Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = RHCP (Right-Hand Circular Polarization)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7998 KB  
Article
A Wideband Multi-Polarized Microstrip Antenna with High Polarization Isolation Based on Dual-Circular Polarization
by Xuenan Wang, Hongcheng Zhou, Xinhui Wang, Xia Lei, Boyang Hao, Mian Zhong and Chao Zhou
Micromachines 2025, 16(11), 1209; https://doi.org/10.3390/mi16111209 - 24 Oct 2025
Viewed by 355
Abstract
To address the limited overlapping bandwidth across polarization modes in conventional multi-polarized antennas, this paper proposes a wideband multi-polarized microstrip antenna with high polarization isolation. Based on the theory of orthogonal dual-circular polarization synthesis, the proposed antenna achieves left-hand circular polarization (LHCP) and [...] Read more.
To address the limited overlapping bandwidth across polarization modes in conventional multi-polarized antennas, this paper proposes a wideband multi-polarized microstrip antenna with high polarization isolation. Based on the theory of orthogonal dual-circular polarization synthesis, the proposed antenna achieves left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP) under a single-port excitation mode, and can generate arbitrary linear polarization (LP) by simply adjusting the phase when dual-fed. For verification, a prototype operating at the C-band is designed, fabricated, and measured. The measured results agree well with the simulations. For linear polarization, the measured 10 dB bandwidth ranges from 4 GHz to 8 GHz (relative bandwidth of 66.7%), with polarization isolation exceeding 26 dB. For circular polarization, the measured bandwidth (for 10 dB return loss and 3 dB axial ratio) spans 4.1–8 GHz (relative bandwidth of 64.5%), with polarization isolation greater than 15 dB. The linear polarization gain is slightly higher than the circular polarization gain, with a maximum gain of 4.3 dB. The proposed antenna simultaneously features multi-polarization, a wide bandwidth, a low profile (0.03 λ0), and high polarization isolation, which can meet the urgent demand for multi-polarized antennas in modern multi-functional integrated wireless systems, such as communication systems, radar, and unmanned aerial vehicles (UAVs). Full article
Show Figures

Figure 1

24 pages, 4193 KB  
Article
Reconfigurable Circularly Polarized Phased Array
by Eduardo S. Silveira, Fúlvio F. Oliveira, Bernardo M. Fabiani, Juner M. Vieira, Daniel B. Ferreira and Daniel C. Nascimento
Electronics 2025, 14(21), 4159; https://doi.org/10.3390/electronics14214159 - 24 Oct 2025
Viewed by 400
Abstract
This paper presents the design, construction, and tests of a polarization-reconfigurable phased array antenna. The proposed array allows the polarization at the main lobe maximum direction to be electronically reconfigured between right-hand (RHCP) and left-hand circular polarization (LHCP). Single-fed microstrip antennas, each with [...] Read more.
This paper presents the design, construction, and tests of a polarization-reconfigurable phased array antenna. The proposed array allows the polarization at the main lobe maximum direction to be electronically reconfigured between right-hand (RHCP) and left-hand circular polarization (LHCP). Single-fed microstrip antennas, each with four tunable varicap diodes, are employed in the phased array to achieve a low axial ratio (AR) at the steering angles. Special attention is given to the microstrip antenna design and varicap modeling, which involves the use of measured data and search algorithms running in an electromagnetic/circuit co-simulation environment. To illustrate the proposed approach, a six-element linear phased array at 2.2 GHz has been built and tested in an anechoic chamber. The experimental results demonstrate an AR below 1 dB in both RHCP and LHCP states over a wide range of steering angles, and even in a multibeam configuration, validating our design method. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

