A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum
Abstract
1. Introduction
2. Design and Analysis
2.1. Configuration of the Proposed Antenna
2.2. Working Mechanism
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thidé, H.; Then, J.; Sjöholm, K.; Palmer, J.; Bergman, T.D.; Carozzi, Y.N.; Istomin, N.H. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 2007, 99, 9892–9905. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.C.; Sun, S. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. New dimension in vortex electro-magnetic wave transmission with orbital angular momentum. J. Commun. 2022, 43, 211–222. [Google Scholar]
- Wang, Y.; Sun, X.; Liu, L. Millimeter-Wave Orbital Angular Momentum: Generation, Detection, and Applications: A Review on Millimeter Wave Orbital Angular Momentum Antennas. IEEE Microw. Mag. 2024, 25, 37–57. [Google Scholar] [CrossRef]
- Guo, C.; Zhao, X.; Zhu, C. An OAM patch antenna design and its array for higher order OAM mode generation. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 816–820. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Zhu, J. Constructing dual-frequency OAM circular patch antenna using characteristic mode theory. J. Appl. Phys. 2019, 126, 064501. [Google Scholar] [CrossRef]
- Li, Y.-L.; Luk, K.-M. A low-divergence circularly polarized dual-mode OAM antenna based on higher order Laguerre–Gaussian modes. IEEE Trans. Antennas Propag. 2021, 69, 5215–5223. [Google Scholar] [CrossRef]
- An, C.; Lei, J.; Li, W. Generation of OAM beams using circular ring array with in-phase feed. IEEE Trans. Antennas Propag. 2023, 71, 7028–7038. [Google Scholar] [CrossRef]
- Yin, Z.; Zheng, Q.; Guo, K. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array. Appl. Sci. 2019, 9, 2949. [Google Scholar] [CrossRef]
- Yu, S.; Kou, N.; Jiang, J. Beam steering of orbital angular momentum vortex waves with spherical conformal array. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1244–1248. [Google Scholar] [CrossRef]
- Lee, I.; Sawant, A.; Choi, E. High-Directivity Orbital Angular Momentum Antenna for Millimeter-Wave Wireless Communications. IEEE Trans. Antennas Propag. 2021, 69, 4189–4194. [Google Scholar] [CrossRef]
- Yi, J.; Li, D.; Feng, R. Design and validation of a meta-surface lens for converging vortex beams. Appl. Phys. Express 2019, 18, 084501. [Google Scholar] [CrossRef]
- Liu, B.; Wong, S.W.; Tam, K.W. Multi-functional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics. IEEE Trans. Antennas Propag. 2021, 70, 1068–1076. [Google Scholar] [CrossRef]
- Hui, X.; Zheng, S.; Hu, Y.; Xu, C.; Jin, X.; Chi, H.; Zhang, X. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 966–969. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, S. Orbital Angular Momentum (OAM) Generation by Cylinder Dielectric Resonator Antenna for Future Wireless Communications. IEEE Access 2017, 4, 9570–9574. [Google Scholar] [CrossRef]
- Yi, Z.; Tian, S. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Electron. Lett. 2019, 55, 875–876. [Google Scholar] [CrossRef]
- Wu, G.-B.; Chan, K.F.; Shum, K.M.; Chan, C.H. Millimeter-wave holographic flat Llns antenna for orbital angular momentum multiplexing. IEEE Trans. Antennas Propag. 2021, 69, 4289–4303. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Z.; Fang, X. A waveguide slot filtering antenna with an embedded meta-material structure. IEEE Trans. Antennas Propag. 2019, 67, 2953–2960. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Z.; Ren, X.; Wei, E.I.; Wu, X. Wideband millimeter-wave dual-mode dual circularly polarized OAM antenna using sequentially rotated feeding technique. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1296–1300. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Shen, D. Design of substrate integrated gap waveguide. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 24–26 May 2016; pp. 1–3. [Google Scholar]
- Shen, D.; Ma, C.; Ren, W. A low-profile substrate-integrated-gap-waveguide-fed magnetoelectric dipole. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1373–1376. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Kishk, A.A. Broadband 60 GHz antennas fed by substrate integrated gap waveguides. IEEE Trans. Antennas Propag. 2018, 66, 3261–3270. [Google Scholar] [CrossRef]
- Ma, C.; Ma, Z.H.; Zhang, X. Millimeter-wave circularly polarized array antenna using substrate-integrated gap waveguide sequentially rotating phase feed. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1124–1128. [Google Scholar] [CrossRef]
- Wang, L.; Shen, D. An ISGW filtering antenna with spurious modes and surface wave suppression for millimeter wave communications. China Commun. 2023, 11, 1–12. [Google Scholar] [CrossRef]
- Lin, Q.H. Research on Integrated Substrate Gap Waveguide Millimeter-Wave Multi-Band Filtering and Antenna; Yunnan University: Kunming, China, 2022. [Google Scholar]
- Lin, Q.H.; Shen, D. An mm-wave dual-band integrated substrate gap waveguide single cavity filter with frequency selectivity. China Commun. 2024, 21, 188–199. [Google Scholar]
- Luukkonen, O.; Silveirinha, M.G.; Yakovlev, A.B. Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces. IEEE Trans. Microw. Theory Tech. 2009, 57, 2692–2699. [Google Scholar] [CrossRef]
- Lin, Q.H.; Shen, D.; Ma, Z. A Stopband-improved dual-band bandpass defect cavity filter using a multi-mode ISGW cavity. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
Parameters | ||||||
Values | 5.40 | 0.50 | 0.30 | 0.15 | 0.90 | 1.05 |
Parameters | ||||||
Values | 1.0 | 1.0 | 3.0 | 1.25 | 0.9 | 1.25 |
Parameters | ||||||
---|---|---|---|---|---|---|
Values | 0.254 | 0.813 | 6 | 0.76 | 15.76 | 1.26 |
Ref. | Tech. | (GHz) | FBW (%) | Gain (dBi) | Modes | Size (x,y,z) · |
---|---|---|---|---|---|---|
[5] | Pat. | 2.4 | 2.92 | – | CP–OAM | >(0.6,0.6,0.01) |
[8] | Pat.-arr. | 10.7 | 2.80 | 6.05 | OAM | >(2.5,2.5,0.07) |
[9] | Pat.-arr. | 300 | 6.67 | 2 | OAM | (7.0,7.0,0.05) |
[11] | Meta-sur. | 83.5 | 5.99 | – | OAM | >(8.3,8.3,–) |
[13] | Meta-sur. | 10 | 10 | 13.9 | LP, OAM | (10.0,10.0,2.5) |
[14] | Meta-sur. | 59 | 3.39 | 14.6 | OAM | (–,–,–) |
[18] | GW | 5.5 | 7.27 | 12.2 | LP | (3.5,0.7,0.28) |
[7] | SIW | 13 | 15.38 | 13 | CP–OAM | (4.8,5.2,1.1) |
[17] | SIW | 60 | 26.1 | 16 | CP–OAM | (1.38,1.38,0.15) |
[19] | SIW | 31 | 3.23 | >11.4 | CP–OAM | (8.2,5.4,0.16) |
[22] | SIGW | 60 | 35 | 5.1 | CP | >(1.4,2.0,0.2) |
[24] | SIGW | 25 | 8.4 | 8.5 | LP | (1.5,1.58,0.8) |
Pro. | SIGW | 28 | 35.7 | 8.04 | L/CHP, CP–OAM | (1.5,1.4,0.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.-H.; Hou, D.; Wang, L.; Chen, P.; Luo, Z. A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum. Sensors 2024, 24, 1184. https://doi.org/10.3390/s24041184
Lin Q-H, Hou D, Wang L, Chen P, Luo Z. A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum. Sensors. 2024; 24(4):1184. https://doi.org/10.3390/s24041184
Chicago/Turabian StyleLin, Qiu-Hua, Da Hou, Lihui Wang, Pengpeng Chen, and Zhiyong Luo. 2024. "A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum" Sensors 24, no. 4: 1184. https://doi.org/10.3390/s24041184
APA StyleLin, Q.-H., Hou, D., Wang, L., Chen, P., & Luo, Z. (2024). A Millimeter-Wave Broadband Multi-Mode Substrate-Integrated Gap Waveguide Traveling-Wave Antenna with Orbit Angular Momentum. Sensors, 24(4), 1184. https://doi.org/10.3390/s24041184