Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (789)

Search Parameters:
Keywords = Quinolone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 815 KiB  
Article
Profiles of Sensitivity to Antibiotics and Heavy Metals in Strains of Pseudomonas mendocina Isolates from Leachate Pond
by Aura Falco, Alejandra Mondragón-Quiguanas, Laura Burbano, Miguel Ángel Villaquirán-Muriel, Adriana Correa and Carlos Aranaga
Antibiotics 2025, 14(8), 781; https://doi.org/10.3390/antibiotics14080781 (registering DOI) - 1 Aug 2025
Viewed by 146
Abstract
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, [...] Read more.
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, there are limited environmental studies, particularly concerning leachates from landfills. The objective of this study was to identify and determine the genetic relationships, as well as the sensitivity profiles to antibiotics and heavy metals, of ten Pseudomonas mendocina isolates from a leachate pond. Methods: Identification was conducted using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight), while genotyping was performed via rep-PCR. Antibiotic susceptibility to β-lactams, aminoglycosides, and quinolones was assessed using the Kirby-Bauer method. Additionally, sensitivity profile to heavy metals was evaluated using the broth microdilution technique. Results: Rep-PCR analysis indicated that 60% (n = 6/10) of the isolates exhibited a clonal relationship. Sensitivity testing revealed that 30% (n = 3/10) of the isolates displayed reduced sensitivity to aminoglycosides and β-lactams. Finally, the broth microdilution showed that 90% (n = 9/10) of the isolates were tolerant to copper sulfate. Conclusions: These results provide evidence that landfill leachates may serve as a potential reservoir for bacteria harboring antimicrobial resistance determinants. Full article
(This article belongs to the Special Issue Antibiotic Resistance: The Role of Aquatic Environments)
Show Figures

Figure 1

19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 289
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

13 pages, 413 KiB  
Article
A Retrospective Cohort Study of Leptospirosis in Crete, Greece
by Petros Ioannou, Maria Pendondgis, Eleni Kampanieri, Stergos Koukias, Maria Gorgomyti, Kyriaki Tryfinopoulou and Diamantis Kofteridis
Trop. Med. Infect. Dis. 2025, 10(8), 209; https://doi.org/10.3390/tropicalmed10080209 - 25 Jul 2025
Viewed by 419
Abstract
Introduction: Leptospirosis is an under-recognized zoonosis that affects both tropical and temperate regions. While it is often associated with exposure to contaminated water or infected animals, its presentation and epidemiology in Mediterranean countries remain incompletely understood. This retrospective cohort study investigates the clinical [...] Read more.
Introduction: Leptospirosis is an under-recognized zoonosis that affects both tropical and temperate regions. While it is often associated with exposure to contaminated water or infected animals, its presentation and epidemiology in Mediterranean countries remain incompletely understood. This retrospective cohort study investigates the clinical and epidemiological profile of leptospirosis in Crete, Greece, a region where data are scarce. Methods: All adult patients with laboratory-confirmed leptospirosis admitted to three major public hospitals in Crete, Greece, between January 2019 and December 2023 were included in the analysis. Diagnosis was made through serologic testing along with compatible clinical symptoms. Results: A total of 17 patients were included. Their median age was 48 years, with a predominance of males (70.6%). Notably, more than half of the patients had no documented exposure to classic risk factors such as rodents or standing water. Clinical presentations were varied but commonly included fever, fatigue, acute kidney injury, and jaundice. Of the patients who underwent imaging, most showed hepatomegaly. The median delay from symptom onset to diagnosis was 11 days, underscoring the diagnostic challenge in non-endemic areas. Ceftriaxone was the most frequently administered antibiotic (76.5%), often in combination with tetracyclines or quinolones. Despite treatment, three patients (17.6%) died, all presenting with severe manifestations such as ARDS, liver failure, or shock. A concerning increase in cases was noted in 2023. Conclusions: Leptospirosis can present with severe and potentially fatal outcomes even in previously healthy individuals and in regions not traditionally considered endemic. The relatively high mortality and disease frequency noted emphasize the importance of maintaining a high index of suspicion. Timely diagnosis and appropriate antimicrobial therapy are essential to improving patient outcomes. Additionally, the need for enhanced public health awareness, diagnostic capacity, and possibly environmental surveillance to control this neglected but impactful disease better, should be emphasized. Full article
(This article belongs to the Special Issue Leptospirosis and One Health)
Show Figures

Figure 1

14 pages, 355 KiB  
Article
Very Early Transition to Oral Antibiotics in Uncomplicated Enterobacterales Bloodstream Infections: Effectiveness and Impact on Carbon Footprint Saving
by Aina Mateu, Ana Martínez-Urrea, Clara Gallego, Laura Gisbert, Beatriz Dietl, Mariona Xercavins, Maria López-Sánchez, Silvia Álvarez, Sergi García Rodríguez, Toni Roselló, Josefa Pérez, Esther Calbo and Lucía Boix-Palop
Antibiotics 2025, 14(8), 751; https://doi.org/10.3390/antibiotics14080751 - 25 Jul 2025
Viewed by 364
Abstract
Background/Objective: This study aimed to evaluate the effectiveness of very early oral transition in Enterobacterales bloodstream infections (E-BSIs), identify factors associated with it, compare the effectiveness of different oral options, and assess its economic and ecological benefits. Methods: Retrospective, observational cohort [...] Read more.
Background/Objective: This study aimed to evaluate the effectiveness of very early oral transition in Enterobacterales bloodstream infections (E-BSIs), identify factors associated with it, compare the effectiveness of different oral options, and assess its economic and ecological benefits. Methods: Retrospective, observational cohort study including monomicrobial E-BSI in clinically stable adult patients by day 3 of bacteremia with oral antibiotic options. Transition to oral antibiotics by day 3 or earlier (early oral (EO) group) was compared to later transition or remaining on intravenous therapy (nEO group). Early oral transition-associated factors were analyzed. Oral high-dose beta-lactams (BLs) were compared to quinolones (QLs) or trimethoprim/sulfamethoxazole (TS). Economic and ecological costs were assessed. Results: Of 345 E-BSI, 163 (47.2%) were in the EO group, characterized by more urinary tract infections (UTIs) and shorter hospital stays. The nEO group had higher Charlson Comorbidity Index (CCI), extended-spectrum beta-lactamase (ESBL) production, greater source control need, and longer time to clinical stability. There were no significant differences in mortality and relapse. UTIs were associated with early oral transition (OR 2.02, IC 95% 1.18–3.48), while higher CCI (0.85, 0.77–0.95), source control need (0.39, 0.19–0.85), longer time to clinical stability (0.51, 0.39–0.66), and ESBL isolates (0.39, 0.19–0.80) hindered this practice. High-dose BLs and QL/TS were equally effective. Early oral transition resulted in 38.794 KgCO2eq reduction and EUR 269,557.99 savings. Conclusions: Very early oral transition at day 3 or before in stable E-BSI patients is effective, eco-sustainable, and cost-effective; UTI is related with the early oral switch, while comorbidities, ESBL production, source control need, or longer time to clinical stability hinder this practice. Full article
Show Figures

Graphical abstract

16 pages, 1234 KiB  
Article
Genomic Insights of Emerging Multidrug-Resistant OXA-48-Producing ST135 Proteus mirabilis
by Angeliki Mavroidi, Elisavet Froukala, Nick Spanakis, Aikaterini Michelaki, Maria Orfanidou, Vasiliki Koumaki and Athanasios Tsakris
Antibiotics 2025, 14(8), 750; https://doi.org/10.3390/antibiotics14080750 - 25 Jul 2025
Viewed by 286
Abstract
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. [...] Read more.
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. Methods: Characterization of Pm GR-1 was performed by the Vitek® Compact and Mass Spectrometry systems, antimicrobial susceptibility testing, detection of beta-lactamases, multilocus-sequence typing (MLST), and whole-genome sequencing (WGS). In silico prediction of mobile genetic elements (MGEs), genomic islands (GIs), antimicrobial resistance genes (ARGs) and virulence factors (VFs), and phylogenetic, core-genome SNP and comparative genomics analyses were executed using bioinformatic tools. Results: Pm GR-1 was isolated from a urine sample of an outpatient in a Greek hospital. It exhibited a multidrug-resistant phenotype, being susceptible only to amikacin and ceftazidime/avibactam. It co-carried several beta-lactamase genes on the chromosome (blaOXA-48, blaCTX-M-14, blaTEM-1) and a plasmid (blaTEM-2) and several other ARGs, but also mutations associated with quinolone resistance in the DNA gyrase and topoisomerase IV subunits. It belonged to the international clone ST135 that has also been detected among OXA-48-producing P. mirabilis strains from Germany and the USA. Pm GR-1 was genetically related to those from Germany, sharing highly similar MGEs, GIs, ARGs and VFs, including the chromosomal blaOXA-48 genetic structure, the O-antigen locus, the flagella locus, the MR/P fimbriae operon, and the urease gene cluster. Conclusions: To our knowledge, this is the first report from Greece of a blaOXA-48-possessing P. mirabilis strain. The emergence of blaOXA-48 among P. mirabilis strains of the international clone ST135 in different geographical regions is worrying. Close monitoring of these strains is required in One Health settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

8 pages, 2248 KiB  
Case Report
Polymicrobial Arthritis Following a Domestic Cat Bite Involving Rahnella aquatilis in an Immunocompetent Patient
by Olivier Nicod, Marie Tré-Hardy, Bruno Baillon, Ingrid Beukinga, William Ngatchou, Nada Riahi and Laurent Blairon
Microorganisms 2025, 13(8), 1725; https://doi.org/10.3390/microorganisms13081725 - 23 Jul 2025
Viewed by 287
Abstract
Cat bites frequently lead to polymicrobial infections due to deep puncture wounds that inoculate oral flora into poorly oxygenated tissues. While Pasteurella multocida is the most commonly implicated organism, environmental and atypical pathogens may also play a role, yet often go unrecognized. This [...] Read more.
Cat bites frequently lead to polymicrobial infections due to deep puncture wounds that inoculate oral flora into poorly oxygenated tissues. While Pasteurella multocida is the most commonly implicated organism, environmental and atypical pathogens may also play a role, yet often go unrecognized. This article reports a rare case of polymicrobial septic arthritis caused by a domestic cat bite in an immunocompetent adult, with isolation of Rahnella aquatilis, a freshwater-associated Enterobacterales species not previously reported in this context. A 33-year-old immunocompetent male presented with acute hand swelling, pain, and functional impairment within 24 h of the bite. Emergency surgery revealed purulent tenosynovitis and arthritis. Intraoperative cultures identified R. aquatilis, P. multocida, and Pantoea agglomerans. Identification was performed using MALDI-TOF MS. The R. aquatilis isolate was susceptible to beta-lactams (excluding ampicillin), quinolones, and co-trimoxazole. The patient received amoxicillin–clavulanic acid and fully recovered within two weeks. This is the first reported case of joint infection involving R. aquatilis following a cat bite. It highlights the importance of considering environmental Enterobacterales in animal bite wounds, and the utility of advanced microbiological tools for detecting uncommon pathogens. Broader awareness may improve diagnosis and guide targeted therapy in polymicrobial infections. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Genomic Analysis of Antibiotic Resistance and Virulence Profiles in Escherichia coli Linked to Sternal Bursitis in Chickens: A One Health Perspective
by Jessica Ribeiro, Vanessa Silva, Catarina Freitas, Pedro Pinto, Madalena Vieira-Pinto, Rita Batista, Alexandra Nunes, João Paulo Gomes, José Eduardo Pereira, Gilberto Igrejas, Lillian Barros, Sandrina A. Heleno, Filipa S. Reis and Patrícia Poeta
Vet. Sci. 2025, 12(7), 675; https://doi.org/10.3390/vetsci12070675 - 17 Jul 2025
Viewed by 395
Abstract
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic [...] Read more.
Sternal bursitis is an underexplored lesion in poultry, often overlooked in microbiological diagnostics. In this study, we characterized 36 Escherichia coli isolates recovered from sternal bursitis in broiler chickens, combining phenotypic antimicrobial susceptibility testing, PCR-based screening, and whole genome sequencing (WGS). The genetic analysis revealed a diverse population spanning 15 sequence types, including ST155, ST201, and ST58. Resistance to tetracycline and ciprofloxacin was common, and several isolates carried genes encoding β-lactamases, including blaTEM-1B. Chromosomal mutations associated with quinolone and fosfomycin resistance (e.g., gyrA p.S83L, glpT_E448K) were also identified. WGS revealed a high number of virulence-associated genes per isolate (58–96), notably those linked to adhesion (fim, ecp clusters), secretion systems (T6SS), and iron acquisition (ent, fep, fes), suggesting strong pathogenic potential. Many isolates harbored virulence markers typical of ExPEC/APEC, such as iss, ompT, and traT, even in the absence of multidrug resistance. Our findings suggest that E. coli from sternal bursitis may act as reservoirs of resistance and virulence traits relevant to animal and public health. This highlights the need for including such lesions in genomic surveillance programs and reinforces the importance of integrated One Health approaches. Full article
Show Figures

Graphical abstract

34 pages, 2170 KiB  
Article
In Silico Evaluation of Quinolone–Triazole and Conazole–Triazole Hybrids as Promising Antimicrobial and Anticancer Agents
by Humaera Noor Suha, Mansour H. Almatarneh, Raymond A. Poirier and Kabir M. Uddin
Int. J. Mol. Sci. 2025, 26(14), 6752; https://doi.org/10.3390/ijms26146752 - 14 Jul 2025
Viewed by 302
Abstract
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that [...] Read more.
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that target resistant infections through unique mechanisms. This study used computational approaches to investigate twenty quinolone–triazole and conazole–triazole hybrid derivatives as antimicrobial and anticancer agents (120) with nine reference drugs. By studying their interactions with 6 bacterial DNA gyrase and 10 cancer-inducing target proteins (E. faecalis, M. tuberculosis, S. aureus, E. coli, M. smegmatis, P. aeruginosa and EGFR, MPO, VEGFR, CDK6, MMP1, Bcl-2, LSD1, HDAC6, Aromatase, ALOX15) and comparing them with established drugs such as ampicillin, cefatrizine, fluconazole, gemcitabine, itraconazole, ribavirin, rufinamide, streptomycin, and tazobactam, compounds 15 and 16 emerged as noteworthy antimicrobial and anticancer agents, respectively. In molecular dynamics simulations, compounds 15 and 16 had the strongest binding at −10.6 kcal mol−1 and −12.0 kcal mol−1 with the crucial 5CDQ and 2Z3Y proteins, respectively, exceeded drug-likeness criteria, and displayed extraordinary stability within the enzyme’s pocket over varied temperatures (300–320 K). In addition, we used density functional theory (DFT) to calculate dipole moments and molecular orbital characteristics and analyze the thermodynamic stability of putative antimicrobial and anticancer derivatives. This finding reveals a well-defined, possibly therapeutic relationship, supported by theoretical and future in vitro and in vivo studies. Compounds 15 and 16, thus, emerged as intriguing contenders in the fight against infectious diseases and cancer. Full article
(This article belongs to the Special Issue Peptide Self-Assembly)
Show Figures

Figure 1

12 pages, 366 KiB  
Article
Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study
by Ettore Cicinelli, Francesco Di Gennaro, Antonia Gesario, Daniela Iachetti Amati, Giacomo Guido, Luisa Frallonardo, Annalisa Saracino, Antonella Vimercati, Rossana Cicinelli, Pierpaolo Nicolì and Amerigo Vitagliano
J. Clin. Med. 2025, 14(14), 4873; https://doi.org/10.3390/jcm14144873 - 9 Jul 2025
Viewed by 387
Abstract
Objectives: In the context of the global rise in antimicrobial resistance (AMR), this study aimed to investigate temporal trends in AMR among pathogens isolated from endometrial cultures of patients diagnosed with chronic endometritis (CE). Methods: This cross-sectional study included 244 women consecutively diagnosed [...] Read more.
Objectives: In the context of the global rise in antimicrobial resistance (AMR), this study aimed to investigate temporal trends in AMR among pathogens isolated from endometrial cultures of patients diagnosed with chronic endometritis (CE). Methods: This cross-sectional study included 244 women consecutively diagnosed with CE at the Gynecology Unit of the University of Bari, Italy, between January 2020 and June 2024. Exclusion criteria were (i) previous CE diagnosis or treatment; (ii) antimicrobial use in the month prior to hysteroscopy and biopsy; (iii) use of oral or vaginal prebiotics/probiotics or contraceptives in the three months prior; (iv) known immunosuppression; and (v) hypersensitivity to quinolones or macrolides. CE was diagnosed using hysteroscopy combined with endometrial histology and microbial culture. Specifically, in cases with hysteroscopic signs suggestive of CE, endometrial biopsies were obtained using a Novak curette and processed for histological and immunohistochemical analyses, as well as for microbial identification and antimicrobial susceptibility testing in accordance with EUCAST guidelines. The primary outcomes were the prevalence of CE-associated pathogens and their AMR profiles. Results: The median age at CE diagnosis was 33 years (range 26–44). The most frequently isolated pathogens were Enterococcus faecalis (26.2%), Escherichia coli (19.3%), and Ureaplasma urealyticum (16.4%). High AMR rates were observed, with increasing trends over time. Ampicillin resistance reached 98.5% (63/64), penicillin resistance 30.8% (16/52), and extended-spectrum beta-lactamase (ESBL) positivity 34.7% (25/72), all with statistically significant trends (p < 0.001). Resistance to commonly used first-line antimicrobials, such as tetracyclines, quinolones, and nitroimidazoles, was also substantial. Conclusions: This study highlights a significant increase in AMRs among microorganisms responsible for CE between 2020 and 2024. As a result, empirical first-line antimicrobial therapies commonly used to treat patients with CE may be increasingly ineffective in a growing number of cases. This underscores the need for improved and targeted diagnostic and therapeutic strategies to effectively manage CE and prevent treatment failures. Strengthening surveillance systems, implementing antimicrobial stewardship programs, and enhancing patient education may help counter the growing threat of AMR. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

10 pages, 429 KiB  
Article
Clinical Outcomes of Escherichia coli Acute Bacterial Prostatitis: A Comparative Study of Oral Sequential Therapy with β-Lactam Versus Quinolone Antibiotics
by Laura Gisbert, Beatriz Dietl, Mariona Xercavins, Aina Mateu, María López, Ana Martínez-Urrea, Lucía Boix-Palop and Esther Calbo
Antibiotics 2025, 14(7), 681; https://doi.org/10.3390/antibiotics14070681 - 5 Jul 2025
Viewed by 495
Abstract
Background/Objectives: Optimal management of acute bacterial prostatitis (ABP) remains uncertain, but the use of antibiotics with good prostatic tissue penetration is critical to prevent recurrence and chronic progression. This study aimed to describe clinical characteristics and outcomes of ABP due to Escherichia coli [...] Read more.
Background/Objectives: Optimal management of acute bacterial prostatitis (ABP) remains uncertain, but the use of antibiotics with good prostatic tissue penetration is critical to prevent recurrence and chronic progression. This study aimed to describe clinical characteristics and outcomes of ABP due to Escherichia coli (ABP-E.coli), compare effectiveness of sequential high-dose cefuroxime (ABP-CXM) versus ciprofloxacin (ABP-CIP), and identify risk factors for clinical failure. Methods: We conducted a retrospective study including men >18 years diagnosed with ABP-E. coli between January 2010 and November 2023 at a 400-bed hospital. Patients received oral cefuroxime (500 mg/8 h) or oral ciprofloxacin (500 mg/12 h). Outcomes over 90 days included clinical cure, recurrence and reinfection. Definitions: Clinical cure—resolution of symptoms without recurrences; recurrence—new ABP episode with the same E. coli strain; reinfection—ABP involving different microorganism or E. coli strain; clinical failure—lack of cure, recurrence, or reinfection. Results: Among 326 episodes (158 ABP-CXM, 168 ABP-CIP), ABP-CXM patients were younger (median 63.5 vs. 67.5 years, p = 0.005) and had fewer comorbidities. Clinical cure was higher in ABP-CIP (96.9% vs. 85.7%, p < 0.001). Recurrence occurred only in ABP-CXM (6.96% vs. 0%, p < 0.001), while reinfection and mortality were similar. Multivariable analysis showed ciprofloxacin was protective against clinical failure (OR: 0.16, 95% CI: 0.06–0.42, p < 0.001), while prior urinary tract infection (UTI) increased failure risk (OR: 2.87, 95% CI: 1.3–6.3). Conclusions: Ciprofloxacin was more effective than cefuroxime in treating ABP-E. coli. Patients with recent UTIs may need closer monitoring or alternative therapies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
Anti-Inflammatory Secondary Metabolites from Penicillium sp. NX-S-6
by Hanyang Peng, Jiawen Sun, Rui Zhang, Yuxuan Qiu, Yu Hong, Fengjuan Zhou, Chang Wang, Yang Hu and Xiachang Wang
Mar. Drugs 2025, 23(7), 280; https://doi.org/10.3390/md23070280 - 4 Jul 2025
Viewed by 525
Abstract
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known [...] Read more.
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known natural products. The structures of new compounds were unambiguously elucidated by comprehensive spectroscopic analyses (NMR, MS), as well as electronic circular dichroism (ECD) calculation. Notably, quinosorbicillinol (1) was identified as a rare hybrid sorbicillinoid incorporating a quinolone moiety, representing a unique structural scaffold in this natural product class. Biological evaluation revealed that Compounds 1, 4 and 8 potently inhibited the production of nitric oxide and interleukin 6 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Mechanistic studies furthermore demonstrated that Compounds 4 and 8 effectively suppressed interleukin-1β secretion in LPS-induced immortalized mouse bone marrow-derived macrophages (iBMDMs) by blocking NLRP3 inflammasome activation. This inhibition was attributed to their ability to disrupt the assembly of the NLRP3-caspase-1 complex, a key event in the pathogenesis of inflammatory disorders. These findings not only expand the structural diversity of endophyte-derived natural products but also highlight their potential as lead compounds for developing anti-inflammatory therapeutics targeting the NLRP3 pathway. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Figure 1

12 pages, 374 KiB  
Article
Microbiological Profile and Resistance Patterns in Periprosthetic Joint Infections: A Regional Multicenter Study in Spain
by Lucia Henriquez, Ander Uribarri, Iñaki Beguiristain, Ignacio Sancho, Carmen Ezpeleta Baquedano and Maria Eugenia Portillo
Microbiol. Res. 2025, 16(7), 142; https://doi.org/10.3390/microbiolres16070142 - 1 Jul 2025
Viewed by 272
Abstract
Due to the significant number of microbiologically negative periprosthetic joint infections (PJIs), understanding the trend in etiology and resistance patterns is essential for the correct management of these infections. Currently, few studies have been published in Spain. In this study, we analyzed the [...] Read more.
Due to the significant number of microbiologically negative periprosthetic joint infections (PJIs), understanding the trend in etiology and resistance patterns is essential for the correct management of these infections. Currently, few studies have been published in Spain. In this study, we analyzed the incidence, clinical characteristics, etiology, and antibiotic resistance in patients with PJIs over the last 5 years in Navarra. In this multicentric and retrospective study, all patients diagnosed with PJIs in Navarra from 2019 to 2023 were included. Of the total 156 PJIs, 23% had negative cultures and 56% of these patients had been treated with antibiotics prior to sampling. Staphylococcus epidermidis with methicillin resistance was the predominant etiological agent, followed by Staphylococcus aureus and Cutibacterium acnes. Forty percent of the Gram-positive cocci (GPC) and 35% of the Gram-negative bacilli (GNB) were multidrug-resistant organisms (MDROs). Quinolone resistance was 46% for staphylococci and 18% for Gram-negatives. In addition, 9% of staphylococci were resistant to rifampicin. Antibiotic therapy administration prior to sampling is one of the main problems for microbiological diagnosis and is present more frequently in culture-negative PJIs (56%). New sequencing techniques could improve this difficulty. The high percentage of resistance in the microorganisms causing PJI leads us to reconsider the empirical treatment for suspected PJI, with the use of different therapeutic approaches depending on the time of infection and the possible use of new non-antibiotic therapies. Full article
Show Figures

Figure 1

32 pages, 2931 KiB  
Review
Phototoxicity of Quinolones and Fluoroquinolones: A Mechanistic Review About Photophysical and Photochemical Pathways
by Elisa Leyva, Silvia E. Loredo-Carrillo, Irving R. Rodríguez-Gutiérrez, Denisse de Loera, Gabriela Navarro-Tovar and Lluvia I. López
Photochem 2025, 5(3), 17; https://doi.org/10.3390/photochem5030017 - 1 Jul 2025
Viewed by 441
Abstract
Quinolones and fluoroquinolones are heterocyclic compounds with important antibacterial properties, and they have been extensively used in medicinal chemistry to treat diverse bacterial infections. However, their clinical applications have been limited by several factors. On one side, there is an increasing number of [...] Read more.
Quinolones and fluoroquinolones are heterocyclic compounds with important antibacterial properties, and they have been extensively used in medicinal chemistry to treat diverse bacterial infections. However, their clinical applications have been limited by several factors. On one side, there is an increasing number of resistant bacterial strains. On the other side, some of these heterocyclic compounds have shown several adverse effects such as photocarcinogenic cutaneous reactions, with the development of skin tumors. These adverse properties have motivated a large number of studies on the photophysical, photochemical and phototoxic properties of these compounds. In this review, several important chemical aspects about quinolones and fluoroquinolones are discussed. In the first sections, their basic structure is presented, along with some important physicochemical properties. In the next sections, their photochemical and photophysical processes are discussed. Upon photolysis in aqueous neutral conditions, these heterocyclic compounds generate several highly reactive intermediates that could initiate diverse reactions with molecules. In a biological environment, quinolones and fluoroquinolones are known to associate with biomolecules and generate complexes. Within these complexes, photophysical and photochemical processes generate intermediates, accelerating diverse reactions between biomolecules and these heterocyclic compounds. For several decades, diverse fluoroquinolones have been prepared for the treatment of a variety of bacterial infections. However, their prescription has been restricted due to the associated severe side effects. In the last decade, new derivatives have been developed and are already in use. Their introduction into actual practice extends the number of antibiotics and provides new options for difficult-to-treat infections. Thus, for new pharmaceutical compounds to be used in medicinal practice, it is important to investigate their biological activity, as well as other biological properties and adverse effects, such as phototoxicity. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Scheme 1

21 pages, 2764 KiB  
Article
First Report of Stenotrophomonas maltophilia from Canine Dermatological Infections: Unravelling Its Antimicrobial Resistance, Biofilm Formation, and Virulence Traits
by Ria Rajeev, Porteen Kannan, Sureshkannan Sundaram, Sandhya Bhavani Mohan, Sivachandiran Radjendirane, Chaudhary Jeetendrakumar Harnathbhai, Anbazhagan Subbaiyan, Viswanathan Naveenkumar, Nithya Quintoil Mohanadasse, Wilfred Ruban Savariraj, Charley A. Cull and Raghavendra G. Amachawadi
Antibiotics 2025, 14(7), 639; https://doi.org/10.3390/antibiotics14070639 - 23 Jun 2025
Viewed by 524
Abstract
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs [...] Read more.
Background/Objectives: The present study was aimed at documenting S. maltophilia occurrence in dogs with skin ailments, investigating its virulence, biofilm-forming ability, antimicrobial susceptibility, and zoonotic potential to inform preventive and therapeutic strategies against multidrug resistant S. maltophilia infections. Methods: Skin swabs (n = 300) were collected from dogs with dermatological ailments. Isolation was performed using selective media and confirmed with molecular methods, validated by MALDI Biotyper. Antimicrobial susceptibility testing and efflux activity assessment were conducted. Resistance genes related to sulfonamides, quinolones, and β-lactams were screened. Virulence was assessed by biofilm formation, motility, and virulence gene profiling. Results: In total, 15 S. maltophilia (5%) isolates were identified. All 15 isolates were susceptible to trimethoprim-sulfamethoxazole, enrofloxacin, gatifloxacin, levofloxacin, minocycline, and tigecycline, but resistant to cefpodoxime and aztreonam. The following resistance genes qnr (93.3%), blaOXA-48 (46.7%), blaKPC (33.3%), blaNDM (33.3%), blaCTX-M (20%), blaSHV (20%), and blaTEM (6.7%) were detected. All 15 isolates displayed high efflux activity. Overall, 9 isolates (60%) were strong biofilm producers, and 6 (40%) were moderate. Virulence genes such as virB, motA, rmlA, and fliC were present in all 15 isolates, with others varying in frequency. All isolates exhibited swimming motility. Heat map clustering showed diverse profiles, with no identical isolate patterns. Correlation analysis indicated positive associations between several antimicrobial resistance and virulence genes. Conclusions: This study underscores the zoonotic potential of S. maltophilia from dogs, advocating for a One Health approach to mitigate infection risks and limit the spread of virulent multidrug resistant pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Veterinary Settings)
Show Figures

Graphical abstract

16 pages, 1445 KiB  
Article
Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates
by Carina Paredes, Que Chi Truong-Bolduc, Yin Wang, David C. Hooper and Sandra Ramirez-Arcos
Antibiotics 2025, 14(7), 635; https://doi.org/10.3390/antibiotics14070635 - 21 Jun 2025
Viewed by 566
Abstract
Background/Objective: Platelet concentrates (PCs) are used in transfusion medicine to treat bleeding disorders. Staphylococcus aureus, a predominant PC contaminant, has been implicated in several adverse transfusion reactions. The aim of this study was to investigate the impact of PC storage on [...] Read more.
Background/Objective: Platelet concentrates (PCs) are used in transfusion medicine to treat bleeding disorders. Staphylococcus aureus, a predominant PC contaminant, has been implicated in several adverse transfusion reactions. The aim of this study was to investigate the impact of PC storage on S. aureus resistance to quinolones, which are commonly used to treat S. aureus infections. Methods/Results: Four transfusion-relevant S. aureus strains (TRSs) were subjected to comparative transcriptome analyses when grown in PCs vs. trypticase soy broth (TSB). Results of these analyses revealed differentially expressed genes involved in antibiotic resistance. Of interest, the norB gene (encodes for the NorB efflux pump, which is implicated in quinolone resistance and is negatively regulated by MgrA) was upregulated (1.2–4.7-fold increase) in all PC-grown TRS compared to TSB cultures. Minimal Bactericidal Concentration (MBC) of ciprofloxacin and norfloxacin in PC-grown TRS compared to TSB showed increased resistance to both quinolones in PC cultures. Complementary studies with non-transfusion-relevant strains S. aureus RN6390 and its norB and mgrA deletion mutants were conducted. MBC of ciprofloxacin and norfloxacin and RT-qPCR assays of these strains showed that not only norB, but also norA and norC may be involved in enhanced quinolone resistance in PC-grown S. aureus. The role of norB in S. aureus virulence was also tested using the silkworm Bombyx mori animal model; lethal dose 50 (LD50) assays revealed slightly higher virulence in larvae infected with the wild-type strain compared to the norB mutant. Conclusions: The PC storage environment enhances quinolone resistance in S. aureus and induces differential expression of efflux pump nor genes. Furthermore, our preliminary data of the involvement of NorB in virulence of S. aureus using a silkworm model merit further investigation with other systems such as a mammal animal model. Our results provide mechanistic insights to aid clinicians in the selection of antimicrobial treatment of patients receiving transfusions of S. aureus-contaminated PCs. Full article
Show Figures

Figure 1

Back to TopTop