18 pages, 40307 KB  
Article
A Reconfigurable Metasurface for Linear-to-Circular Polarization Conversion Using Mechanical Rotation
by Gregorio J. Molina-Cuberos, Ángel J. García-Collado, Ismael Barba and José Margineda
Electronics 2025, 14(18), 3639; https://doi.org/10.3390/electronics14183639 - 14 Sep 2025
Viewed by 823
Abstract
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a [...] Read more.
We present a single-slab metasurface that converts a normally incidental linearly polarized wave into either right- or left-handed circular polarization (RHCP/LHCP) through a simple 90 mechanical rotation. Each unit cell comprises two L-shaped metallic resonators placed on the opposite faces of a low-permittivity substrate. Operating in transmission mode, the linear-to-circular (LTC) converter does not require any active electronic components. The geometry is optimized by using full-wave simulations to maximize the conversion up to 26% relative bandwidth with polarization conversion efficiency up to 65%, and insertion loss below 1.3 dB. Power balance analysis confirms low-loss, impedance-matched behavior. A scaled prototype fabricated from AWG-25 steel wires validates the model: experimental measurements closely reproduce the simulated bandwidth and demonstrate robust handedness switching. Because the resonance frequency depends primarily on resonator length and unit-cell pitch and thickness, the design can be retuned across the microwave spectrum through straightforward geometrical scaling. These results suggest that mechanical rotation could provide a simple and reliable alternative to electronic tuning in reconfigurable circular polarizers. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 3616 KB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 - 31 Jul 2025
Cited by 1 | Viewed by 566
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

16 pages, 3042 KB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 1028
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

19 pages, 6471 KB  
Article
A Miniaturized RHCP Slot Antenna for Wideband Applications Including Sub-6 GHz 5G
by Atyaf H. Mohammed, Falih M. Alnahwi, Yasir I. A. Al-Yasir and Sunday C. Ekpo
Technologies 2025, 13(6), 254; https://doi.org/10.3390/technologies13060254 - 17 Jun 2025
Cited by 2 | Viewed by 1290
Abstract
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern [...] Read more.
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern antenna designs. In response to this, this paper presents a compact wide-slot antenna with a single feed, offering a wide operational bandwidth and circularly polarized radiation. The proposed design is excited by a 50 Ohm microstrip feedline, and it is fabricated on an (54 × 50 × 1.6 mm3) FR4 dielectric substrate. On the bottom side of the dielectric substrate, the ground plane is engraved to form a square-shaped radiating slot. The shape of the tuning stub of the antenna is modified in order to attain a wide impedance bandwidth and an axial ratio bandwidth (ARBW). The modifications include inserting a rectangular strip and thin horizontal strips into the tuning stub after tapering its upper corner. On the other hand, the radiating slot is appended by two rectangular stubs. The radiation of the resulted structure has right-hand circular polarization (RHCP). The measured results of the proposed antenna show a −10 dB impedance bandwidth equal to 78% (2.65 GHz, 2.08–4.73 GHz), whereas its broadside 3 dB ARBW is 71.6% over the frequencies (2.31 GHz, 2.07–4.38 GHz), which is compatible with various wireless communication applications. Furthermore, the peak value of the measured gain is equal to 4.68 dB, and its value is larger than 2 dBi along the operational bandwidth of the antenna. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

10 pages, 3365 KB  
Article
Design of Small-Sized Spiral Slot PIFA Antenna Used Conformally in Laminated Body Tissues
by Rong Li, Jian Liu, Cuizhen Sun, Wang Yao, Ying Tian and Xiaojun Huang
Sensors 2025, 25(9), 2938; https://doi.org/10.3390/s25092938 - 7 May 2025
Viewed by 929
Abstract
This paper presents a novel Spiral Slot Planar Inverted-F Antenna (SSPIFA) specifically designed for telemedicine and healthcare applications, featuring compact size, biocompatible safety, and high integration suitability. By replacing the conventional top metal patch of a Planar Inverted-F Antenna (PIFA) with a slot [...] Read more.
This paper presents a novel Spiral Slot Planar Inverted-F Antenna (SSPIFA) specifically designed for telemedicine and healthcare applications, featuring compact size, biocompatible safety, and high integration suitability. By replacing the conventional top metal patch of a Planar Inverted-F Antenna (PIFA) with a slot spiral radiator whose geometry is precisely matched to the ground plane, the proposed antenna achieves a significant size reduction, making it ideal for encapsulation in miniaturized medical devices—a critical requirement for implantation scenarios. Tailored for the ISM 915 MHz band, the antenna is fabricated with a four-turn slot spiral etched on a 30 mm-diameter dielectric substrate, achieving an overall height of 22 mm and an electrically small profile of approximately 0.09λ × 0.06λ (λ: free-space wavelength at the center frequency). Simulation and measurement results demonstrate a −16 dB impedance matching (S11 parameter) at the target frequency, accompanied by a narrow fractional bandwidth of 1% and stable right-hand circular polarization (RHCP). When implanted in a layered biological tissue model (skin, fat, muscle), the antenna exhibits a near-omni directional radiation pattern in the azimuthal plane, with a peak gain of 2.94 dBi and consistent performance across the target band. These characteristics highlight the SSPIFA’s potential for reliable wireless communication in implantable medical systems, balancing miniaturization, radiation efficiency, and biocompatible design. Full article
(This article belongs to the Special Issue Metasurfaces for Enhanced Communication and Radar Detection)
Show Figures

Figure 1

14 pages, 11515 KB  
Communication
A High-Temperature Stabilized Anti-Interference Beidou Array Antenna
by Feng Xu and Xiaofei Zhang
Electronics 2025, 14(8), 1555; https://doi.org/10.3390/electronics14081555 - 11 Apr 2025
Viewed by 924
Abstract
Traditional Beidou Navigation Satellite System anti-jamming array antennas mostly use PCB plates, but in extreme vibration environments, their rigidity may cause the antenna structure to be more susceptible to damage. Especially in an extremely high-temperature environment, it may cause thermal expansion, softening, and [...] Read more.
Traditional Beidou Navigation Satellite System anti-jamming array antennas mostly use PCB plates, but in extreme vibration environments, their rigidity may cause the antenna structure to be more susceptible to damage. Especially in an extremely high-temperature environment, it may cause thermal expansion, softening, and even melting of metal materials, which will affect the structure and performance of the antenna; In this paper, a Beidou array antenna integrating high seismic resistance, high-temperature stability, and anti-interference ability is designed and studied. The structural parts of the antenna are composed of 7075 aluminum alloy and high-temperature ceramic material technology, which has a compact structure and strong corrosion resistance, which is especially suitable for aviation and marine environments. The antenna works stably at 400 °C and has excellent heat resistance. Built-in shock-absorbing elements or shock-absorbing materials are used to effectively absorb and disperse vibration energy and reduce the direct impact on the internal components of the antenna. Considering the anti-interference performance caused by the size of the array spacing and the mutual coupling between the array elements, the array spacing is designed to be between λ/4 and λ/2. In simulations and experiments, the designed antenna array shows good performance and proves its applicability for high-temperature applications. The antenna frequency includes the B3 band (1250.618~1286.423 MHz) and B1 band (1559.052~1591.788 MHz) of the Beidou Navigation Satellite System. The following article includes the introduction, proposed array antenna structure and dimension, antenna simulation results, antenna protype and environment test, conclusions and future work. Full article
Show Figures

