Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = Quorum Sensing inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2639 KiB  
Article
Interspecies Interactions of Single- and Mixed-Species Biofilms of Candida albicans and Aggregatibacter actinomycetemcomitans
by Adèle Huc, Andreia S. Azevedo, José Carlos Andrade and Célia Fortuna Rodrigues
Biomedicines 2025, 13(8), 1890; https://doi.org/10.3390/biomedicines13081890 - 3 Aug 2025
Viewed by 77
Abstract
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: [...] Read more.
Polymicrobial biofilms involving fungal and bacterial species are increasingly recognized as contributors to persistent infections, particularly in the oral cavity. Candida albicans and Aggregatibacter actinomycetemcomitans are two commensals that can turn into opportunistic pathogens and are able to form robust biofilms. Objectives: This study aimed to assess the interaction dynamics between these two microorganisms and to evaluate their susceptibility to fluconazole and azithromycin in single- and mixed-species forms. Methods: Biofilm biomass was quantified using crystal violet assays, while biofilm cell viability was assessed through CFU enumeration (biofilm viability assay). To assess the resistance properties of single versus mixed-species coincubations, we applied the antimicrobial susceptibility test (AST) to each drug, and analysed spatial organization with confocal laser scanning microscopy, using PNA-FISH. Results: The results indicated that both species can coexist without significant mutual inhibition. However, a non-reciprocal synergism was also observed, whereby mixed-species biofilm conditions promoted the growth of A. actinomycetemcomitans, while C. albicans growth remained stable. As expected, antimicrobial tolerance was elevated in mixed cultures, likely due to enhanced extracellular matrix production and potential quorum-sensing interactions, contributing to increased resistance against azithromycin and fluconazole. Conclusions: This study provides novel insights into previously rarely explored interactions between C. albicans and A. actinomycetemcomitans. These findings underscore the importance of investigating interspecies interactions within polymicrobial biofilms, as understanding their mechanisms, such as quorum-sensing molecules and metabolic cooperation, can contribute to improved diagnostics and more effective targeted therapeutic strategies against polymicrobial infections. Full article
Show Figures

Graphical abstract

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 414
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

41 pages, 2975 KiB  
Review
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Review
by Ibraheem Borie M. Ibraheem, Reem Mohammed Alharbi, Neveen Abdel-Raouf, Nouf Mohammad Al-Enazi, Khawla Ibrahim Alsamhary and Hager Mohammed Ali
Pharmaceutics 2025, 17(8), 989; https://doi.org/10.3390/pharmaceutics17080989 (registering DOI) - 30 Jul 2025
Viewed by 239
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a multidrug-resistant pathogen, poses a significant threat to global healthcare. This review evaluates the potential of marine algal metabolites as novel antibacterial agents against MRSA. We explore the clinical importance of S. aureus, the emergence of MRSA as a “superbug”, and its resistance mechanisms, including target modification, drug inactivation, efflux pumps, biofilm formation, and quorum sensing. The limitations of conventional antibiotics (e.g., β-lactams, vancomycin, macrolides) are discussed, alongside the promise of algal-derived compounds such as fatty acids, pigments, polysaccharides, terpenoids, and phenolic compounds. These metabolites exhibit potent anti-MRSA activity by disrupting cell division (via FtsZ inhibition), destabilizing membranes, and inhibiting protein synthesis and metabolic pathways, effectively countering multiple resistance mechanisms. Leveraging advances in algal biotechnology, this review highlights the untapped potential of marine algae to drive innovative, sustainable therapeutic strategies against antibiotic resistance. Full article
Show Figures

Figure 1

17 pages, 2176 KiB  
Article
Growth-Phase-Dependent Modulation of Quorum Sensing and Virulence Factors in Pseudomonas aeruginosa ATCC 27853 by Sub-MICs of Antibiotics
by Ahmed Noby Amer, Nancy Attia, Daniel Baecker, Rasha Emad Mansour and Ingy El-Soudany
Antibiotics 2025, 14(7), 731; https://doi.org/10.3390/antibiotics14070731 - 21 Jul 2025
Viewed by 437
Abstract
Background: Antibiotics at sub-inhibitory concentrations can rewire bacterial regulatory networks, impacting virulence. Objective: The way that exposure to selected antibiotics (ciprofloxacin, amikacin, azithromycin, ceftazidime, and meropenem) below their minimum inhibitory concentration (sub-MIC) modulates the physiology of Pseudomonas aeruginosa is examined in [...] Read more.
Background: Antibiotics at sub-inhibitory concentrations can rewire bacterial regulatory networks, impacting virulence. Objective: The way that exposure to selected antibiotics (ciprofloxacin, amikacin, azithromycin, ceftazidime, and meropenem) below their minimum inhibitory concentration (sub-MIC) modulates the physiology of Pseudomonas aeruginosa is examined in this study using growth-phase-resolved analysis. Methods: Standard P. aeruginosa strain cultures were exposed to ¼ and ½ MIC to determine the growth kinetics under antibiotic stress. The study measured protease and pyocyanin production and the expression level of important quorum sensing and virulence genes (lasI/R, rhlI/R, pqsR/A, and phzA) at different growth phases. Results: Meropenem produced the most noticeable growth suppression at ½ MIC. Sub-MIC antibiotics did not completely stop growth, but caused distinct, dose-dependent changes. Azithromycin eliminated protease activity in all phases and had a biphasic effect on pyocyanin. Ciprofloxacin consistently inhibited both pyocyanin and protease in all phases. The effects of amikacin varied by phase and dose, while β-lactams markedly increased pyocyanin production during the log phase. In contrast to the plateau phase, when expression was often downregulated or unchanged, most quorum-sensing- and virulence-associated genes showed significant upregulation during the death phase under sub-MIC exposure. Conclusions: These findings indicate that sub-MIC antibiotics act as biochemical signal modulators, preserving stress-adapted sub-populations that, in late growth phases, activate quorum sensing and stress tolerance pathways. Full article
Show Figures

Graphical abstract

22 pages, 2242 KiB  
Article
Quercetin Can Alleviate ETECK88-Induced Oxidative Stress in Weaned Piglets by Inhibiting Quorum-Sensing Signal Molecule Autoinducer-2 Production in the Cecum
by Hailiang Wang, Min Yao, Dan Wang, Mingyang Geng, Shanshan Nan, Xiangjian Peng, Yuyang Xue, Wenju Zhang and Cunxi Nie
Antioxidants 2025, 14(7), 852; https://doi.org/10.3390/antiox14070852 - 11 Jul 2025
Viewed by 442
Abstract
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The [...] Read more.
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The piglets were fed one of three diets: the basal diet (Con), ETEC challenge (K88) after the basal diet, or ETEC challenge (quercetin + K88) after the basal diet supplemented with 0.2% quercetin. In vitro experiments revealed that 5 mg/mL quercetin exhibited the strongest QS inhibitory activity and reduced pigment production by Chromobacterium violaceum ATCC12472 by 67.70%. In vivo experiments revealed that quercetin + K88 significantly increased immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) levels in the serum, ileum mucosa, and colon mucosa; increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) levels in the serum, liver, and colon mucosa; and decreased cluster of differentiation 3 (CD3) and cluster of differentiation 8 (CD8)activity in the serum compared with K88 alone. Quercetin + K88 significantly alleviated pathological damage to the liver and spleen and upregulated antioxidant genes (nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1(HO-1), CAT, SOD, and glutathione s-transferase (GST)). Inducible nitric oxide synthase (iNOS) and kelch-like ech-associated protein 1 (Keap1), which cause oxidative damage to the liver and spleen, were significantly downregulated. The acetic acid content in the cecum was significantly increased, and the E. coli count and QS signal molecule autoinducer-2 (AI-2) yield were significantly reduced. In conclusion, 0.2% dietary quercetin can alleviate ETEC-induced inflammation and oxidative stress in weaned piglets. Full article
Show Figures

Figure 1

25 pages, 1759 KiB  
Review
Harnessing the Potential of Antibacterial and Antibiofilm Phytochemicals in the Combat Against Superbugs: A One Health Perspective
by Suma Sarojini, Saranya Jayaram, Sandhya Kalathilparambil Santhosh, Pragyan Priyadarshini, Manikantan Pappuswamy and Balamuralikrishnan Balasubramanian
Antibiotics 2025, 14(7), 692; https://doi.org/10.3390/antibiotics14070692 - 9 Jul 2025
Viewed by 644
Abstract
The war between humans and bacteria started centuries ago. With the advent of antibiotics, there was a temporary ceasefire in this war, but the scenario soon started becoming worse with the emergence of drug-resistant strains within years of the deployment of antibiotics in [...] Read more.
The war between humans and bacteria started centuries ago. With the advent of antibiotics, there was a temporary ceasefire in this war, but the scenario soon started becoming worse with the emergence of drug-resistant strains within years of the deployment of antibiotics in the market. With the surge in the misuse of antibiotics, there was a drastic increase in the number of multidrug-resistant (MDR) and extensively drug-resistant bacterial strains, even to antibiotics like Methicillin and vancomycin, aggravating the healthcare scenario. The threat of MDR ESKAPE pathogens is particularly high in nosocomial infections, where biofilms formed by bacteria create a protective barrier that makes them highly resistant to antibiotics, complicating the treatment efforts. Scientists are looking at natural and sustainable solutions, as several studies have projected deaths contributed by drug-resistant bacteria to go beyond 50 million by 2050. Many plant-derived metabolites have shown excellent antibacterial and antibiofilm properties that can be tapped for combating superbugs. The present review explores the current status of various studies on antibacterial plant metabolites like alkaloids and flavonoids and their mechanisms in disrupting biofilms and killing bacteria by way of inhibiting key survival strategies of bacteria like motility, quorum-sensing, reactive oxygen species production, and adhesion. These mechanisms were found to be varied in Gram-positive, Gram-negative, and acid-fast bacteria like Mycobacterium tuberculosis, which will be discussed in detail. The successful tapping of the benefits of such plant-derived chemicals in combination with evolving techniques of nanotechnology and targeted drug delivery can go a long way in achieving the goal of One Health, which advocates the unity of multiple practices for the optimal health of people, animals, and the environment. Full article
Show Figures

Figure 1

21 pages, 750 KiB  
Review
Targeting Ocular Biofilms with Plant-Derived Antimicrobials in the Era of Antibiotic Resistance
by Monika Dzięgielewska, Michał Tomczyk, Adrian Wiater, Aleksandra Woytoń and Adam Junka
Molecules 2025, 30(13), 2863; https://doi.org/10.3390/molecules30132863 - 5 Jul 2025
Cited by 1 | Viewed by 678
Abstract
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, [...] Read more.
Microbial biofilms present a formidable challenge in ophthalmology. Their intrinsic resistance to antibiotics and evasion of host immune defenses significantly complicate treatments for ocular infections such as conjunctivitis, keratitis, blepharitis, and endophthalmitis. These infections are often caused by pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, particularly in patients using contact lenses or intraocular implants—devices that serve as surfaces for biofilm formation. The global rise in antimicrobial resistance has intensified the search for alternative treatment modalities. In this regard, plant-derived antimicrobials have emerged as promising candidates demonstrating broad-spectrum antimicrobial and antibiofilm activity through different mechanisms from those of conventional antibiotics. These mechanisms include inhibiting quorum sensing, disrupting established biofilm matrices, and interfering with microbial adhesion and communication. However, the clinical translation of phytochemicals faces significant barriers, including variability in chemical composition due to environmental and genetic factors, difficulties in standardization and reproducibility, poor water solubility and ocular bioavailability, and a lack of robust clinical trials evaluating their efficacy and safety in ophthalmic settings. Furthermore, regulatory uncertainties and the absence of unified guidelines for approving plant-derived formulations further hinder their integration into evidence-based ophthalmic practice. This review synthesizes the current knowledge on the pathogenesis and treatment of biofilm-associated ocular infections, critically evaluating plant-based antimicrobials as emerging therapeutic agents. Notably, resveratrol, curcumin, abietic acid, and selected essential oils demonstrated notable antibiofilm activity against S. aureus, P. aeruginosa, and C. albicans. These findings support the potential of phytochemicals as adjunctive or alternative agents in managing biofilm-associated ocular infections. By highlighting both their therapeutic promise and translational limitations, this review contributes to the ongoing discourse on sustainable, innovative approaches to managing antibiotic-resistant ocular infections. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

50 pages, 3939 KiB  
Review
Targeting Gram-Negative Bacterial Biofilm with Innovative Therapies: Communication Silencing Strategies
by Milka Malešević and Branko Jovčić
Future Pharmacol. 2025, 5(3), 35; https://doi.org/10.3390/futurepharmacol5030035 - 3 Jul 2025
Viewed by 607
Abstract
Biofilm-associated infections caused by Gram-negative bacteria, especially multidrug-resistant strains, frequently occur in intensive care units and represent a major therapeutic challenge. The economic burden of biofilm-associated infections is considerable, making the search for new treatment approaches a focal point for policymakers and scientific [...] Read more.
Biofilm-associated infections caused by Gram-negative bacteria, especially multidrug-resistant strains, frequently occur in intensive care units and represent a major therapeutic challenge. The economic burden of biofilm-associated infections is considerable, making the search for new treatment approaches a focal point for policymakers and scientific funding bodies. Biofilm formation is regulated by quorum sensing (QS), a population density-dependent communication mechanism between cells mediated by small diffusible signaling molecules. QS modulates various intracellular processes, and some features of QS are common to all Gram-negative bacteria. While there are differences in the QS regulatory networks of different Gram-negative bacterial species, a common feature of most Gram-negative bacteria is the ability of N-acylhomoserine lactones (AHL) as inducers to diffuse across the bacterial membrane and interact with receptors located either in the cytoplasm or on the inner membrane. Targeting QS by inhibiting the synthesis, transport, or perception of signaling molecules using small molecules, quorum quenching enzymes, antibodies, combinatorial therapies, or nanoparticles is a promising strategy to combat virulence. In-depth knowledge of biofilm biology, antibiotic susceptibility, and penetration mechanisms, as well as a deep understanding of anti-QS agents, will contribute to the development of antimicrobial therapies to combat biofilm infections. Advancing antimicrobial therapies against biofilm infections requires a deep understanding of biofilm biology, antibiotic susceptibility, penetration mechanisms, and anti-QS strategies. This can be achieved through in vivo and clinical studies, supported by state-of-the-art tools such as machine learning and artificial intelligence. Full article
Show Figures

Graphical abstract

18 pages, 3145 KiB  
Article
The Effects of Bacillus licheniformis on the Growth, Biofilm, Motility and Quorum Sensing of Salmonella typhimurium
by Wenwen Peng, Haocheng Xu, Meiting Zhang, Baoyang Xu, Bing Dai and Caimei Yang
Microorganisms 2025, 13(7), 1540; https://doi.org/10.3390/microorganisms13071540 - 30 Jun 2025
Viewed by 345
Abstract
With 80% of bacterial infections occurring as biofilms, biofilm-related infections have evolved into a critical public health concern. Probiotics such as Bacillus licheniformis have emerged as promising alternatives, offering new avenues for effective treatment. This study aimed to evaluate the activity of licheniformis [...] Read more.
With 80% of bacterial infections occurring as biofilms, biofilm-related infections have evolved into a critical public health concern. Probiotics such as Bacillus licheniformis have emerged as promising alternatives, offering new avenues for effective treatment. This study aimed to evaluate the activity of licheniformis against the growth, biofilm formation, motility, and quorum sensing (QS) of Salmonella typhimurium. Several experiments were conducted: The minimum inhibitory concentration (MIC) of Bacillus licheniformis against Salmonella typhimurium was determined to be 0.5 mg/mL using the broth microdilution method. The inhibition zone of 100 mg/mL of B. licheniformis against Salmonella typhimurium was 19.98 ± 1.38 mm; the time-growth curve showed that B. licheniformis can effectively inhibit the growth of Salmonella typhimurium. In biofilm experiments, at the MIC of B. licheniformis, the inhibition rate of immature biofilm of Salmonella typhimurium was 86.9%, and it significantly reduced the production of biofilm components (EPS, e-DNA, and extracellular proteases) (p < 0.05). The disruption rate of mature biofilm by B. licheniformis at the MIC was 66.89%, and it significantly decreased the levels of biofilm components (EPS and e-DNA) (p < 0.5). Microscopic observation showed that both the MIC and 1/2 MIC of B. licheniformis could reduce the number of bacteria in the Salmonella typhimurium biofilm, which was not conducive to the formation and maintenance of the biofilm structure. Swimming/Swarming assays and QS experiments confirmed that B. licheniformis inhibits the motility of Salmonella typhimurium and the secretion of AI-1-type quorum sensing molecules and downregulates the AI-2 quorum sensing system by upregulating lsr gene expression. These findings suggest that B. licheniformis could be a potential antimicrobial agent and biofilm inhibitor. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

12 pages, 1373 KiB  
Article
Characterizing Aqueous Extracts of Native Plants in Northeastern Mexico: Prospects for Quorum-Sensing Inhibition Against Gram-Negative Bacteria
by Jose E. Quiroz-Hernandez, Gustavo Hernandez-Vidal, Orquidea Perez-Gonzalez, Uziel Castillo-Velazquez and Victor E. Aguirre-Arzola
Appl. Microbiol. 2025, 5(3), 61; https://doi.org/10.3390/applmicrobiol5030061 - 29 Jun 2025
Viewed by 392
Abstract
The growing threat of antibiotic-resistant Gram-negative bacteria highlights the urgent need for innovative, non-bactericidal therapeutic strategies. Quorum-sensing (QS) inhibition has emerged as a promising approach to attenuate bacterial virulence without exerting selective pressure. This study evaluated the antimicrobial, anti-QS, and antibiofilm properties of [...] Read more.
The growing threat of antibiotic-resistant Gram-negative bacteria highlights the urgent need for innovative, non-bactericidal therapeutic strategies. Quorum-sensing (QS) inhibition has emerged as a promising approach to attenuate bacterial virulence without exerting selective pressure. This study evaluated the antimicrobial, anti-QS, and antibiofilm properties of aqueous extracts from five medicinal plants native to northeastern Mexico: Gymnosperma glutinosum, Ibervillea sonorae, Larrea tridentata, Olea europaea, and Tecoma stans. Disk diffusion and violacein quantification assays using Chromobacterium violaceum demonstrated significant QS inhibition by G. glutinosum and T. stans, with violacein reductions of 60.02% and 52.72%, respectively, at 40 mg/mL. While L. tridentata and O. europaea exhibited antibacterial activity, I. sonorae showed no growth or pigment inhibition but achieved the highest biofilm disruption (89.89%) against Salmonella typhimurium. UPLC-MS analysis identified chlorogenic acid, kaempferol, and D-(−)-quinic acid as major constituents, compounds previously associated with QS modulation. These findings highlight the potential of traditional Mexican plant species as sources of QS inhibitors and bio-film-disrupting agents, supporting their further development as alternatives to conventional antibiotics. Full article
Show Figures

Graphical abstract

21 pages, 1452 KiB  
Review
Exploring the Role of Berberine as a Molecular Disruptor in Antimicrobial Strategies
by Anna Duda-Madej, Szymon Viscardi, Hanna Bazan and Jakub Sobieraj
Pharmaceuticals 2025, 18(7), 947; https://doi.org/10.3390/ph18070947 - 24 Jun 2025
Viewed by 957
Abstract
In recent years, one of the most important issues in public health is the rapid growth of antibiotic resistance among pathogens. Multidrug-resistant (MDR) strains (mainly Enterobacteriaceae and non-fermenting bacilli) cause severe infections, against which commonly used pharmaceuticals are ineffective. Therefore, there is an [...] Read more.
In recent years, one of the most important issues in public health is the rapid growth of antibiotic resistance among pathogens. Multidrug-resistant (MDR) strains (mainly Enterobacteriaceae and non-fermenting bacilli) cause severe infections, against which commonly used pharmaceuticals are ineffective. Therefore, there is an urgent need for new treatment options and drugs with innovative mechanisms of action. Natural compounds, especially alkaloids, are showing promising potential in this area. This review focuses on the ability of the isoquinoline alkaloid berberine (BRB) to overcome various resistance mechanisms against conventional antimicrobial agents. BRB has demonstrated significant activity in inhibiting efflux pumps of the RND (Resistance-Nodulation-Cell Division) family, such as MexAB-OprM (P. aeruginosa) and AdeABC (A. baumannii). Moreover, BRB was able to decrease quorum sensing activity in both Gram-positive and Gram-negative pathogens, resulting in reduced biofilm formation and lower bacterial virulence. Additionally, BRB has been identified as a potential inhibitor of FtsZ, a key protein responsible for bacterial cell division. Particularly noteworthy, though requiring further investigation, are reports suggesting that BRB might inhibit β-lactamase enzymes, including NDM, AmpC, and ESβL types. The pleiotropic antibacterial actions of BRB, distinct from the mechanisms of traditional antibiotics, offer hope for breaking bacterial resistance. However, more extensive studies, especially in vivo, are necessary to fully evaluate the clinical potential of BRB and determine its practical applicability in combating antibiotic-resistant infections. Full article
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Antifouling Mussel-Inspired Hydrogel with Furanone-Loaded ZIF-8 for Quorum Sensing-Mediated Marine Antifouling
by Yanbin Xiong, Junnan Cui, Xiaodan Liu, Haobo Shu and Pan Cao
Gels 2025, 11(6), 466; https://doi.org/10.3390/gels11060466 - 18 Jun 2025
Viewed by 473
Abstract
Marine biofouling, the process of marine microorganisms, algae, and invertebrates attaching to and forming biofilms on ship hulls, underwater infrastructure, and marine equipment in ocean environments, severely impacts shipping and underwater operations by increasing fuel consumption, maintenance costs, and corrosion risks, and by [...] Read more.
Marine biofouling, the process of marine microorganisms, algae, and invertebrates attaching to and forming biofilms on ship hulls, underwater infrastructure, and marine equipment in ocean environments, severely impacts shipping and underwater operations by increasing fuel consumption, maintenance costs, and corrosion risks, and by threatening marine ecosystem stability via invasive species transport. This study reports the development of a hydrogel-metal-organic framework (MOF)-quorum sensing inhibitor (QSI) antifouling coating on 304 stainless steel (SS) substrates. Inspired by mussel adhesion, a hydrophilic bionic hydrogel was first constructed via metal ion coordination. The traditional metal ion source was replaced with a zeolitic imidazolate framework-8 (ZIF-8) loaded with 2-(5H)-furanone (HF, a QSI) without altering coating formation. Physicochemical characterization using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), the Brunauer–Emmett–Teller (BET) method, and the diffraction of x-rays (XRD) confirmed successful HF loading into ZIF-8 with intact crystal structures. Antifouling tests showed HF@ZIF-8 enhanced antibacterial inhibition against Staphylococcus aureus (97.28%) and Escherichia coli (>97%) and suppressed Chromobacterium violaceum CV026 pigment synthesis at 0.25 mg/mL (sub-growth concentration). The reconstructed PG/PVP/PEI/HF@ZIF-8 coating achieved 72.47% corrosion inhibition via synergistic anodic protection and physical shielding. This work provides a novel green approach for surface antifouling and drag reduction, highlighting MOF-loaded QSIs as promising additives to enhance the antifouling performance of hydrogel coatings, anti-corrosion performance, and QSI performance for sustainable marine engineering applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

46 pages, 735 KiB  
Review
Plant-Derived Phytobiotics as Emerging Alternatives to Antibiotics Against Foodborne Pathogens
by Kamila Rachwał and Klaudia Gustaw
Appl. Sci. 2025, 15(12), 6774; https://doi.org/10.3390/app15126774 - 16 Jun 2025
Viewed by 949
Abstract
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential [...] Read more.
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential oils, polyphenols, alkaloids, and organosulfur compounds, highlighting their structural diversity and antimicrobial potential. Phytobiotics combat foodborne pathogens by disrupting cell structures, inhibiting biofilms and quorum sensing, and interfering with genetic and protein synthesis. Importantly, some phytobiotics exhibit synergistic effects when combined with antibiotics or other natural agents, enhancing overall antimicrobial efficacy. The impact of phytobiotics on the microbiota of food products and the gastrointestinal tract is also addressed, with attention to both beneficial modulation and possible unintended effects. Practical applications in food preservation and supplementation are analyzed, as well as challenges related to composition variability, stability, and interactions with food matrices. Nevertheless, modern technologies such as nanoencapsulation, complexation with polysaccharides, and advanced extraction methods are being developed to address these challenges and enhance the stability and bioavailability of phytobiotics. Continued investment in research and innovation is essential to fully harness the potential of phytobiotics in ensuring safe, natural, and sustainable food systems. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

19 pages, 2028 KiB  
Article
Characterization of a Vaginal Limosilactobacillus Strain Producing Anti-Virulence Postbiotics: A Potential Probiotic Candidate
by Tsvetelina Paunova-Krasteva, Petya D. Dimitrova, Dayana Borisova, Lili Dobreva, Nikoleta Atanasova and Svetla Danova
Fermentation 2025, 11(6), 350; https://doi.org/10.3390/fermentation11060350 - 16 Jun 2025
Viewed by 659
Abstract
The search for probiotics to help limit antibiotic resistance is a major scientific challenge. The exploration of Lactobacillus postbiotics represents a promising approach to prevent pathogen invasion. With this aim, Limosilactobacillus fermentum Lf53, with a broad-spectrum of antagonistic activity, was characterized as a [...] Read more.
The search for probiotics to help limit antibiotic resistance is a major scientific challenge. The exploration of Lactobacillus postbiotics represents a promising approach to prevent pathogen invasion. With this aim, Limosilactobacillus fermentum Lf53, with a broad-spectrum of antagonistic activity, was characterized as a candidate probiotic strain with promising transit tolerance and broad spectrum of activity. A study on growth and postbiotic production in modified MRS broth with different carbohydrates and its vegan variant was carried out. This study presents a comprehensive approach to characterizing the anti-virulence properties of postbiotics derived from Lf53. The promising antibacterial, antibiofilm, and anti-quorum sensing activities of the cell-free supernatants (CFS) were assessed as part of the probiotic’s barrier mechanisms. Biofilm inhibition of P. aeruginosa revealed remarkable suppressive effects exerted by the three tested postbiotics, two of which (nCFS and aCFS) exhibited over 50% inhibition and more than 60% for lysates. The postbiotics’ influence on the production of violacein and pyocyanin pigments of Chromobacterium violaceum and Pseudomonas aeruginosa, which are markers for quorum sensing, highlighted their potential in regulating pathogenic mechanisms. The Lf53 lysates showed the most significant inhibition of violacein production across multiple assays, showing 29.8% reduction. Regarding pyocyanin suppression, the postbiotics also demonstrated strong activity. These are the first reported data on complex postbiotics (metabiotics and parabiotics) demonstrating their potential as anti-virulence agents to help combat pathogens associated with antibiotic-resistant infections. Full article
Show Figures

Figure 1

28 pages, 1264 KiB  
Review
Metabolic Rewiring of Bacterial Pathogens in Response to Antibiotic Pressure—A Molecular Perspective
by Carlo Acierno, Fannia Barletta, Riccardo Nevola, Luca Rinaldi, Ferdinando Carlo Sasso, Luigi Elio Adinolfi and Alfredo Caturano
Int. J. Mol. Sci. 2025, 26(12), 5574; https://doi.org/10.3390/ijms26125574 - 11 Jun 2025
Viewed by 734
Abstract
Antibiotic pressure exerts profound effects on bacterial physiology, not limited to classical genetic resistance mechanisms. Increasing evidence highlights the ability of pathogens to undergo metabolic rewiring—an adaptive, reversible reorganization of core metabolic pathways that promotes survival under antimicrobial stress. This review provides a [...] Read more.
Antibiotic pressure exerts profound effects on bacterial physiology, not limited to classical genetic resistance mechanisms. Increasing evidence highlights the ability of pathogens to undergo metabolic rewiring—an adaptive, reversible reorganization of core metabolic pathways that promotes survival under antimicrobial stress. This review provides a comprehensive analysis of antibiotic-induced metabolic adaptations, encompassing glycolysis, the tricarboxylic acid cycle, fermentation, redox balance, amino acid catabolism, and membrane biosynthesis. We critically examine how diverse antibiotic classes—including β-lactams, aminoglycosides, quinolones, glycopeptides, polymyxins, and antimetabolites—interact with bacterial metabolism to induce tolerance and persistence, often preceding stable resistance mutations. In parallel, we explore the ecological and host-derived signals—such as immunometabolites and quorum sensing—that modulate these metabolic responses. Therapeutically, targeting metabolic pathways offers promising strategies to potentiate antibiotic efficacy, including enzyme inhibition, metabolic adjuvants, and precision-guided therapy based on pathogen metabolic profiling. By framing metabolic plasticity as a dynamic and evolutionarily relevant phenomenon, this review proposes a unifying model linking transient tolerance to stable resistance. Integrating metabolic rewiring into antimicrobial research, clinical diagnostics, and therapeutic design represents a necessary paradigm shift in combating bacterial persistence and resistance. Full article
Show Figures

Figure 1

Back to TopTop