Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
- S—Susceptible to standard dosing regimen, meaning there is a high likelihood of therapeutic success with standard dosing.
- I—Susceptible to increased exposure, meaning there is a high likelihood of therapeutic success with adjusted dosing or higher local concentration.
- R—Resistant: high likelihood of therapeutic failure.
Statistical Analysis
3. Results
3.1. Resistance Trends by Antimicrobial Class
- Tetracyclines: A substantial proportion of isolates (75.8%, 185 out of 244) were resistant to tetracyclines. This high level of resistance was consistently observed throughout the study period, peaking at 97.4% in both 2023 and the first half of 2024. Resistance rates were lower in 2020 and 2021, at 64.3% and 66.3%, respectively.
- Quinolones: Resistance to quinolones was also common, affecting 68.4% of isolates (167 out of 244). The highest rates were reported in 2023 (97.4%) and in the first half of 2024 (95.7%). Earlier years showed slightly lower resistance levels, with 52.4% in 2020 and 55.8% in 2021.
- Nitroimidazoles: Resistance to nitroimidazoles (metronidazole) was found in 39.3% of patients (96 out of 244). The highest resistance rates occurred in 2023 (60.5%) and the first half of 2024 (56.5%). In comparison, resistance was significantly lower in 2020 (21.4%) and 2021 (33.7%).
- Lincosamides: Resistance to lincosamides (clindamycin) was observed in 50.4% of isolates (123 out of 244). The highest values were again recorded in 2023 (60.5%) and early 2024 (56.5%). Resistance was 42.9% in 2020 and slightly increased to 45.3% in 2021.
- Macrolides: Macrolide resistance (clarithromycin) remained low across the entire cohort, detected in only 2.9% of isolates (7 out of 244), with no significant variation over the years.
3.2. Resistance Trends by Year
- In 2020, resistance rates were as follows: tetracyclines 64.3%, quinolones 52.4%, nitroimidazoles 21.4%, lincosamides 42.9%, and macrolides 4.8%.
- In 2021, resistance to tetracyclines was 66.3%, to quinolones 55.8%, to nitroimidazoles 33.7%, to lincosamides 45.3%, and to macrolides 3.2%.
- In 2022, resistance levels increased across most classes: tetracyclines 78.3%, quinolones 71.7%, nitroimidazoles 41.3%, lincosamides 56.5%, and macrolides 4.3%.
- In 2023, resistance peaked for several classes, with rates of 97.4% for both tetracyclines and quinolones, 60.5% for nitroimidazoles, 60.5% for lincosamides, and 0% for macrolides.
- In the first half of 2024, resistance remained high at 95.7% for tetracyclines and quinolones, 56.5% for nitroimidazoles, 56.5% for lincosamides, and 0% for macrolides.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno, I.; Cicinelli, E.; Garcia-Grau, I.; Gonzalez-Monfort, M.; Bau, D.; Vilella, F.; De Ziegler, D.; Resta, L.; Valbuena, D.; Simon, C. The diagnosis of chronic endometritis in infertile asymptomatic women: A comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am. J. Obstet. Gynecol. 2018, 218, 602.e1–602.e16. [Google Scholar]