Figure 1

11 pages, 6274 KB  
Article
A Low-Cost, Wide-Band, High-Gain Mechanically Reconfigurable Multi-Polarization Antenna Based on a 3-D Printed Polarizer
by Wenjie Ding, Guoda Xie, Yang Hong, Hang Yu, Chao Wang, Siliang Wang and Zhixiang Huang
Electronics 2025, 14(6), 1224; https://doi.org/10.3390/electronics14061224 - 20 Mar 2025
Cited by 1 | Viewed by 777
Abstract
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to [...] Read more.
This paper proposes a mechanically reconfigurable multi-polarization antenna based on a 3D-printed anisotropic dielectric polarizer, offering wide bandwidth, high gain, and extremely low cost. The working mechanism of the dielectric polarizer is analyzed, demonstrating its ability to efficiently convert linear polarization (LP) to circular polarization (CP) over a wide frequency range. Furthermore, the polarizer exhibits subwavelength characteristics. For a given duty cycle, its phase response depends only on the height and is independent of the aperture size. This property enables miniaturized and customized designs of the polarizer’s aperture size. Subsequently, the polarizer is placed above a Ku band waveguide and standard horn antennas. The results show that by rotating the dielectric polarizer and adjusting the positions of the antennas, right-handed CP (RHCP), left-handed CP (LHCP), and dual LP radiation switching can be achieved in the 12.4–18.0 GHz band, verifying the quad-polarization reconfigurability. Additionally, the polarizer significantly enhances the gain of the waveguide antenna by approximately 9.5 dB. Furthermore, due to the low-cost 3D printing material, the manufacturing cost of the polarizer is exceptionally low, making it suitable for applications such as anechoic chamber measurements and wireless communications. Finally, the measurement results further validate the accuracy of the simulations. Full article
Show Figures

Figure 1

12 pages, 2848 KB  
Article
A 3D-Printed Enclosed Twist Dielectric Resonator Antenna with Circular Polarization
by Andrea Ávila-Saavedra, Marcos Diaz and Francisco Pizarro
Appl. Sci. 2025, 15(2), 992; https://doi.org/10.3390/app15020992 - 20 Jan 2025
Cited by 1 | Viewed by 1488
Abstract
This article presents a circular polarized enclosed dielectric resonator antenna (DRA), operating at 5.8 GHz. The design consists of a twist DRA, which is enclosed in a box to give stability to the structure. The circular polarization of the antenna depends on the [...] Read more.
This article presents a circular polarized enclosed dielectric resonator antenna (DRA), operating at 5.8 GHz. The design consists of a twist DRA, which is enclosed in a box to give stability to the structure. The circular polarization of the antenna depends on the sense of twisting the top with respect to its base to achieve Left Hand Circular Polarization (LHCP) or Right Hand Circular Polarization (RHCP). The antenna was manufactured using 3D printing and low-loss dielectric filament. The measurement results show the two resonance frequencies and an axial ratio below 3 dB at the operational frequency, while exhibiting a bandwidth and gain compatible for unmanned aerial vehicle (UAV) applications. Full article
Show Figures

Figure 1

16 pages, 8249 KB  
Technical Note
Impact Analysis of Orthogonal Circular-Polarized Interference on GNSS Spatial Anti-Jamming Array
by Ke Zhang, Xiangjun Li, Lei Chen, Zengjun Liu and Yuchen Xie
Remote Sens. 2024, 16(23), 4506; https://doi.org/10.3390/rs16234506 - 1 Dec 2024
Cited by 4 | Viewed by 1540
Abstract
With the continuous advancement of electromagnetic countermeasures, new types of interference signals (e.g., multi-polarization suppression interference) pose a significant threat to conventional Global Navigation Satellite System (GNSS) services, even when the receiver employs a right-handed circularly polarized (RHCP) anti-jamming array. This paper proposes [...] Read more.
With the continuous advancement of electromagnetic countermeasures, new types of interference signals (e.g., multi-polarization suppression interference) pose a significant threat to conventional Global Navigation Satellite System (GNSS) services, even when the receiver employs a right-handed circularly polarized (RHCP) anti-jamming array. This paper proposes a receiving signal model for orthogonal circularly polarized (OCP) interference signals based on conventional arrays, following an analysis of the non-ideal characteristics of actual arrays. Furthermore, the mechanism by which OCP interference signals affect anti-jamming performance is examined. Power inversion (PI) and linear constrained minimum variance (LCMV) techniques, applied to both uniform linear arrays and central circular arrays, are utilized to verify the impact of these interference signals. Simulation and physical testing demonstrate that OCP interference significantly affects the interference subspace of the conventional RHCP array, potentially leading to a reduction in the anti-jamming performance of the receiver. To effectively suppress multi-polarization interference, anti-jamming GNSS receivers must either ensure the consistency of cross-polarization among the elements of the array or adopt polarization-sensitive arrays. Full article
Show Figures

Figure 1

12 pages, 5426 KB  
Article
A Compact All-Band Spacecraft Antenna with Stable Gain for Multi-Band GNSS Applications
by Orcun Kiris
Appl. Sci. 2024, 14(19), 8761; https://doi.org/10.3390/app14198761 - 28 Sep 2024
Cited by 2 | Viewed by 2029
Abstract
This study presents a compact and stable gain spacecraft antenna that operates in all Global Navigation Satellite System (GNSS) bands from 1.164 GHz to 1.610 GHz. The proposed antenna structure based on the single-feed crossed bowtie antenna concept consists of four triangular patches [...] Read more.
This study presents a compact and stable gain spacecraft antenna that operates in all Global Navigation Satellite System (GNSS) bands from 1.164 GHz to 1.610 GHz. The proposed antenna structure based on the single-feed crossed bowtie antenna concept consists of four triangular patches excited with a 90° phase difference in between to generate right-hand circular polarization (RHCP), without needing complex feed networks. The radiator part of the antenna is covered by a radome and is also supported by a cylindrical dielectric cavity frame (DCF) to weaken the diffracted waves propagating along the ground plane while increasing vibration resistance. The fabricated antenna provides a return loss better than 10 dB with lower than 3 dB axial ratio and a stable gain around 7.2 ± 0.3 dBic over the entire GNSS bands, as well as a more compact and lightweight structural performance. It is also verified that the structural integrity and functional performance of the fabricated antenna remain consistent despite exposure to an equivalent vibration level in the launch process. The presented all-band spacecraft GNSS antenna is an innovative implementation with space industry insight for multi-band space applications that have application-specific limitations and provides consistent performance, as well as operational safety with the antenna design simplicity. Full article
Show Figures

Figure 1

17 pages, 2072 KB  
Article
Design of Series-Fed Circularly Polarized Beam-Tilted Antenna for Microwave Power Transmission in UAV Application
by Mok Yoon Park, Jun Hee Kim, Sang-hwa Yi, Wonseob Lim, Youngoo Yang and Keum Cheol Hwang
Appl. Sci. 2024, 14(8), 3490; https://doi.org/10.3390/app14083490 - 20 Apr 2024
Viewed by 2570
Abstract
In response to the increasing deployment of unmanned aerial vehicles (UAVs) across various sectors, the demand for efficient microwave power transmission (MPT) systems for UAVs has become paramount. This study introduces series-fed circularly polarized (CP) and passively beam-tilted patch array antennas designed to [...] Read more.
In response to the increasing deployment of unmanned aerial vehicles (UAVs) across various sectors, the demand for efficient microwave power transmission (MPT) systems for UAVs has become paramount. This study introduces series-fed circularly polarized (CP) and passively beam-tilted patch array antennas designed to enhance MPT in UAV applications, with the intention of addressing the needs related to extending flight times and improving operational efficiency. The radiating element of the proposed antennas employs the conventional model of the patch with truncated corners for CP operation, with transmission line lengths optimized for beam tilt to ensure precise energy transfer. Additionally, an open stub is integrated into the broadside series-fed antenna to improve impedance matching, which is crucial for maintaining signal integrity. The proposed design achieves right-hand circular polarization (RHCP) with an axial ratio (AR) below 3 dB across the operating band, indicative of its effectiveness in diverse UAV operational contexts. Prototypes of each proposed antenna were fabricated and measured according to the beam tilting angle. The measured RHCP realized gains of the proposed antennas are 14.59, 13.09, 13.07, and 10.71 dBic at the tilted angles of 0°, 15°, 30°, and 45°, respectively, at 5.84 GHz. Full article
(This article belongs to the Special Issue Multi-Band/Broadband Antenna Design, Optimization and Measurement)
Show Figures

