Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion
Abstract
:1. Introduction
2. Experimental Program
2.1. Description of Specimens
2.2. Materials
2.3. Retrofitting Procedure
2.4. Experimental Setup and Instrumentation
3. Results
3.1. Visual Observation and Failure Modes
3.2. Main Experimental Response Values
3.3. Torsional Moment Versus Twist per Unit Length Curves
4. Design of the Connection Region of the Closed-Form Configuration
5. Conclusions
- The use of closed-form FRP application against torsion appears to be a highly effective method with promising results. Beams with a closed-type configuration, either solely with FRP ropes or in combination with EB-FRP strips and FRP ropes, demonstrated similar torsional resistance mechanisms. These retrofitting methods led to an increase in torsional strength by 1.09 to 1.25 times and a significant improvement in twist at failure by 1.92 to 5.36 times compared to unstrengthened beam resulting in an overall improvement of the structural response.
- Compared to EB-FRP strips in a U-shape configuration around the perimeter of the web (open-form strengthening), both closed-form FRP retrofitting methods offer improved torsional response and effectively address the early debonding issues associated with conventional external bonding of strips. Specifically, the closed-form methods resulted in a 1.71 to 4.79 increase in twist at failure compared to the U-shape configuration.
- The proposed closed-form FRP application applied through the slab is considered more effective when comparing the two investigated configurations, as a greater part of the beam’s cross-section is engaged in the response. Specifically, the through-the-slab configuration demonstrated a 2.79-fold increase in twist at failure compared to the through-the-web configuration. However, if the application of FRP ropes through the slab is not feasible, the closed-type retrofitting configuration through holes in the web can also provide an excellent alternative offering a remarkable improvement in the overall response.
- The densification of FRP reinforcement while maintaining the same geometric percentage exhibits higher torsional strength (with a 1.25-fold increase compared to unstrengthened beams) and, most importantly, substantially improves post-elastic response compared to installing the same geometric percentage of the externally applied FRP torsional transverse reinforcement in a sparser arrangement.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Y.L.; Tang, Z.K.; Mei, S.J. Experimental Study on Shear Performance of PET FRP-Strengthened RC Beams without Stirrups. Case Stud. Constr. Mater. 2024, 20, e03272. [Google Scholar] [CrossRef]
- Golias, E.; Zapris, A.G.; Kytinou, V.K.; Kalogeropoulos, G.I.; Chalioris, C.E.; Karayannis, C.G. Effectiveness of the Novel Rehabilitation Method of Seismically Damaged RC Joints Using C-FRP Ropes and Comparison with Widely Applied Method Using C-FRP Sheets—Experimental Investigation. Sustainability 2021, 13, 6454. [Google Scholar] [CrossRef]
- Al-khreisat, A.; Abdel-Jaber, M.; Ashteyat, A. Shear Strengthening and Repairing of Reinforced Concrete Deep Beams Damaged by Heat Using NSM–CFRP Ropes. Fibers 2023, 11, 35. [Google Scholar] [CrossRef]
- Mejía, N.; Sarango, A.; Espinosa, A. Flexural and Shear Strengthening of RC Beams Reinforced with Externally Bonded CFRP Laminates Postfire Exposure by Experimental and Analytical Investigations. Eng. Struct. 2024, 308, 117995. [Google Scholar] [CrossRef]
- Abdel-Kareem, A.H.; Elprince, M.; Makhlouf, M.H. Structural Performance of RC Beams with Openings Shear Strengthened by Hybrid Techniques (EBR/EBRIG). Eur. J. Environ. Civ. Eng. 2024, 28, 1637–1657. [Google Scholar] [CrossRef]
- Cetin, K.; Altiok, T.Y.; Demir, A. Experimental Investigation of EBROG and Bore-Epoxy Anchorage Methods Used for Interior RC Beam-Column Joints Strengthened with CFRP Sheets. Structures 2024, 66, 106874. [Google Scholar] [CrossRef]
- Aksoylu, C.; Ozkilic, Y.O.; Yazman, S.; Alsdudi, M.; Gemi, L.; Arslan, M.H. Numerical and Analytical Investigation of Parameters Influencing the Behavior of Shear Beams Strengthened by CFRP Wrapping. Steel Compos Struct. 2023, 47, 217–238. [Google Scholar] [CrossRef]
- Mei, S.-J.; Bai, Y.-L.; Dai, J.-G. Shear Strengthening of Reinforced Concrete Beams Completely Wrapped by Large Rupture Strain (LRS) FRP. Eng. Struct. 2024, 314, 118361. [Google Scholar] [CrossRef]
- Zapris, A.G.; Kytinou, V.K.; Gribniak, V.; Chalioris, C.E. Novel Approach for Strengthening T-Beams Deficient in Shear with near-Surface Mounted CFRP Ropes in Form of Closed Stirrups. Dev. Built Environ. 2024, 18, 100394. [Google Scholar] [CrossRef]
- Bui, L.V.H.; Klippathum, C.; Prasertsri, T.; Jongvivatsakul, P.; Stitmannaithum, B. Experimental and Analytical Study on Shear Performance of Embedded Through-Section GFRP-Strengthened RC Beams. J. Compos. Constr. 2022, 26, 04022046. [Google Scholar] [CrossRef]
- Murad, Y.Z.; Al-Mahmood, H.; Tarawneh, A.; Aljaafreh, A.J.; AlMashaqbeh, A.; Abdel Hadi, R.; Shabbar, R. Shear Strengthening of RC Beams Using Fabric-Reinforced Cementitious Matrix, Carbon Plates, and 3D-Printed Strips. Sustainability 2023, 15, 4293. [Google Scholar] [CrossRef]
- Golias, E.; Zapris, A.G.; Kytinou, V.K.; Osman, M.; Koumtzis, M.; Siapera, D.; Chalioris, C.E.; Karayannis, C.G. Application of X-Shaped CFRP Ropes for Structural Upgrading of Reinforced Concrete Beam–Column Joints under Cyclic Loading–Experimental Study. Fibers 2021, 9, 42. [Google Scholar] [CrossRef]
- Codina, A.; Barris, C.; Jahani, Y.; Baena, M.; Torres, L. Assessment of Fib Bulletin 90 Design Provisions for Intermediate Crack Debonding in Flexural Concrete Elements Strengthened with Externally Bonded FRP. Polymers 2023, 15, 769. [Google Scholar] [CrossRef] [PubMed]
- del Rey Castillo, E.; Niroomandi, A.; Triantafillou, T. Seismic Retrofitting of Realistic Beam–Column Joints with Shear Failure Using FRP Sheets and FRP Anchors. J. Compos. Constr. 2024, 28, 05024001. [Google Scholar] [CrossRef]
- Park, S.; Choi, S.W.; Choi, I. Seismic Retrofitting Optimization Model Using Fiber-Reinforced Polymer Jacketing and NSGA-III. Dev. Built Environ. 2024, 19, 100508. [Google Scholar] [CrossRef]
- Obaidat, Y.T. Cyclic Behavior of Interior RC Beam-Column Joints Strengthened with NSM-CFRP Ropes. Structures 2022, 37, 735–744. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Golias, E. Full-Scale Experimental Testing of RC Beam-Column Joints Strengthened Using CFRP Ropes as External Reinforcement. Eng. Struct. 2022, 250, 113305. [Google Scholar] [CrossRef]
- Wang, B.; Li, D.; Xian, G.; Li, C. Effect of Immersion in Water or Alkali Solution on the Structures and Properties of Epoxy Resin. Polymers 2021, 13, 1902. [Google Scholar] [CrossRef]
- Xian, G.; Zhou, P.; Bai, Y.; Wang, J.; Li, C.; Dong, S.; Guo, R.; Li, J.; Du, H.; Zhong, J. Design, Preparation and Mechanical Properties of Novel Glass Fiber Reinforced Polypropylene Bending Bars. Constr. Build. Mater. 2024, 429, 136455. [Google Scholar] [CrossRef]
- Ke, L.; Li, Y.; Li, C.; Cheng, Z.; Ma, K.; Zeng, J. Bond Behavior of CFRP-Strengthened Steel Structures and Its Environmental Influence Factors: A Critical Review. Sustain. Struct. 2024, 4, 000038. [Google Scholar] [CrossRef]
- Moshiri, N.; Czaderski, C.; Mostofinejad, D.; Motavalli, M. Bond Resistance of Prestressed CFRP Strips Attached to Concrete by Using EBR and EBROG Strengthening Methods. Constr. Build. Mater. 2021, 266, 121209. [Google Scholar] [CrossRef]
- Moshiri, N.; Martinelli, E.; Breveglieri, M.; Czaderski, C. Experimental Tests and Numerical Simulations on the Mechanical Response of RC Slabs Externally Strengthened by Passive and Prestressed FRP Strips. Eng. Struct. 2023, 292, 116559. [Google Scholar] [CrossRef]
- Akkaya, H.C.; Aydemir, C.; Arslan, G. An Experimental Research on Reinforced Concrete Deep Beams Fully Wrapped with Fiber Reinforced Polymers against Shear. Case Stud. Constr. Mater. 2022, 17, e01198. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Yang, K.; Kim, J.J. An Efficient Method for Optimizing HPC-FRP Retrofit Systems of Flexural Strengthened One-Way Continuous Slabs Based on ACI 440.2R. J. Mater. 2022, 15, 8430. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.G.; Sakr, M.A.; El-korany, T.M. The Shear Strength of Existing Non-Seismic RC Beam-Column Joints Strengthened with CFRP Sheets: Numerical and Analytical Study. Eng. Struct. 2023, 291, 116497. [Google Scholar] [CrossRef]
- Tan, S.; Yu, F.; Bao, H.; Guan, Y. Experimental and Numerical Investigations on Seismic Behavior of RC Beam to PVC-CFRP Confined Concrete Column Exterior Joint with Steel Tube Connector. Polymers 2022, 14, 4712. [Google Scholar] [CrossRef]
- Qaisi, O.A.L.; Ashteyat, A.M.; Murad, Y.Z. Experimental Study of Flexural Behaviour of RC Beams Strengthened Using near Surface Mounted CFRP Strips and Ropes. Eur. J. Environ. Civ. Eng. 2023, 27, 2116–2135. [Google Scholar] [CrossRef]
- Li, Z.; del Rey Castillo, E.; Henry, R.S.; Thompson, A. Axial Compression Testing of Concrete Prisms Confined by FRP Spike Anchors and Estimation of Failure Modes. Compos. Struct. 2023, 322, 117403. [Google Scholar] [CrossRef]
- Rousakis, T.C. Inherent Seismic Resilience of RC Columns Externally Confined with Nonbonded Composite Ropes. Compos. B Eng. 2018, 135, 142–148. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Panagiotakis, G.D.; Archontaki, E.E.; Kostopoulos, A.K. Prismatic RC Columns Externally Confined with FRP Sheets and Pre-Tensioned Basalt Fiber Ropes under Cyclic Axial Load. Compos. B Eng. 2019, 163, 96–106. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Karabinis, A.I. Substandard Reinforced Concrete Members Subjected to Compression: FRP Confining Effects. Mater. Struct. 2008, 41, 1595–1611. [Google Scholar] [CrossRef]
- Baena, M.; Jahani, Y.; Torres, L.; Barris, C.; Perera, R. Flexural Performance and End Debonding Prediction of NSM Carbon FRP-Strengthened Reinforced Concrete Beams under Different Service Temperatures. Polymers 2023, 15, 851. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, J.A.; Mhanna, H.H.; Ali, A.B.; Hawileh, R.A. CFRP U-Wraps and Spike Anchors for Enhancing the Flexural Performance of CFRP-Plated RC Beams. Polymers 2023, 15, 1621. [Google Scholar] [CrossRef]
- Albuja-Sánchez, J.; Damián-Chalán, A.; Escobar, D. Experimental Studies and Application of Fiber-Reinforced Polymers (FRPs) in Civil Infrastructure Systems: A State-of-the-Art Review. Polymers 2024, 16, 250. [Google Scholar] [CrossRef]
- Ghani, M.U.; Ahmad, N.; Abraha, K.G.; Manj, R.Z.; Sharif, M.H.; Wei, L. Review and Assessment of Material, Method, and Predictive Modeling for Fiber-Reinforced Polymer (FRP) Partially Confined Concrete Columns. Polymers 2024, 16, 1367. [Google Scholar] [CrossRef] [PubMed]
- Ashteyat, A.M.; Obaidat, A.T.; Obaidat, Y.T.; Abdel-Jaber, M.; Al-Tarawneh, D. The Behavior of Strengthened and Repaired RC Columns with (CFRP) Rope under Different Preloading Levels. Eur. J. Environ. Civ. Eng. 2023, 27, 4212–4236. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Karabinis, A.I. Adequately FRP Confined Reinforced Concrete Columns under Axial Compressive Monotonic or Cyclic Loading. Mater. Struct. 2012, 45, 957–975. [Google Scholar] [CrossRef]
- Rousakis, T.; Macha, M. External Confinement with Basalt Fiber Ropes in Existing Reinforced Concrete Structures. ce/papers 2023, 6, 277–285. [Google Scholar] [CrossRef]
- Zapris, A.; Kytinou, V.; Xynopoulos, I.; Gribniak, V.; Chalioris, C. Innovative Torsional Strengthening of Rc T-Beams Using Nsm Frp Ropes. Proc. Int. Struct. Eng. Constr. 2024, 11, 190–202. [Google Scholar] [CrossRef]
- Abdoli, M.; Mostofinejad, D. Torsional Behavior of FRP-Strengthened Reinforced Concrete Members Considering Various Wrapping Configurations: Theoretical Analysis and Modeling. Constr. Build. Mater. 2023, 401, 132636. [Google Scholar] [CrossRef]
- Alabdulhady, M.Y.; Sneed, L.H. Torsional Strengthening of Reinforced Concrete Beams with Externally Bonded Composites: A State of the Art Review. Constr. Build. Mater. 2019, 205, 148–163. [Google Scholar] [CrossRef]
- Deifalla, A.; Ghobarah, A. Strengthening RC T-Beams Subjected to Combined Torsion and Shear Using FRP Fabrics: Experimental Study. J. Compos. Constr. 2010, 14, 301–311. [Google Scholar] [CrossRef]
- Ibrahim, A.; Askar, H.S.; El-Zoughiby, M.E. Torsional Behavior of Solid and Hollow Concrete Beams Reinforced with Inclined Spirals. J. King Saud Univ.—J. Eng. Sci. 2022, 34, 309–321. [Google Scholar] [CrossRef]
- Karayannis, C.G. Torsional Analysis of Flanged Concrete Elements with Tension Softening. Comput. Struct. 1995, 54, 97–110. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Karayannis, C.G. Application of Special Reinforcement Arrangements for RC Members under Torsion—Design Examples. ACI Symp. Publ. 2020, 344, 92–110. [Google Scholar] [CrossRef]
- Shen, K.; Wan, S.; Mo, Y.L.; Jiang, Z. Theoretical Analysis on Full Torsional Behavior of RC Beams Strengthened with FRP Materials. Compos. Struct. 2018, 183, 347–357. [Google Scholar] [CrossRef]
- Al-Bayati, G.; Kalfat, R.; Al-Mahaidi, R.; Hashemi, J. Experimental Study on Crack Propagation of CFRP-Strengthened RC Beams Subjected to Torsion. Aust. J. Struct. Eng. B 2018, 19, 279–297. [Google Scholar] [CrossRef]
- Chai, H.K.; Majeed, A.A.; Allawi, A.A. Torsional Analysis of Multicell Concrete Box Girders Strengthened with CFRP Using a Modified Softened Truss Model. J. Bridge Eng. 2015, 20, B4014001. [Google Scholar] [CrossRef]
- Ghobarah, A.; Ghorbel, M.N.; Chidiac, S.E. Upgrading Torsional Resistance of Reinforced Concrete Beams Using Fiber-Reinforced Polymer. J. Compos. Constr. 2002, 6, 257–263. [Google Scholar] [CrossRef]
- Panchacharam, S.; Belarbi, A. Torsional Behavior of Reinforced Concrete Beams Strengthened with FRP Composites. In Proceedings of the First FIB Congress, Osaka, Japan, 13–19 October 2002. [Google Scholar]
- Al-Bayati, G.; Al-Mahaidi, R.; Hashemi, M.J.; Kalfat, R. Torsional Strengthening of RC Beams Using NSM CFRP Rope and Innovative Adhesives. Compos. Struct. 2018, 187, 190–202. [Google Scholar] [CrossRef]
- Al-Mahaidi, R.; Hii, A.K.Y. Bond Behaviour of CFRP Reinforcement for Torsional Strengthening of Solid and Box-Section RC Beams. Compos. B Eng. 2007, 38, 720–731. [Google Scholar] [CrossRef]
- Alabdulhady, M.Y.; Sneed, L.H.; Carloni, C. Torsional Behavior of RCeams Strengthened with PBO-FRCM Composite—An Experimental Study. Eng. Struct. 2017, 136, 393–405. [Google Scholar] [CrossRef]
- Askandar, N.; Mahmood, A. Comparative Investigation on Torsional Behaviour of RC Beam Strengthened with CFRP Fabric Wrapping and Near-Surface Mounted (NSM) Steel Bar. Adv. Civ. Eng. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Askandar, N.H.; Mahmood, A.D.; Kurda, R. Behaviour of RC Beams Strengthened with FRP Strips under Combined Action of Torsion and Bending. Eur. J. Environ. Civ. Eng. 2022, 26, 4263–4279. [Google Scholar] [CrossRef]
- Gowda, C.C.; Barros, J.A.O.; Guadagnini, M. Experimental Study of Torsional Strengthening on Thin Walled Tubular Reinforced Concrete Structures Using NSM-CFRP Laminates. Compos. Struct. 2019, 208, 585–599. [Google Scholar] [CrossRef]
- Ganganagoudar, A.; Mondal, T.G.; Suriya Prakash, S. Analytical and Finite Element Studies on Behavior of FRP Strengthened RC Beams under Torsion. Compos. Struct. 2016, 153, 876–885. [Google Scholar] [CrossRef]
- Hii, A.K.Y.; Al-Mahaidi, R. Torsional Capacity of CFRP Strengthened Reinforced Concrete Beams. J. Compos. Constr. 2007, 11, 71–80. [Google Scholar] [CrossRef]
- Hii, A.K.Y.; Al-Mahaidi, R. Experimental Investigation on Torsional Behavior of Solid and Box-Section RC Beams Strengthened with CFRP Using Photogrammetry. J. Compos. Constr. 2006, 10, 321–329. [Google Scholar] [CrossRef]
- Mohammadizadeh, M.R.; Fadaee, M.J.; Ronagh, H.R. Improving Torsional Behaviour of Reinforced Concrete Beams Strengthened with Carbon Fibre Reinforced Polymer Composite. 2009, pp. 315–327. Available online: https://www.sid.ir/paper/549455/en (accessed on 10 September 2024).
- Chalioris, C.E. Torsional Strengthening of Rectangular and Flanged Beams Using Carbon Fibre-Reinforced-Polymers—Experimental Study. Constr. Build. Mater. 2008, 22, 21–29. [Google Scholar] [CrossRef]
- Deifalla, A.; Awad, A.; Elgarhy, M. Effectiveness of Externally Bonded CFRP Strips for Strengthening Flanged Beams under Torsion: An Experimental Study. Eng. Struct. 2013, 56, 2065–2075. [Google Scholar] [CrossRef]
- Ameli, M.; Ronagh, H.R.; Dux, P.F. Behavior of FRP Strengthened Reinforced Concrete Beams under Torsion. J. Compos. Constr. 2007, 11, 192–200. [Google Scholar] [CrossRef]
- Elwan, S.K. Torsion Strengthening of RC Beams Using CFRP (Parametric Study). KSCE J. Civ. Eng. 2017, 21, 1273–1281. [Google Scholar] [CrossRef]
- Salom, P.R.; Gergely, J.; Young, D.T. Torsional Strengthening of Spandrel Beams with Fiber-Reinforced Polymer Laminates. J. Compos. Constr. 2004, 8, 157–162. [Google Scholar] [CrossRef]
- Chalioris, C.E. Analytical Model for the Torsional Behaviour of Reinforced Concrete Beams Retrofitted with FRP Materials. Eng. Struct. 2007, 29, 3263–3276. [Google Scholar] [CrossRef]
- Fib Bulletin 90. Externally Applied FRP Reinforcement for Concrete Structures; CEB-FIP: Lausanne, Switzerland, 2019. [Google Scholar]
- NCHRP. Report 655, Recommended Guide Specification for the Design of Externally Bonded FRP Systems for Repair and Strengthening of Concrete Bridge Elements; Zureick, A.H., Ellingwood, B.R., Nowak, A.S., Mertz, D.R., Triantafillou, T.C., Eds.; Transportation Research Board: Washington, DC, USA, 2010. [Google Scholar]
- CNR (National Research Council). Advisory Committee on Technical Recommendations for Construction. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; CNR-DT200: Rome, Italy, 2013. [Google Scholar]
- Abdoli, M.; Mostofinejad, D.; Eftekhar, M. Ultimate Torsional Resistance and Failure Modes of FRP-Strengthened Reinforced Concrete Members: A Nonlinear Design Model. Eng. Struct. 2023, 283, 115867. [Google Scholar] [CrossRef]
- Muciaccia, G.; Khorasani, M.; Mostofinejad, D. Effect of Different Parameters on the Performance of FRP Anchors in Combination with EBR-FRP Strengthening Systems: A Review. Constr. Build. Mater. 2022, 354, 129181. [Google Scholar] [CrossRef]
- Abdoli, M.; Mostofinejad, D.; Eftekhar, M. Aggregate Interlock and Effective Strain of FRP-Strengthened Flanged RC Members Subjected to Torsion: Experimental Evaluation and Analytical Modeling. Constr. Build. Mater. 2024, 437, 136865. [Google Scholar] [CrossRef]
- Abdoli, M.; Mostofinejad, D.; Eftekar, M.; Saljoughian, A. Torsional Strengthening of T-Shaped RC Members with FRP Composites Using EBROG Method: Experimental Investigation and Analysis. Constr. Build. Mater. 2024, 437, 136829. [Google Scholar] [CrossRef]
- Del Rey Castillo, E.; Kanitkar, R.; Smith, S.T.; Griffith, M.C.; Ingham, J.M. Design Approach for FRP Spike Anchors in FRP-Strengthened RC Structures. Compos. Struct. 2019, 214, 23–33. [Google Scholar] [CrossRef]
- Del Rey Castillo, E.; Dizhur, D.; Griffith, M.; Ingham, J. Experimental Testing and Design Model for Bent FRP Anchors Exhibiting Fiber Rupture Failure Mode. Compos. Struct. 2019, 210, 618–627. [Google Scholar] [CrossRef]
Specimen | Reinforcement (mm) | FRP Retrofitting | Reinforcement Geometric Percentage (%) | ||||
---|---|---|---|---|---|---|---|
Longitudinal | Type 1 | Closed-Form Configuration 2 | Af | sf | Longitudinal Steel Bars | Transverse FRP Materials | |
(mm2) | (mm) | ρs,l | ρf,v | ||||
T-C | 4Ø8 + 2Ø8 | ― | ― | ― | ― | 0.574 | ― |
T-U | ΕΒ | ― | 25 | 150 | 0.205 | ||
T-U-W | ΕΒ | ETW | 25 | 150 | 0.252 | ||
T-U-F | ΕΒ | ETF | 25 | 150 | 0.284 | ||
T-R150-W | Ropes | ETW | 28 | 150 | 0.255 | ||
T-R150-F | Ropes | ETF | 28 | 150 | 0.292 | ||
T-0.5R75-W | Ropes | ETW | 14 | 75 | 0.255 | ||
T-0.5R75-F | Ropes | ETF | 14 | 75 | 0.292 |
Properties | SikaWrap®-600C | SikaWrap® FX-50C | Sikadur®-300 | Sikadur®-330 |
---|---|---|---|---|
Modulus of elasticity (GPa) | 225 | 230 | 3.5 | 4.5 |
Ultimate strain capacity (%) | 1.33 | 0.87 | 1.5 | 0.9 |
Ultimate tensile strength (MPa) | 3000 | 2000 | 45 | 30 |
Specimen | Tcr | θcr | Tu | θTu | θ0.8T | Tu Increase Ratio | θ0.8T Increase Ratio |
---|---|---|---|---|---|---|---|
(kNm) | (rad/m) | (kNm) | (rad/m) | (rad/m) | |||
T-C | 11.94 | 2.6 × 10−3 | - | - | 25 × 10−3 | - | - |
T-U | 11.94 | 2.6 × 10−3 | 13.00 | 4.8 × 10−3 | 28 × 10−3 | 1.089 | 1.12 |
T-U-W | 12.21 | 4.0 × 10−3 | 13.09 | 31.6 × 10−3 | 95 × 10−3 | 1.096 | 3.80 |
T-U-F | 12.61 | 6.0 × 10−3 | 13.13 | 12.3 × 10−3 | 112 × 10−3 | 1.100 | 4.48 |
T-R150-W | 12.28 | 4.8 × 10−3 | 12.96 | 17.0 × 10−3 | 48 × 10−3 | 1.085 | 1.92 |
T-R150-F | 12.08 | 2.4 × 10−3 | 12.95 | 48.1 × 10−3 | 134 × 10−3 | 1.085 | 5.36 |
T-0.5R75-W | 12.50 | 4.0 × 10−3 | 12.96 | 40.2 × 10−3 | 126 × 10−3 | 1.085 | 5.04 |
T-0.5R75-F | 11.64 | 4.0 × 10−3 | 14.92 | 14.9 × 10−3 | 129 × 10−3 | 1.250 | 5.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapris, A.G.; Kytinou, V.K.; Chalioris, C.E. Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion. Polymers 2024, 16, 2634. https://doi.org/10.3390/polym16182634
Zapris AG, Kytinou VK, Chalioris CE. Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion. Polymers. 2024; 16(18):2634. https://doi.org/10.3390/polym16182634
Chicago/Turabian StyleZapris, Adamantis G., Violetta K. Kytinou, and Constantin E. Chalioris. 2024. "Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion" Polymers 16, no. 18: 2634. https://doi.org/10.3390/polym16182634
APA StyleZapris, A. G., Kytinou, V. K., & Chalioris, C. E. (2024). Innovative Fiber-Reinforced Polymer Rope-Based Closed-Form Retrofitting Methods Applied in Reinforced Concrete T-Shaped Beams under Torsion. Polymers, 16(18), 2634. https://doi.org/10.3390/polym16182634