- Cicinelli, E.; De Ziegler, D.; Nicoletti, R.; Colafiglio, G.; Saliani, N.; Resta, L.; Rizzi, D.; De Vito, D. Chronic endometritis: Correlation among hysteroscopic, histologic, and bacteriologic findings in a prospective trial with 2190 consecutive office hysteroscopies. Fertil. Steril. 2008, 89, 677–684. [Google Scholar]
- Kitaya, K.; Matsubayashi, H.; Takaya, Y.; Nishiyama, R.; Yamaguchi, K.; Takeuchi, T.; Ishikawa, T. Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am. J. Reprod. Immunol. 2017, 78, 12719. [Google Scholar]
- Vitagliano, A.; Laganà, A.S.; De Ziegler, D.; Cicinelli, R.; Santarsiero, C.M.; Buzzaccarini, G.; Chiantera, V.; Cicinelli, E.; Marinaccio, M. Chronic Endometritis in Infertile Women: Impact of Untreated Disease, Plasma Cell Count and Antibiotic Therapy on IVF Outcome-A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2250. [Google Scholar]
- Cicinelli, E.; Matteo, M.; Trojano, G.; Mitola, P.C.; Tinelli, R.; Vitagliano, A.; Crupano, F.M.; Lepera, A.; Miragliotta, G.; Resta, L. Chronic endometritis in patients with unexplained infertility: Prevalence and effects of antibiotic treatment on spontaneous conception. Am. J. Reprod. Immunol. 2018, 79, e12782. [Google Scholar]
- Cicinelli, E.; Nicolì, P.; Vimercati, A.; Cicinelli, R.; Marinaccio, M.; Matteo, M.; de Ziegler, D.; Vitagliano, A. High prevalence of chronic endometritis in women with nonstructural abnormal uterine bleeding and benefits of antimicrobial treatment on blood loss pattern: A prospective, observational study. Int. J. Gynecol. Obstet. 2025. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, E.; Haimovich, S.; De Ziegler, D.; Raz, N.; Ben-Tzur, D.; Andrisani, A.; Ambrosini, G.; Picardi, N.; Cataldo, V.; Balzani, M.; et al. MUM-1 immunohistochemistry has high accuracy and reliability in the diagnosis of chronic endometritis: A multi-centre comparative study with CD-138 immunostaining. J. Assist. Reprod. Genet. 2022, 39, 219–226. [Google Scholar] [PubMed]
- Kasius, J.C.; Broekmans, F.J.; Sie-Go, D.M.; Bourgain, C.; Eijkemans, M.J.; Fauser, B.C.; Devroey, P.; Fatemi, H.M. The reliability of the histological diagnosis of endometritis in asymptomatic IVF cases: A multicenter observer study. Hum. Reprod. 2012, 27, 153–158. [Google Scholar]
- Santoro, A.; Travaglino, A.; Inzani, F.; Angelico, G.; Raffone, A.; Maruotti, G.M.; Straccia, P.; Arciuolo, D.; Castri, F.; D’Alessandris, N.; et al. The Role of Plasma Cells as a Marker of Chronic Endometritis: A Systematic Review and Meta-Analysis. Biomedicines 2023, 11, 1714. [Google Scholar] [CrossRef]
- Cicinelli, E.; Resta, L.; Nicoletti, R.; Zappimbulso, V.; Tartagni, M.; Saliani, N. Endometrial micropolyps at fluid hysteroscopy suggest the existence of chronic endometritis. Hum. Reprod. 2005, 20, 1386–1389. [Google Scholar]
- Cicinelli, E.; Vitagliano, A.; Kumar, A.; Lasmar, R.B.; Bettocchi, S.; Haimovich, S.; Kitaya, K.; de Ziegler, D.; Simon, C.; Moreno, I.; et al. Unified diagnostic criteria for chronic endometritis at fluid hysteroscopy: Proposal and reliability evaluation through an international randomized-controlled observer study. Fertil. Steril. 2019, 112, 162–173.e2. [Google Scholar] [PubMed]
- Cicinelli, E.; Resta, L.; Loizzi, V.; Pinto, V.; Santarsiero, C.; Cicinelli, R.; Greco, P.; Vitagliano, A. Antibiotic therapy versus no treatment for chronic endometritis: A case-control study. Fertil. Steril. 2021, 115, 1541–1548. [Google Scholar]
- Vitagliano, A.; Saccardi, C.; Noventa, M.; Di Spiezio Sardo, A.; Saccone, G.; Cicinelli, E.; Pizzi, S.; Andrisani, A.; Litta, P.S. Effects of chronic endometritis therapy on in vitro fertilization outcome in women with repeated implantation failure: A systematic review and meta-analysis. Fertil. Steril. 2018, 110, 103–112.e1. [Google Scholar]
- Bertagnolio, S.; Dobreva, Z.; Centner, C.M.; Olaru, I.D.; Donà, D.; Burzo, S.; Huttner, B.D.; Chaillon, A.; Gebreselassie, N.; Wi, T.; et al. WHO global research priorities for antimicrobial resistance in human health. Lancet Microbe 2024, 5, 100902. [Google Scholar]
- The, L. Antimicrobial resistance: An agenda for all. Lancet 2024, 403, 2349. [Google Scholar]
- Kitaya, K.; Tanaka, S.E.; Sakuraba, Y.; Ishikawa, T. Multi-drug-resistant chronic endometritis in infertile women with repeated implantation failure: Trend over the decade and pilot study for third-line oral antibiotic treatment. J. Assist. Reprod. Genet. 2022, 39, 1839–1848. [Google Scholar] [PubMed]
- Cicinelli, E.; Tinelli, R.; Lepera, A.; Pinto, V.; Fucci, M.; Resta, L. Correspondence between hysteroscopic and histologic findings in women with chronic endometritis. Acta Obstet. Gynecol. Scand. 2010, 89, 1061–1065. [Google Scholar] [PubMed]
- Ibaideya, M.A.; Taha, A.A.; Qadi, M. Phenotypic and molecular characterization of multidrug-resistant Enterobacterales isolated from clinical samples in Palestine: A focus on extended-spectrum β-lactamase- and carbapenemase-producing isolates. BMC Infect. Dis. 2024, 24, 812. [Google Scholar]
- Almohareb, S.N.; Aldairem, A.; Alsuhebany, N.; Alshaya, O.A.; Aljatli, D.; Alnemer, H.; Almutairi, K.; Aljammaz, N.; Alowais, S.A. Effectiveness of oral antibiotics in managing extended-spectrum B-lactamase urinary tract infections: A retrospective analysis. SAGE Open Med. 2024, 12, 20503121241259993. [Google Scholar]
- Langelier, C.; Chu, V.; Glascock, A.; Donnell, D.; Grabow, C.; Brown, C.; Ward, R.; Love, C.; Kalantar, K.; Cohen, S.; et al. Doxycycline post-exposure prophylaxis for sexually transmitted infections impacts the gut antimicrobial resistome. Res. Sq. 2024, rs.3.rs-4243341. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Narendrakumar, L.; Chandrika, S.K.; Thomas, S. Adaptive laboratory evolution of Vibrio cholerae to doxycycline associated with spontaneous mutation. Int. J. Antimicrob. Agents 2020, 56, 106097. [Google Scholar] [PubMed]
- Natsheh, I.Y.; Alsaleh, M.M.; Alkhawaldeh, A.K.; Albadawi, D.K.; Darwish, M.M.; Shammout, M.J.A. The dark side of drug repurposing. From clinical trial challenges to antimicrobial resistance: Analysis based on three major fields. Drug Target Insights 2024, 18, 8–19. [Google Scholar]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [PubMed]