Figure 1

17 pages, 22277 KB  
Article
A Whole W-Band Multi-Polarization Horn Antenna Based on Boifot-Type OMT
by Yun Zhao, Bo Zhu, Jiangqiao Ding and Sheng Li
Micromachines 2024, 15(3), 385; https://doi.org/10.3390/mi15030385 - 13 Mar 2024
Cited by 3 | Viewed by 1940
Abstract
A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as [...] Read more.
A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as single-port excitation and left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP) when as dual-port excitation, owing to the characteristic of the OMT with the transmitting of orthogonally polarized waves. A CNC-layered fabrication approach is proposed, which means that the antenna prototype integrating with a Boifot-type OMT, turning waveguide, twisting waveguide and phase shifter is divided into three layers along the vertical direction to be fabricated based on computerized numerical control (CNC) technology. In the design, the turning waveguide and twisting waveguide are employed to achieve plane consistency of the antenna branch ports. Furthermore, a phase shifter is designed to compensate the orthogonally polarized waves, which can keep the phase of the orthogonally polarized waves consistent in a wideband frequency range from 75 GHz to 110 GHz. A prototype is fabricated and measured to verify the performance of the proposed multi-polarization antenna, and the measured results agree well with the simulation ones. In the whole W-band, the value of return loss is better than 10 dB of all polarization modes, and the value of AR of the LHCP and RHCP is below 3.5 dB. The maximum gain of the antenna reaches up to 18.8 dBi at 110 GHz. In addition, regarding the layered structure, the possible layered assembly error analysis is discussed, which verifies the feasibility of the layered machining for this antenna. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 8520 KB  
Article
A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum
by Qiu-Hua Lin, Da Hou, Lihui Wang, Pengpeng Chen and Zhiyong Luo
Sensors 2024, 24(4), 1184; https://doi.org/10.3390/s24041184 - 11 Feb 2024
Cited by 2 | Viewed by 1896
Abstract
Orbit angular momentum (OAM) has been considered a new dimension for improving channel capacity in recent years. In this paper, a millimeter-wave broadband multi-mode waveguide traveling-wave antenna with OAM is proposed by innovatively utilizing the transmitted electromagnetic waves (EMWs) characteristic of substrate-integrated gap [...] Read more.
Orbit angular momentum (OAM) has been considered a new dimension for improving channel capacity in recent years. In this paper, a millimeter-wave broadband multi-mode waveguide traveling-wave antenna with OAM is proposed by innovatively utilizing the transmitted electromagnetic waves (EMWs) characteristic of substrate-integrated gap waveguides (SIGWs) to introduce phase delay, resulting in coupling to the radiate units with a phase jump. Nine “L”-shaped slot radiate elements are cut in a circular order at a certain angle on the SIGW to generate spin angular momentum (SAM) and OAM. To generate more OAM modes and match the antenna, four “Π”-shaped slot radiate units with a 90° relationship to each other are designed in this circular array. The simulation results show that the antenna operates at 28 GHz, with a −10 dB fractional bandwidth (FBW) = 35.7%, ranging from 25.50 to 35.85 GHz and a VSWR ≤ 1.5 dB from 28.60 to 32.0 GHz and 28.60 to 32.0 GHz. The antenna radiates a linear polarization (LP) mode with a gain of 9.3 dBi at 34.0~37.2 GHz, a l = 2 SAM–OAM (i.e., circular polarization OAM (CP–OAM)) mode with 8.04 dBi at 25.90~28.08 GHz, a l = 1 and l = 2 hybrid OAM mode with 5.7 dBi at 28.08~29.67 GHz, a SAM (i.e., left/right hand circular polarization (L/RHCP) mode with 4.6 dBi at 29.67~30.41 GHz, and a LP mode at 30.41~35.85 GHz. In addition, the waveguide transmits energy with a bandwidth ranging from 26.10 to 38.46 GHz. Within the in-band, only a quasi-TEM mode is transmitted with an energy transmission loss |S21| ≤ 2 dB. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop