulman, Alexander I. Sidorov, Alexey V. Bykov, Yury V. Lugovoy, Alexey Y. Karpenkov, Lyudmila M. Bronstein and Valentina G. Matveeva
Nanomaterials 2025, 15(10), 740; https://doi.org/10.3390/nano15100740 - 15 May 2025
Viewed by 388
Abstract
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of [...] Read more.
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of catalytic sites: cellulase (Cel, 5 wt.%) and Ru (3 wt.%) nanoparticles (NPs) of 0.7 nm in diameter. To optimize the nanobiocatalyst structure and composition, we first synthesized the biocatalyst, MNA-CSP-Cel (CSP stands for the CS layer cross-linked by TPP), as well as the nanocatalyst, MNA-CSP-Ru, and studied them in the one-step reactions of hydrolysis and hydrogenation, respectively. The data obtained allowed us to optimize the composition and properties of the bifunctional nanobiocatalyst, MNA-CSP-Ru-Cel, and to choose the best reaction conditions for the cascade process. MNA-CSP-Ru-Cel was characterized using transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and porosity measurements. The knowledge obtained enabled us to perform a cascade transformation of CMC to D-sorbitol with a yield of 83.2% for 10 h at 70 °C and a hydrogen pressure of 4 MPa. The yield demonstrated in this work is much higher than that reported to date for the same cascade process. Full article
Show Figures

Graphical abstract

18 pages, 3933 KiB  
Article
Ru Nanoparticle Assemblies Modified with Single Mo Atoms for Hydrogen Evolution Reactions in Seawater Electrocatalysis
by Shuhan Wang, Jiani Qin, Yong Zhang, Shuai Chen, Wenjun Yan, Haiqing Zhou and Xiujun Fan
Catalysts 2025, 15(5), 475; https://doi.org/10.3390/catal15050475 - 12 May 2025
Viewed by 519
Abstract
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred [...] Read more.
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred to as MoRu-NG) are compounded via hydrothermal and chemical vapor deposition (CVD) methods. The incorporation of single Mo atoms into Ru lattices modifies the local atomic milieu around Ru centers, significantly improving HER catalytic behavior and stability. More specifically, MoRu-NG achieves overpotentials of 53 mV and 28 mV at 10 mA cm−2, with exceptional stability in acidic and alkaline seawater solutions, respectively. In MoRu-NG, Ru atoms have a special electronic structure and thus possess optimal hydrogen adsorption energy, which indicates that excellent HER activity mainly hinges upon Ru centers. To be specific, the d-electron orbitals of Ru atoms are close to half full, giving Ru atoms moderate bond energy for the assimilation and release of hydrogen, which is beneficial for the conversion of reaction intermediates. Moreover, the incorporation of single Mo atoms facilitates the formation of O and O’-bidentate ligands, significantly enhancing the structural stability of MoRu-NG in universal-pH seawater electrolysis. This work advances a feasible construction method of hexagonal octahedral configuration (Ru-O-Mo-N-C) and provides a route to synthesize an efficient and stable catalyst for electrocatalytic HER in universal-pH seawater. Full article
Show Figures

Graphical abstract

24 pages, 4726 KiB  
Article
Preparation of Ru-Based Systems Through Metal Carbonyl Cluster Decomposition for the Base-Free 5-Hydroxymethylfurfural (HMF) Oxidation
by Francesca Liuzzi, Francesco Di Renzo, Cristiana Cesari, Alice Mammi, Lorenzo Monti, Alessandro Allegri, Stefano Zacchini, Giuseppe Fornasari, Nikolaos Dimitratos and Stefania Albonetti
Molecules 2025, 30(10), 2120; https://doi.org/10.3390/molecules30102120 - 10 May 2025
Viewed by 578
Abstract
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The [...] Read more.
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The controlled decomposition of the carbonyl cluster [HRu3(CO)11], a methodology not yet applied to Ru catalysts for this reaction, on different supports focusing on controlling and tuning the basic properties of support allowed the formation of small Ru nanoparticles with a mean diameter of around 1 nm. The catalytic systems obtained resulted in more activity in the HMF oxidation than those prepared through a more common salt-impregnation technique, and the deposition of Ru nanoparticles on materials with basic functionalities has allowed avoiding the use of basic solutions in the reaction. The characterization by CO2-TPD of Mg(Al)O catalysts obtained from decomposition of layered double hydroxide hydrotalcites with different composition and activation has allowed disclosure of an important correlation between the selectivity of FDCA and the fraction of weak basic sites, which is decreased by the calcination treatment at increased temperature. Full article
Show Figures

Graphical abstract

13 pages, 4001 KiB  
Article
Growing Nanocrystalline Ru on Amorphous/Crystalline Heterostructure for Efficient and Durable Hydrogen Evolution Reaction
by Quanbin Huang, Xu Zhang, Li Tong, Yipu Liu and Shiwei Lin
Catalysts 2025, 15(5), 434; https://doi.org/10.3390/catal15050434 - 29 Apr 2025
Viewed by 571
Abstract
The design of efficient hydrogen evolution reaction (HER) catalysts to minimize reaction overpotentials plays a pivotal role in advancing water electrolysis and clean energy solutions. Ru-based catalysts, regarded as potential replacements for Pt-based catalysts, face stability challenges during catalytic process. The precise regulation [...] Read more.
The design of efficient hydrogen evolution reaction (HER) catalysts to minimize reaction overpotentials plays a pivotal role in advancing water electrolysis and clean energy solutions. Ru-based catalysts, regarded as potential replacements for Pt-based catalysts, face stability challenges during catalytic process. The precise regulation of metal–support interactions effectively prevents Ru nanoparticle degradation while optimizing interfacial electronic properties, enabling the simultaneous enhancement of catalytic activity and stability. Herein, we design an amorphous/crystalline support and employ in situ replacement to develop a Ru-NiPx-Ni structure. The crystalline Ni phase with ordered atomic arrangement ensures efficient charge transport, while the amorphous phase with unsaturated dangling bonds provides abundant anchoring sites for Ru nanoclusters. This synergistic structure significantly enhances HER performance, which attains overpotentials of 19 mV at 10 mA cm−2 and 70 mV at 100 mA cm−2 in 1 m KOH, with sustained operation exceeding 55 h at 100 mA cm−2. Electrochemical impedance spectroscopy analysis confirms that the Ru-NiPx-Ni structure not only has a high density of active centers for HER, but also reduces the charge transfer resistance at the electrode–electrolyte interface, which effectively enhances HER kinetics. This study presents new directions for designing high-efficiency HER catalysts. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

16 pages, 6592 KiB  
Article
A Theoretical Study on the Structural Evolution of Ru–Zn Bimetallic Nanoparticles
by Luxin Mu, Jingli Han and Yongpeng Yang
Nanomaterials 2025, 15(8), 568; https://doi.org/10.3390/nano15080568 - 8 Apr 2025
Viewed by 523
Abstract
Ru–Zn catalysts exhibit excellent catalytic performance for the selective hydrogenation of benzene to cyclohexene and has been utilized in industrial production. However, the structure–performance relationship between Ru–Zn catalysts and benzene hydrogenation remains lacking. In this work, we focused on the evolution of Ru–Zn [...] Read more.
Ru–Zn catalysts exhibit excellent catalytic performance for the selective hydrogenation of benzene to cyclohexene and has been utilized in industrial production. However, the structure–performance relationship between Ru–Zn catalysts and benzene hydrogenation remains lacking. In this work, we focused on the evolution of Ru–Zn nanoparticles with size and Ru/Zn ratio. The structures of Ru nanoparticles and Ru–Zn bimetallic nanoparticles with different sizes were determined by the minima-hopping global optimization method in combination with density functional theory and high-dimensional neural network potential. Furthermore, we propose the growth mechanism for Ru nanoparticles and evolution processes for Ru–Zn bimetallic nanoparticles. Additionally, we analyzed the structural stability, electronic properties, and adsorption properties of Zn atoms. This work provides valuable reference and guidance for future theoretical research and applications. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

17 pages, 2215 KiB  
Article
Hydrocracking of Polyethylene to Gasoline-Range Hydrocarbons over a Ruthenium-Zeolite Bifunctional Catalyst System with Optimal Synergy of Metal and Acid Sites
by Qing Du, Xin Shang, Yangyang Yuan, Xiong Su and Yanqiang Huang
Catalysts 2025, 15(4), 335; https://doi.org/10.3390/catal15040335 - 31 Mar 2025
Viewed by 987
Abstract
Chemical recycling of plastic waste, especially polyolefins, into valuable liquid fuels is of considerable significance to address the serious issues raised by their threat on environmental and human health. Nevertheless, the construction of efficient and economically viable catalytic systems remains a significant hurdle. [...] Read more.
Chemical recycling of plastic waste, especially polyolefins, into valuable liquid fuels is of considerable significance to address the serious issues raised by their threat on environmental and human health. Nevertheless, the construction of efficient and economically viable catalytic systems remains a significant hurdle. Herein, we developed an efficient bifunctional catalyst system comprising γ-Al2O3-supported ruthenium nanoparticles (Ru/γ-Al2O3) and β-zeolite for the conversion of polyolefins into gasoline-range hydrocarbons. A yield of C5–12 paraffins up to 73.4% can be obtained with polyethene as the reactant at 250 °C in hydrogen. The Ru sites primarily activate the initial cleavage of C–H bonds of polymer towards the formation of olefin intermediates, which subsequently go through further cracking and isomerization over the acid sites in β-zeolite. Employing in situ infrared spectroscopy and probe–molecule model reactions, our investigation reveals that the optimized proportion and spatial distribution of the dual catalytic sites are pivotal in the tandem conversion process. This optimization synergistically regulates the cracking kinetics and accelerates intermediate transfer, thereby minimizing the production of side C1–4 hydrocarbons resulting from over-cracking at the Ru sites and enhancing the yield of liquid fuels. This research contributes novel insights into catalyst design for the chemical upgrading of polyolefins into valuable chemicals, advancing the field of plastic waste recycling and sustainable chemical production. Full article
Show Figures

Graphical abstract

14 pages, 4006 KiB  
Article
A Bifunctional Nanostructured RuPt/C Electrocatalyst for Energy Storage Based on the Chlor-Alkali Process
by Nuria Romero, Mahmoud M. Gomaa, Jérôme Esvan, Manuel A. Rodrigo, Karine Philippot and Justo Lobato
Nanomaterials 2025, 15(7), 506; https://doi.org/10.3390/nano15070506 - 27 Mar 2025
Cited by 1 | Viewed by 557
Abstract
This study focuses on the design of a novel electrode for an energy storage system utilizing EDEN (electrochemical-based decarbonizing energy) technology. This technology implies a chlor-alkali electrochemical cell with dual functionality: first, the electrolysis of water and NaCl to produce hydrogen (H2 [...] Read more.
This study focuses on the design of a novel electrode for an energy storage system utilizing EDEN (electrochemical-based decarbonizing energy) technology. This technology implies a chlor-alkali electrochemical cell with dual functionality: first, the electrolysis of water and NaCl to produce hydrogen (H2) and chlorine (Cl2), and subsequently, the utilization of these products in an H2/Cl2 fuel cell to generate electricity. Bimetallic RuPt nanoparticles have been synthesized on Vulcan carbon (C-V) from organometallic precursors to be used as electrocatalysts. Characterization includes transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). The RuPt/C-V-based electrode demonstrated notable performance in the target reversible electrochemical cell, acting as the anode for electrolysis and as the cathode in fuel-cell mode. Testing in a 3D-printed electrochemical cell revealed high efficiency, with a coulombic efficiency exceeding 96% for hydrogen production, yielding 11.75 mg·Wh−1 and achieving a power output of approximately 4.5 mW·cm−2 in H2/Cl2 fuel-cell operation. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Figure 1

13 pages, 4135 KiB  
Article
On-Chip Electrochemical Sensor Based on 3D Graphene Assembly Decorated Ultrafine RuCu Alloy Nanocatalyst for In Situ Detection of NO in Living Cells
by Haibo Liu, Kaiyuan Yao, Min Hu, Shanting Li, Shengxiong Yang and Anshun Zhao
Nanomaterials 2025, 15(6), 417; https://doi.org/10.3390/nano15060417 - 8 Mar 2025
Cited by 1 | Viewed by 941
Abstract
In this work, we developed 3D ionic liquid (IL) functionalized graphene assemblies (GAs) decorated by ultrafine RuCu alloy nanoparticles (RuCu-ANPs) via a one-step synthesis process, and integrated it into a microfluidic sensor chip for in situ electrochemical detection of NO released from living [...] Read more.
In this work, we developed 3D ionic liquid (IL) functionalized graphene assemblies (GAs) decorated by ultrafine RuCu alloy nanoparticles (RuCu-ANPs) via a one-step synthesis process, and integrated it into a microfluidic sensor chip for in situ electrochemical detection of NO released from living cells. Our findings have demonstrated that RuCu-ANPs on 3D IL-GA exhibit high density, uniform distribution, lattice-shaped arrangement of atoms, and extremely ultrafine size, and possess high electrocatalytic activity to NO oxidation on the electrode. Meanwhile, the 3D IL-GA with hierarchical porous structures can facilitate the efficient electron/mass transfer at the electrode/electrolyte interface and the cell culture. Moreover, the graft of IL molecules on GA endows it with high hydrophilicity for facile and well-controllable printing on the electrode. Consequently, the resultant electrochemical microfluidic sensor demonstrated excellent sensing performances including fast response time, high sensitivity, good anti-interference ability, high reproducibility, long-term stability, as well as good biocompatibility, which can be used as an on-chip sensing system for cell culture and real-time in situ electrochemical detection of NO released from living cells with accurate and stable characteristics in physiological conditions. Full article
(This article belongs to the Special Issue The 15th Anniversary of Nanomaterials—Women in Nanomaterials)
Show Figures

Graphical abstract

11 pages, 1933 KiB  
Article
Engineering Amorphous CoNiRuOx Nanoparticles Grown on Nickel Foam for Boosted Electrocatalytic Hydrogen Evolution
by Xiahui Shi, Qitong Ye, Quanbin Huang, Junhu Ma, Yipu Liu and Shiwei Lin
Catalysts 2025, 15(3), 211; https://doi.org/10.3390/catal15030211 - 22 Feb 2025
Cited by 1 | Viewed by 743
Abstract
Designing efficient and cost-effective electrocatalysts is crucial for the large-scale development of sustainable hydrogen energy. Amorphous catalysts hold great promise for application due to their structural flexibility and high exposure of active sites. We report a novel method for the in situ growth [...] Read more.
Designing efficient and cost-effective electrocatalysts is crucial for the large-scale development of sustainable hydrogen energy. Amorphous catalysts hold great promise for application due to their structural flexibility and high exposure of active sites. We report a novel method for the in situ growth of amorphous CoNiRuOx nanoparticle structures (CoNiRuOx/NF) on a nickel foam substrate. In 1 m KOH, CoNiRuOx/NF achieves a current density of 10 mA/cm2 with a hydrogen evolution reaction (HER) overpotential of only 43 mV and remains stable for over 100 h at a current density of 100 mA/cm2. An alkaline electrolyzer assembled with CoNiRuOx/NF as the cathode delivers a current density 2.97 times higher than that of an IrO2||Pt/C electrode pair at the potential of 2 V and exhibits excellent long-term durability exceeding 100 h. Experimental results reveal that the combined replacement and corrosion reactions facilitate the formation of the amorphous CoNiRuOx structure. This work provides valuable insights for developing efficient and scalable amorphous catalysts. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

15 pages, 2219 KiB  
Article
Anion-Exchange Strategy for Ru/RuO2-Embedded N/S-Co-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation
by Shahzeb Ali Samad, Xuanzi Ye, Zhiya Han, Senhe Huang, Chenbao Lu, Junbo Hou, Min Yang, Zhenyu Zhang, Feng Qiu and Xiaodong Zhuang
Polymers 2025, 17(4), 543; https://doi.org/10.3390/polym17040543 - 19 Feb 2025
Viewed by 798
Abstract
Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains [...] Read more.
Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains a significant challenge, due to the tendency of the aggregation of metal nanoparticles during pyrolysis. In this study, a nitrogen (N)- and sulfur (S)-enriched ionic covalent organic framework (iCOF) incorporating viologen and thieno[3,4-b] thiophene (TbT) was constructed via Zincke-type polycondensation. The synthesized iCOF possesses a crystalline porous structure with a pore size of 3.05 nm, a low optical band gap of 1.88 eV, and superior ionic conductivity of 10−2.672 S cm−1 at 333 K, confirming the ionic and conjugated nature of our novel iCOF. By applying the iCOF as the precursor, a ruthenium and ruthenium(IV) oxide (Ru/RuO2) nanoparticle-embedded N/S-co-doped porous carbon composite (NSPC-Ru) was prepared by using a two-step sequence of anion-exchange and pyrolysis processes. In the electrochemical nitrogen reduction reaction (eNRR) application, the NSPC-Ru achieves an impressive NH3 yield rate of 32.0 μg h−1 mg−1 and a Faradaic efficiency of 13.2% at −0.34 V vs. RHE. Thus, this innovative approach proposes a new route for the design of iCOF-derived metal-embedded porous carbon composites for enhanced NRR performance. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

14 pages, 10364 KiB  
Article
SnO2-Based CMOS-Integrated Gas Sensor Optimized by Mono-, Bi-, and Trimetallic Nanoparticles
by Larissa Egger, Florentyna Sosada-Ludwikowska, Stephan Steinhauer, Vidyadhar Singh, Panagiotis Grammatikopoulos and Anton Köck
Chemosensors 2025, 13(2), 59; https://doi.org/10.3390/chemosensors13020059 - 8 Feb 2025
Cited by 1 | Viewed by 1200
Abstract
Chemical sensors, relying on electrical conductance changes in a gas-sensitive material due to the surrounding gas, have the (dis-)advantage of reacting with multiple target gases and humidity. In this work, we report CMOS-integrated SnO2 thin film-based gas sensors, which are functionalized with [...] Read more.
Chemical sensors, relying on electrical conductance changes in a gas-sensitive material due to the surrounding gas, have the (dis-)advantage of reacting with multiple target gases and humidity. In this work, we report CMOS-integrated SnO2 thin film-based gas sensors, which are functionalized with mono-, bi-, and trimetallic nanoparticles (NPs) to optimize the sensor performance. The spray pyrolysis technology was used to deposit the metal oxide sensing layer on top of a CMOS-fabricated micro-hotplate (µhp), and magnetron sputtering inert-gas condensation was employed to functionalize the sensing layer with metallic NPs, Ag-, Pd-, and Ru-NPs, and all combinations thereof were used as catalysts to improve the sensor response to carbon monoxide and to suppress the cross-sensitivity toward humidity. The focus of this work is the detection of toxic carbon monoxide and a specific hydrocarbon mixture (HCmix) in a concentration range of 5–50 ppm at different temperatures and humidity levels. The use of CMOS chips ensures low-power, integrated sensors, ready to apply in cell phones, watches, etc., for air quality-monitoring purposes. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

31 pages, 5103 KiB  
Review
Boron Nitride-Supported Metal Catalysts for the Synthesis and Decomposition of Ammonia and Formic Acid
by Marta Yruela-Garrido, Eduardo Campos-Castellanos, María V. Morales, Inmaculada Rodríguez-Ramos and Antonio Guerrero-Ruiz
Nanomaterials 2025, 15(3), 212; https://doi.org/10.3390/nano15030212 - 28 Jan 2025
Cited by 2 | Viewed by 1767
Abstract
This review explores the recent advancements in the application of boron nitride (BN) as a support material for metallic nanoparticles, highlighting its potential in fostering sustainable chemical reactions when employed as a heterogeneous catalyst. Two key processes, both critical to hydrogen storage and [...] Read more.
This review explores the recent advancements in the application of boron nitride (BN) as a support material for metallic nanoparticles, highlighting its potential in fostering sustainable chemical reactions when employed as a heterogeneous catalyst. Two key processes, both critical to hydrogen storage and transport, are examined in detail. First, the reversible synthesis and decomposition of ammonia using BN-supported metallic catalysts has emerged as a promising technology. This approach facilitates the preparation of Ru nanoparticles with precisely structured surface atomic ensembles, such as B5 sites, which are critical for maximizing catalytic efficiency. Second, the review emphasizes the role of BN-supported catalysts in the production of formic acid (FA), a process intrinsically linked to the reuse of carbon dioxide. In this context, hydrogen and carbon dioxide—potentially sourced from atmospheric capture—serve as reactants. BN’s high CO2 adsorption capacity makes it an ideal support material for such applications. Moreover, FA can serve as a source of hydrogen through decomposition or as a precursor to alternative chemicals like carbon monoxide (CO) via dehydration, further underscoring its versatility in sustainable catalysis. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop