Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = RC T-beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8766 KB  
Article
Strengthening Strategy for RC T-Beams in Negative-Moment Region Using Steel-Reinforced Polymer Cement Mortar
by Yanuar Haryanto, Fu-Pei Hsiao, Hsuan-Teh Hu, Laurencius Nugroho, Chia-Chen Lin, Pu-Wen Weng, Yu-Yu Cheng and Banu Ardi Hidayat
Buildings 2025, 15(21), 4011; https://doi.org/10.3390/buildings15214011 - 6 Nov 2025
Viewed by 530
Abstract
This study investigated a strengthening strategy for reinforced concrete (RC) T-beams in the negative-moment region using polymer cement mortar (PCM) systems. Monotonic loading tests were conducted on beams retrofitted with PCM, incorporating steel reinforcements of either 13 mm or 16 mm in diameter. [...] Read more.
This study investigated a strengthening strategy for reinforced concrete (RC) T-beams in the negative-moment region using polymer cement mortar (PCM) systems. Monotonic loading tests were conducted on beams retrofitted with PCM, incorporating steel reinforcements of either 13 mm or 16 mm in diameter. The flexural performance of the strengthened specimens was assessed under three-point bending, with a focus on load–deflection behavior, crack patterns, and failure modes. Key structural parameters governing the structural response were analyzed. The findings indicated that incorporating PCM markedly improved the flexural capacity of RC T-beams, with increases in the ultimate load of 55% and 99% for the two reinforcement configurations. Although the beam strengthened with 16 mm steel bars exhibited reduced ductility, its energy absorption was 29% higher compared to its 13 mm counterpart. A three-dimensional nonlinear finite element model was also developed in ABAQUS 6.14, and its predictions closely matched the experimental observations. Full article
(This article belongs to the Special Issue Applications of Advanced Composites in Civil Engineering)
Show Figures

Figure 1

31 pages, 7307 KB  
Article
Parametric Study of the Physical Responses of NSM CFRP-Strengthened RC T-Beams in the Negative Moment Region
by Yanuar Haryanto, Gathot Heri Sudibyo, Hsuan-Teh Hu, Fu-Pei Hsiao, Laurencius Nugroho, Dani Nugroho Saputro, Habib Raihan Suryanto and Abel Earnesta Christopher Haryanto
CivilEng 2025, 6(4), 56; https://doi.org/10.3390/civileng6040056 - 20 Oct 2025
Cited by 1 | Viewed by 790
Abstract
This study presented a comprehensive finite element (FE) investigation into the flexural behavior of RC T-beams strengthened in the negative moment region using near-surface mounted (NSM) carbon-fiber-reinforced polymers (CFRP) rods. A three-dimensional nonlinear FE model was developed and validated against experimental data, achieving [...] Read more.
This study presented a comprehensive finite element (FE) investigation into the flexural behavior of RC T-beams strengthened in the negative moment region using near-surface mounted (NSM) carbon-fiber-reinforced polymers (CFRP) rods. A three-dimensional nonlinear FE model was developed and validated against experimental data, achieving close agreement with normalized mean square error values as low as 0.006 and experimental-to-numerical ratios ranging from 0.95 to 1.04. The validated model was then employed to conduct a systematic parametric analysis considering CFRP rod diameter, concrete compressive strength, longitudinal reinforcement ratio, and FRP material type. The results showed that increasing CFRP diameter from 6 to 10 mm enhanced ultimate load by up to 47.51% and improved stiffness by 1.48 times. Higher concrete compressive strength contributed to stiffness gains exceeding 50.00%, although this improvement was accompanied by reductions in ductility. Beams with reinforcement ratios up to 2.90% achieved peak loads of 309.61 kN, but ductility declined. Comparison among FRP materials indicated that CFRP and AFRP offered superior strength and stiffness, whereas BFRP provided a more balanced combination of strength and deformation capacity. Full article
(This article belongs to the Section Structural and Earthquake Engineering)
Show Figures

Figure 1

29 pages, 4806 KB  
Article
Analytical Investigation of CFRP- and Steel Plate-Strengthened RC Beams with Partially Unbonded Reinforcement
by Riliang Li and Riyad S. Aboutaha
Buildings 2025, 15(20), 3665; https://doi.org/10.3390/buildings15203665 - 11 Oct 2025
Cited by 1 | Viewed by 641
Abstract
This study investigates the flexural behavior of reinforced concrete (RC) beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) or steel plate (SP), with partial debonding between internal steel reinforcement and surrounding concrete. A finite element model was developed using ABAQUS (v2021) [...] Read more.
This study investigates the flexural behavior of reinforced concrete (RC) beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) or steel plate (SP), with partial debonding between internal steel reinforcement and surrounding concrete. A finite element model was developed using ABAQUS (v2021) and validated against existing experimental data by others. A total of 296 beam models were analyzed to assess the effects of shear span-to-depth ratio (av/d), reinforcement ratio (ρ), debonding degree (λ), strengthening material type (CFRP/SP), and material thickness (t) on residual flexural strength. Based on the finite element analysis (FEA) results, analytical models were proposed using a dimensionless parameter Ψ, defined as the ratio of equivalent plastic region length to neutral axis depth. Analytical models were developed in IBM SPSS Statistics (Version 30) and showed strong agreement with FEA results. The findings provide insight into the influence of reinforcement debonding on structural behavior and support improved prediction of residual flexural capacity in strengthened RC beams with partially unbonded reinforcement. Full article
(This article belongs to the Special Issue Assessment and Retrofit of Reinforced Concrete Structures)
Show Figures

Figure 1

41 pages, 10748 KB  
Article
Simulation-Based Study on the Performance of NSM-CFRP Strengthening in Prestressed Concrete T-Beams Under Seismic Loading
by Yanuar Haryanto, Hsuan-Teh Hu, Anggun Tri Atmajayanti, Fu-Pei Hsiao, Laurencius Nugroho and Nanang Gunawan Wariyatno
Materials 2025, 18(18), 4386; https://doi.org/10.3390/ma18184386 - 19 Sep 2025
Cited by 1 | Viewed by 792
Abstract
Prestressed concrete structures are facing serviceability challenges due to rising live loads, material degradation, and seismic demands. Retrofitting with carbon fiber-reinforced polymer (CFRP) offers a cost-effective alternative to full replacement. This study presents a finite element (FE) modeling framework to simulate the seismic [...] Read more.
Prestressed concrete structures are facing serviceability challenges due to rising live loads, material degradation, and seismic demands. Retrofitting with carbon fiber-reinforced polymer (CFRP) offers a cost-effective alternative to full replacement. This study presents a finite element (FE) modeling framework to simulate the seismic performance of prestressed concrete T-beams retrofitted in the negative moment region using near-surface-mounted (NSM) CFRP rods and sheets. The model incorporates nonlinear material behavior and cohesive interaction at the CFRP–concrete interface and is validated against experimental benchmarks, with ultimate load prediction errors of 4.41% for RC T-beams, 0.49% for prestressed I-beams, and 1.30% for prestressed slabs. A parametric investigation was conducted to examine the influence of CFRP embedment depth and initial prestressing level under three seismic conditions. The results showed that fully embedded CFRP rods consistently improved the beams’ ultimate load capacity, with gains of up to 10.84%, 16.84%, and 14.91% under cyclic loading, near-fault ground motion, and far-field ground motion, respectively. Half-embedded CFRP rods also prove effective and offer comparable improvements where full-depth installation is impractical. The cyclic load–displacement histories, the time–load histories under near-fault and far-field excitations, stiffness degradation, and damage contour analysis further confirm that the synergy between full-depth CFRP retrofitting and optimized prestressing enhances structural resilience and energy dissipation under seismic excitation. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2610 KB  
Article
Shear Strength of RC T-Beams Without Shear Reinforcement Based on Crack Sliding Model
by Penggang Tian, Yufei Han, Kai Wang, Jiajia Wang, Zhiheng Tian and Ergang Xiong
Buildings 2025, 15(16), 2814; https://doi.org/10.3390/buildings15162814 - 8 Aug 2025
Viewed by 751
Abstract
Considering the effect of the flange on the shear capacity of reinforced concrete (RC) beams without stirrups, a shear capacity calculation formula based on the crack sliding model is proposed for RC beams without stirrups in this paper. Test data of 444 rectangular [...] Read more.
Considering the effect of the flange on the shear capacity of reinforced concrete (RC) beams without stirrups, a shear capacity calculation formula based on the crack sliding model is proposed for RC beams without stirrups in this paper. Test data of 444 rectangular section beams and 172 T-beams were collected to verify this calculation theory, and the calculation results were compared with domestic and international design codes. The collected datasets were analyzed using five common machine learning models. The results show that the shear capacity calculation method proposed by the codes of each country is in good agreement with the test results. Compared to the calculation of the codes, the addressed calculation method in this study is more accurate and can effectively account for the contribution of the T-beam flange to the shear capacity. The machine learning models selected in this paper exhibit desirable accuracy on the test set, which demonstrates the applicability of the machine learning models in the calculation of shear capacity for reinforced concrete beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 7919 KB  
Article
Numerical Study on Shear-Oriented Parameters in RC Beams with Openings Reinforced by Fe-SMA Rebars
by Mohamed Elkafrawy, Ahmed Khalil, Rami Hawileh and Mohammad AlHamaydeh
Buildings 2025, 15(12), 2028; https://doi.org/10.3390/buildings15122028 - 12 Jun 2025
Cited by 1 | Viewed by 2066
Abstract
Reinforced concrete (RC) beams with openings in shear spans exhibited a significantly reduced structural performance due to disruptions in load transfer mechanisms. This numerical study investigated the influence of pre-stressed iron-based Shape Memory Alloy (Fe-SMA) rebars on the behavior of RC beams with [...] Read more.
Reinforced concrete (RC) beams with openings in shear spans exhibited a significantly reduced structural performance due to disruptions in load transfer mechanisms. This numerical study investigated the influence of pre-stressed iron-based Shape Memory Alloy (Fe-SMA) rebars on the behavior of RC beams with web openings, focusing on the effect of shear-oriented design parameters, including the stirrup spacing, stirrup diameter, and horizontal reinforcement around the opening. A nonlinear finite element analysis (NLFEA) was conducted using ABAQUS/CAE software 2020 to simulate the response of RC beams under these conditions. The results showed that the presence of web openings in RC beams reduced the ultimate load capacity and stiffness. However, the pre-stressed Fe-SMA reinforcement effectively mitigated these adverse effects, restoring much of the solid beam’s performance. Among the studied parameters, reducing the stirrup spacing significantly improved the load-bearing capacity, with the smallest spacing (100 mm) restoring 86% of the solid beam’s ultimate load. Increasing the Fe-SMA stirrup diameter further enhanced performance, with T16 stirrups recovering 92% of the solid beam’s ultimate load capacity. The most substantial improvement occurred when horizontal reinforcement was introduced, particularly with T16 stirrups, achieving a 95% load recovery, nearly matching the solid RC beam structural performance. These findings demonstrated the promising potential of pre-stressed Fe-SMA reinforcement as a viable solution for restoring the structural strength of RC beams with web openings. Full article
(This article belongs to the Special Issue Strengthening and Rehabilitation of Structures or Buildings)
Show Figures

Figure 1

21 pages, 4947 KB  
Article
Effective Flexural Strengthening of Reinforced Concrete T-Beams Using Bonded Fiber-Core Steel Wire Ropes
by Anggun Tri Atmajayanti, Yanuar Haryanto, Fu-Pei Hsiao, Hsuan-Teh Hu and Laurencius Nugroho
Fibers 2025, 13(5), 53; https://doi.org/10.3390/fib13050053 - 30 Apr 2025
Cited by 5 | Viewed by 1704
Abstract
This study experimentally and numerically investigated the effectiveness of fiber-core steel wire ropes (FC-SWRs) in enhancing the flexural performance of reinforced concrete (RC) T-beams using a bonding technique. The investigation focused on deflection, flexural load-carrying capacity, and failure modes, along with key behaviors [...] Read more.
This study experimentally and numerically investigated the effectiveness of fiber-core steel wire ropes (FC-SWRs) in enhancing the flexural performance of reinforced concrete (RC) T-beams using a bonding technique. The investigation focused on deflection, flexural load-carrying capacity, and failure modes, along with key behaviors such as ductility, stiffness, energy absorption, and steel strain response. Two beams were tested under four-point bending until failure—one serving as the control specimen and the other strengthened with bonded FC-SWRs to improve its flexural behavior. Additionally, an analytical study was conducted using a computer program based on the Modified Compression Field Theory (MCFT), and the results were compared with experimental findings. The validation of the analytical model enabled further parametric investigations, examining the influence of the FC-SWR diameter, modulus of elasticity, and steel reinforcement ratio on flexural performance. Full article
Show Figures

Figure 1

25 pages, 6327 KB  
Article
Improving Seismic Performance of RC Structures with Innovative TnT BRBs: A Shake Table and Finite Element Investigation
by Evrim Oyguc, Resat Oyguc, Onur Seker, Abdul Hayir, Jay Shen and Bulent Akbas
Appl. Sci. 2025, 15(7), 3844; https://doi.org/10.3390/app15073844 - 1 Apr 2025
Cited by 5 | Viewed by 1921
Abstract
Addressing the critical seismic vulnerabilities of reinforced concrete (RC) beam-column joints remains an imperative research priority in earthquake engineering. This study presents an experimental and analytical investigation into the seismic performance enhancement of non-ductile RC frames using an innovative all-steel Tube-in-Tube Buckling-Restrained Brace [...] Read more.
Addressing the critical seismic vulnerabilities of reinforced concrete (RC) beam-column joints remains an imperative research priority in earthquake engineering. This study presents an experimental and analytical investigation into the seismic performance enhancement of non-ductile RC frames using an innovative all-steel Tube-in-Tube Buckling-Restrained Brace (TnT BRB) system. Shake table tests were performed on one-third scale RC frame specimens, including a baseline structure representing conventional substandard design and a counterpart retrofitted with the proposed TnT BRBs. Experimental results revealed that the unretrofitted specimen experienced pronounced brittle shear failures, excessive lateral deformations, and significant degradation of beam-column joints under cyclic seismic loading. In contrast, the TnT BRB-retrofitted specimen exhibited substantially improved seismic behavior, characterized by enhanced energy dissipation, controlled inter-story drifts, and preserved joint integrity. Advanced fiber-based finite element modeling complemented the experimental efforts, accurately capturing critical nonlinear phenomena such as hysteretic energy dissipation, stiffness degradation, and localized damage evolution within the structural components. Despite inherent modeling limitations regarding bond-slip effects and micro-level cracking, strong correlation between numerical and experimental results affirmed the efficacy of the TnT BRB retrofit solution. This integrated experimental-analytical approach offers a robust, cost-effective pathway for upgrading seismically deficient RC structures in earthquake-prone regions. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

39 pages, 31615 KB  
Article
Seismic Retrofit Case Study of Shear-Critical RC Moment Frame T-Beams Strengthened with Full-Wrap FRP Anchored Strips in a High-Rise Building in Los Angeles
by Susana Anacleto-Lupianez, Luis Herrera, Scott F. Arnold, Winston Chai, Todd Erickson and Anne Lemnitzer
Appl. Sci. 2024, 14(19), 8654; https://doi.org/10.3390/app14198654 - 25 Sep 2024
Cited by 1 | Viewed by 3443
Abstract
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer [...] Read more.
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer (FRP) fabric was chosen as the preferred retrofit strategy due to its cost-effectiveness and proven performance. The FRP-shear-strengthening scheme for the deficient end-hinging regions of the MRF beams was designed and evaluated through large-scale cyclic testing of three replica specimens. The specimens were constructed at 4/5 scale and cantilever T-beam configurations with lengths of 3.40 m or 3.17 m. The cross-sectional geometry was 0.98 × 0.61 m with a top slab of 1.59 m in width and 0.12 m in thickness. Applied to these specimens were three different retrofit configurations, tested sequentially, namely: (a) unanchored continuous U-wrap; (b) anchored continuous U-wrap with conventional FRP-embedded anchors at the ends; and (c) fully closed external FRP hoops made of discrete FRP U-wrap strips and FRP through-anchors that penetrate the top slab and connect both ends of the FRP strips, combined with intermediate crack-control joints. The strengthening concept with FRP hoops precluded the premature debonding and anchor pullout issues of the two more conventional retrofit solutions and, despite a more challenging and labor-intensive installation, was selected for the in-situ implementation. The proposed hooplike EB-FRP shear-strengthening scheme enabled the deficient MRF beams to overcome a 30% shear overstress at the end-yielding region and to develop high-end rotations (e.g., 0.034 rad [3.4% drift] at peak and 0.038 rad [3.8% drift]) at strength loss for a beam that, otherwise, would have prematurely failed in shear. These values are about 30% larger than the ASCE 41 prescriptive value for the Life Safety (LS) performance objective. Energy dissipation achieved with the fully closed scheme was 108% higher than that of the unanchored FRP U-wrap and 45% higher than that of the FRP U-wrap with traditional embedded anchors. The intermediate saw-cut grooves successfully attracted crack formation between the strips and away from the FRP reinforcement, which contributed to not having any discernable debonding of the strips up to 3% drift. This paper presents the experimental evaluation of the three large-scale laboratory specimens that were used as the design basis for the final retrofit solution. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

20 pages, 12862 KB  
Article
Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion
by Adamantis G. Zapris, Violetta K. Kytinou and Constantin E. Chalioris
Polymers 2024, 16(18), 2634; https://doi.org/10.3390/polym16182634 - 18 Sep 2024
Cited by 9 | Viewed by 2103
Abstract
The fiber-reinforced polymer (FRP) strengthening of reinforced concrete (RC) elements with torsional deficiencies has not yet been extensively studied. Existing studies have primarily focused on rectangular RC beams. The few studies on L or T-shaped beams have used open-form retrofitting methods. However, premature [...] Read more.
The fiber-reinforced polymer (FRP) strengthening of reinforced concrete (RC) elements with torsional deficiencies has not yet been extensively studied. Existing studies have primarily focused on rectangular RC beams. The few studies on L or T-shaped beams have used open-form retrofitting methods. However, premature debonding of the retrofitting from concrete surfaces often leads to detachment before achieving enhanced torsional capacity. This study introduces an innovative application of closed-form FRP retrofitting for RC T-beams against torsion. Two novel closed-form torsional upgrading methods were proposed and investigated through a comprehensive experimental program involving eight large-scale T-beams. One method employs FRP ropes embedded in transverse grooves near the surface, while the other combines U-shaped EB-FRP strips with FRP ropes. Additionally, two configurations were examined replicating scenarios where the upper part of the slab is accessible or inaccessible. The results demonstrate that the closed-form methods improve torsional strength by 9% to 25% and twist at failure by 92% to 536% compared to unstrengthened beams, with beams retrofitting through the slab exhibiting superior performance. Step-by-step technical guidelines of the proposed methods are presented to minimize construction defects and ensure effective implementation in real RC structures. Full article
Show Figures

Figure 1

32 pages, 24132 KB  
Article
Numerical Assessment of the Effect of CFRP Anchorages on the Flexural and Shear Strengthening Performance of RC Beams
by Pedram Ayyobi, Joaquim António Oliveira Barros and Salvador José Esteves Dias
J. Compos. Sci. 2024, 8(9), 348; https://doi.org/10.3390/jcs8090348 - 5 Sep 2024
Cited by 4 | Viewed by 1861
Abstract
This study investigates the effectiveness of a hybrid solution that combines carbon fiber-reinforced polymer (CFRP) systems for the flexural and shear strengthening of T-cross section reinforced concrete (RC) beams. The hybrid solution consists of near-surface mounted CFRP laminates for flexural enhancement and externally [...] Read more.
This study investigates the effectiveness of a hybrid solution that combines carbon fiber-reinforced polymer (CFRP) systems for the flexural and shear strengthening of T-cross section reinforced concrete (RC) beams. The hybrid solution consists of near-surface mounted CFRP laminates for flexural enhancement and externally bonded U-shaped CFRP strips for shear strengthening. Moreover, an innovative CFRP anchorage system is proposed to prevent premature debonding of the U-CFRP strips and to improve their shear contribution. To address the limitations of the experimental program and propose an efficient and design-oriented simulation approach for NSM-EBR strengthening RC beams with the innovative anchorage system, a comprehensive numerical investigation was conducted by considering the key parameters affecting the performance of the strengthened system. This paper presents the results of an experimental program and a nonlinear finite element analysis that simulate the behavior of the materials up to their failure and the bond conditions between CFRP and concrete. This study also includes a numerical parametric study to assess the effectiveness of the proposed strengthening concept with several possible scenarios, as well as the predictive performance of the fib Bulletin 90 and ACI 440.2R-17 formulations. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

26 pages, 9865 KB  
Article
Numerical Simulation Analysis of the Bending Performance of T-Beams Strengthened with Ultra-High-Performance Concrete Based on the CDP Model
by Yu Long, Zhimei Jiang, Kongru Zou, Jiang Du and Jun Yang
Buildings 2024, 14(5), 1284; https://doi.org/10.3390/buildings14051284 - 1 May 2024
Cited by 9 | Viewed by 3078
Abstract
In bridge reinforcement projects, damaged T-beams are the most common objects for reinforcement, yet the interface bonding and bending performance of UHPC reinforcement on T-beams have hardly been studied. To ensure the reliability and stability of UHPC-strengthened T-beams in practical applications, this study [...] Read more.
In bridge reinforcement projects, damaged T-beams are the most common objects for reinforcement, yet the interface bonding and bending performance of UHPC reinforcement on T-beams have hardly been studied. To ensure the reliability and stability of UHPC-strengthened T-beams in practical applications, this study introduced a post-installed rebar bonding technique to efficiently connect T-beams with UHPC layers. Initially, using ABAQUS software [2020 version] for finite element simulation, this study investigated the effects of various post-installed rebar parameters (horizontal spacing, yield strength, diameter, and matrix concrete strength) on the shear performance of the UHPC and RC interface, obtaining the optimal connection parameters. Subsequently, by comparing shear formulas in domestic and international standards, a new UHPC-RC steel bar interface shear strength theoretical formula with 93.6% accuracy was derived. Finally, finite element simulations analyzed the impact of different post-installed reinforcing bar layout forms and longitudinal spacing, as well as UHPC-strengthened location and layer thickness, on the bending performance of damaged T-beams. The results showed a good match between simulation outcomes and experimental results, applicable for further reinforcement analysis of T-beams. When the horizontal spacing of post-installed rebars is 12d, with diameters ranging from 10 mm to 14 mm, their anchoring capability is efficiently utilized. A square form of a post-installed rebar with a longitudinal spacing of 300 mm effectively improves the ultimate bending load capacity of the strengthened beam. The simulation analysis and theoretical results help in the design and application of post-installed steel connections and UHPC-strengthened structures in UHPC-strengthened reinforced concrete T-beam structures. Full article
Show Figures

Figure 1

22 pages, 36960 KB  
Article
Parametric Study on Seismic Performance of Slender T-Shaped RC Walls Subjected to Biaxial Loading
by Mengzhen Wu, Bin Wang, Qingxuan Shi and Wenzhe Cai
Buildings 2024, 14(1), 162; https://doi.org/10.3390/buildings14010162 - 9 Jan 2024
Cited by 1 | Viewed by 1512
Abstract
To investigate the effects of parameters on the seismic performance of slender T-shaped RC walls subjected to a biaxial seismic action, a numerical model was established using a fiber-based cross-section and displacement-based beam–column element. The axial load ratio, shear span ratio, flange width [...] Read more.
To investigate the effects of parameters on the seismic performance of slender T-shaped RC walls subjected to a biaxial seismic action, a numerical model was established using a fiber-based cross-section and displacement-based beam–column element. The axial load ratio, shear span ratio, flange width to web height ratio, concrete strength grade, stirrup ratio, and longitudinal reinforcement ratio were selected for the parametric study, and the effects of these parameters on the performance degradation under biaxial loading were investigated. Furthermore, a sensitivity analysis of various parameters for the decrease was conducted. The results showed that the bearing and deformation capacities under biaxial loading were both decreased, and the total energy consumption was greater than that under uniaxial loading. The impacts of different parameters and loading paths on the decrease extent were significantly different, and the overall reduction was greater in the flange direction than in the web direction. Under the square loading path, the T-shaped wall had the greatest reduction in its seismic performance, followed by the eight-shaped and cruciform loading paths. The changes in the axial load ratio, shear span ratio, and concrete strength significantly affected the performance degradation under biaxial loading. Accordingly, it is recommended to reasonably consider the values of these three parameters in a multidimensional seismic design to maintain safety redundancy. Full article
(This article belongs to the Special Issue Earthquake Resistant and Vibration Control of Concrete Structures)
Show Figures

Figure 1

23 pages, 13389 KB  
Article
Innovative Flexural Repair Technique of Pre-Damaged T-Beams Using Eco-Friendly Steel-Fibre-Reinforced Geopolymer Concrete
by Ashraf Khalifa, Abo El-Wafa El-Thakeb, Ahmed El-Sebai and Ahmed Elmannaey
Fibers 2024, 12(1), 3; https://doi.org/10.3390/fib12010003 - 26 Dec 2023
Cited by 5 | Viewed by 3330
Abstract
This paper presents an innovative flexural repair technique for pre-damaged reinforced concrete T-beams using eco-friendly steel-fibre-reinforced geopolymer concrete (SFRGPC). The study considers various parameters such as repair layer depth, location and configuration, and the use of additional reinforcement in one beam. The beams [...] Read more.
This paper presents an innovative flexural repair technique for pre-damaged reinforced concrete T-beams using eco-friendly steel-fibre-reinforced geopolymer concrete (SFRGPC). The study considers various parameters such as repair layer depth, location and configuration, and the use of additional reinforcement in one beam. The beams were preloaded to 50% of their ultimate flexural capacity. Extensive measurements were taken, including crack initiation and propagation, crack width, initial stiffness, load deflection, peak loads, ductility index, and strain values. The structural performance of the repaired T-beams under flexural loading was predicted using an analytical model. The repaired beams showed an increase in carrying capacity, stiffness, and ductility, but the failure mode was identical to the control samples. The study shows that SFRGPC shows great promise as a technique for not only repairing pre-damaged reinforced concrete beams but also for their strengthening. The best results were obtained with three-sided jackets with fibrous geopolymer concrete only, resulting in a load-carrying capacity increase of 25.8% compared to reference T-beams. The bonding between SFRGPC and existing concrete was effective, with no slippage or disintegration at the interface. The repaired beams’ structural behaviour and performance under flexural loads were successfully predicted using the analytical model, with a precision of about 98%. Full article
Show Figures

Graphical abstract

14 pages, 3470 KB  
Article
Experimental Study of Reinforced Concrete T-Beam Retrofitted with Ultra-High-Performance Concrete under Cyclic and Ultimate Flexural Loading
by Abbas Khodayari, Sheharyar Rehmat, Alireza Valikhani and Atorod Azizinamini
Materials 2023, 16(24), 7595; https://doi.org/10.3390/ma16247595 - 11 Dec 2023
Cited by 9 | Viewed by 3689
Abstract
Structurally deficient bridges are commonly retrofitted using conventional methodologies, including reinforced concrete, steel jackets, and fiber-reinforced polymers. Although these retrofit methods aim to improve structural performance, exposure to aggressive environments may undermine the durability performance of the retrofit material. More recently, ultra-high-performance concrete [...] Read more.
Structurally deficient bridges are commonly retrofitted using conventional methodologies, including reinforced concrete, steel jackets, and fiber-reinforced polymers. Although these retrofit methods aim to improve structural performance, exposure to aggressive environments may undermine the durability performance of the retrofit material. More recently, ultra-high-performance concrete (UHPC) has provided an alternative to conventional construction methods, with its superior material characteristics favoring its use in retrofit applications. In this study, a large-scale reinforced concrete (RC) T-beam is constructed and artificially damaged. The T-beam is then retrofitted with an external envelope of UHPC on all faces. Sandblasting is introduced to the surface, providing partially exposed reinforcement in the T-beam to simulate material deterioration. Additional reinforcement is placed in the web and flange, followed by casting the enveloping layer of UHPC around the specimen. The feasibility of this method is discussed, and the structural performance of the beam is assessed by subjecting the beam to cyclic and ultimate flexural loading. This paper presents the results of cyclic and ultimate testing on the RC-UHPC composite T-beam regarding load–displacement, failure mode, and strain responses. The retrofitted T-beam specimen is subjected to a cyclic loading range of 131 kN for 1.576 million cycles. Despite no visible cracks in the cyclic testing, the specimen experiences a 12.22% degradation in stiffness. During the ultimate flexural testing, the specimen shows no relative slip between the two concretes, and the typical flexural failure mode is observed. By increasing the longitudinal reinforcement ratio in the web, the failure mode can shift from localized cracking, predominantly observed in the UHPC shell, toward a more distributed cracking pattern along the length of the beam, which is similar to conventional reinforced concrete beams. Full article
(This article belongs to the Special Issue Ultra High Performance Concrete (UHPC): Current and Future Research)
Show Figures

Figure 1

Back to TopTop