- Gergova, R.; Boyanov, V.; Muhtarova, A.; Alexandrova, A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics 2024, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; De Santis, S.; Rutigliano, M.; Sallustio, F.; Picerno, A.; Frassanito, M.A.; Schaefer, I.; Vacca, A.; Moschetta, A.; Seibel, P.; et al. Uridine and pyruvate protect T cells’ proliferative capacity from mitochondrial toxic antibiotics: A clinical pilot study. Sci. Rep. 2021, 11, 12841. [Google Scholar]
- Olivius, C.; Friden, B.; Borg, G.; Bergh, C. Why do couples discontinue in vitro fertilization treatment? A cohort study. Fertil. Steril. 2004, 81, 258–261. [Google Scholar]
- Di Gennaro, F.; Guido, G.; Frallonardo, L.; Pennazzi, L.; Bevilacqua, M.; Locantore, P.; Vitagliano, A.; Saracino, A.; Cicinelli, E. Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion. Microorganisms 2025, 13, 197. [Google Scholar] [CrossRef]
- De Kock, L.J. The importance of antimicrobial stewardship: An undergraduate perspective. S. Afr. J. Infect. Dis. 2024, 39, 598. [Google Scholar]
- Effah, C.Y.; Amoah, A.N.; Liu, H.; Agboyibor, C.; Miao, L.; Wang, J.; Wu, Y. A population-base survey on knowledge, attitude and awareness of the general public on antibiotic use and resistance. Antimicrob. Resist. Infect. Control 2020, 9, 105. [Google Scholar]
Germ Isolated | Total (N = 244) | 2020 (N = 42) | 2021 (N = 95) | 2022 (N = 46) | 2023 (N = 38) | 2024 * (N = 23) |
---|---|---|---|---|---|---|
Candida albicans | 3 (1.2%) | 1 (2.4%) | 1 (1.1%) | 1 (2.2%) | 0 (0%) | 0 (0%) |
Candida glabrata | 1 (0.4%) | 0 (0%) | 1 (1.1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Candida krusei | 1 (0.4%) | 0 (0%) | 1 (1.1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Candida Krusei | 1 (0.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (2.6%) | 0 (0%) |
Candida parapsilosis | 3 (1.2%) | 1 (2.4%) | 1 (1.1%) | 0 (0%) | 0 (0%) | 1 (4.3%) |
Enterococcus faecalis | 64 (26.2%) | 7 (16.7%) | 25 (26.3%) | 15 (32.6%) | 10 (26.3%) | 7 (30.4%) |
Escherichia coli | 47 (19.3%) | 6 (14.3%) | 18 (18.9%) | 9 (19.6%) | 7 (18.4%) | 7 (30.4%) |
Klebsiella pnuemoniae | 24 (9.8%) | 5 (11.9%) | 8 (8.4%) | 2 (4.3%) | 7 (18.4%) | 2 (8.7%) |
Mycoplasma hominis | 4 (1.6%) | 1 (2.4%) | 2 (2.1%) | 1 (2.2%) | 0 (0%) | 0 (0%) |
Proteus mirabilis | 1 (0.4%) | 0 (0%) | 1 (1.1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Staphylococcus saprophyticus | 1 (0.4%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (2.6%) | 0 (0%) |
Staphylococcus aureus | 2 (0.8%) | 0 (0%) | 1 (1.1%) | 1 (2.2%) | 0 (0%) | 0 (0%) |
Staphylococcus haemolyticus | 1 (0.4%) | 0 (0%) | 1 (1.1%) | 0 (0%) | 0 (0%) | 0 (0%) |
Streptococcus agalactieae (Group B Streptococcus) | 34 (13.9%) | 7 (16.7%) | 10 (10.5%) | 7 (15.2%) | 6 (15.8%) | 4 (17.4%) |
Streptococcus bovis | 17 (7.0%) | 2 (4.8%) | 7 (7.4%) | 0 (0%) | 6 (15.8%) | 2 (8.7%) |
Ureaplasma urealiticum | 40 (16.4%) | 12 (28.6%) | 18 (18.9%) | 10 (21.7%) | 0 (0%) | 0 (0%) |
Years of Diagnosis | Total (N = 65) | Amp-S (N = 1) | Amp-R (N = 64) | p-Value |
---|---|---|---|---|
2020 | 7 (10.8%) | 0 (0%) | 7 (100%) | 0.517 |
2021 | 26 (40.0%) | 1 (3.8%) | 25 (96.2%) | |
2022 | 15 (23.1%) | 0 (0%) | 15 (100%) | |
2023 | 10 (15.4%) | 0 (0%) | 10 (100%) | |
2024 * | 7 (10.8%) | 0 (0%) | 7 (100%) |
Years of Diagnosis | Total (N = 72) | ESBL− (N = 47) | ESBL+ (N = 25) | p-Value |
---|---|---|---|---|
2020 | 11 (15.3%) | 11 (100%) | 0 (0%) | <0.001 |
2021 | 27 (37.5%) | 24 (88.9%) | 3 (11.1%) | |
2022 | 11 (15.3%) | 10 (90.9%) | 1 (9.1%) | |
2023 | 14 (19.4%) | 2 (14.3%) | 12 (85.7%) | |
2024 * | 9 (12.5%) | 0 (0%) | 9 (100%) |
Years of Diagnosis | Total (N = 52) | Pen-S (N = 36) | Pen-R (N = 16) | p-Value |
---|---|---|---|---|
2020 | 9 (17.3%) | 9 (100%) | 0 (0%) | <0.001 |
2021 | 17 (32.7%) | 15 (88.2%) | 2 (11.8%) | |
2022 | 7 (13.5%) | 7 (100%) | 0 (0%) | |
2023 | 13 (25.0%) | 4 (30.8%) | 9 (69.2%) | |
2024 * | 6 (11.5%) | 1 (16.7%) | 5 (83.3%) |
Years of Diagnosis | Total (N = 9) | Fluco-S (N = 4) | Fluco-R (N = 5) | p-Value |
---|---|---|---|---|
2020 | 2 (22.2%) | 0 (0%) | 2 (100%) | 0.264 |
2021 | 4 (44.4%) | 2 (50.0%) | 2 (50.0%) | |
2022 | 1 (11.1%) | 1 (100%) | 0 (0%) | |
2023 | 1 (11.1%) | 0 (0%) | 1 (100%) | |
2024 * | 1 (11.1%) | 1 (100%) | 0 (0%) |
Years of Diagnosis | Total (N = 44) | Ureaplasma Pan-S (N = 7) | Ureaplasma MONO-R (N = 17) | Ureaplasma MDR (N = 20) | p-Value |
---|---|---|---|---|---|
2020 | 13 (29.5%) | 2 (15.6%) | 6 (46.2%) | 5 (38.5%) | 0.317 |
2021 | 20 (45.5%) | 4 (20.0%) | 8 (40.0%) | 8 (40.0%) | |
2022 | 11 (25.0%) | 1 (9.1%) | 3 (27.3%) | 7 (63.6%) | |
2023 | 0 (0%) | - | - | - | |
2024 * | 0 (0%) | - | - | - |
Years of Diagnosis | Total (N = 244) | No Resistance Detected (N = 16) | At Least One Resistance Detected (N = 228) | p-Value |
---|---|---|---|---|
2020 | 42 (17.2%) | 2 (4.8%) | 40 (95.2%) | 0.218 |
2021 | 95 (38.9%) | 10 (10.5%) | 85 (89.5%) | |
2022 | 46 (18.9%) | 3 (6.5%) | 43 (93.5%) | |
2023 | 38 (15.6%) | 0 (0%) | 38 (100%) | |
2024 * | 23 (9.4%) | 1 (4.3%) | 22 (95.7%) |
Tetracycline Resistance | Quinolone Resistance | Nitroimidazole Resistance | Lincosamide Resistance | Macrolide Resistance | |
---|---|---|---|---|---|
Total (N = 244) | |||||
Yes | 185 (75.8%) | 167 (68.4%) | 96 (39.3%) | 123 (50.4%) | 7 (2.9%) |
No | 50 (20.5%) | 68 (27.9%) | 23 (9.4%) | 40 (16.4%) | 37 (15.2%) |
NA | 9 (3.7%) | 9 (3.7%) | 125 (51.2%) | 81 (33.2%) | 200 (82.0%) |
2020 (N = 42) | |||||
Yes | 27 (64.3%) | 22 (52.4%) | 9 (21.4%) | 18 (42.9%) | 2 (4.8%) |
No | 13 (31.0%) | 18 (42.9%) | 7 (16.7%) | 11 (26.2%) | 11 (26.2%) |
NA | 2 (4.8%) | 2 (4.8%) | 26 (61.9%) | 13 (31.0%) | 29 (69.0%) |
2021 (N = 95) | |||||
Yes | 63 (66.3%) | 53 (55.8%) | 32 (33.7%) | 43 (45.3%) | 3 (3.2%) |
No | 28 (29.5%) | 38 (40.0%) | 12 (12.6%) | 21 (22.1%) | 17 (17.9% |
NA | 4 (4.2%) | 4 (4.2%) | 51 (53.7%) | 31 (32.6%) | 75 (78.9%) |
2022 (N = 46) | |||||
Yes | 36 (78.3%) | 33 (71.7%) | 19 (41.3%) | 26 (56.5%) | 2 (4.3%) |
No | 9 (19.6%) | 12 (26.1%) | 4 (8.7%) | 8 (17.4%) | 9 (19.6%) |
NA | 1 (2.2%) | 1 (2.2%) | 23 (50.0%) | 12 (26.1%) | 35 (76.1%) |
2023 (N = 38) | |||||
Yes | 37 (97.4%) | 37 (97.4%) | 23 (60.5%) | 23 (60.5%) | 0 (0%) |
No | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
NA | 1 (2.6%) | 1 (2.6%) | 15 (39.5%) | 15 (39.5%) | 38 (100%) |
2024 * (N = 23) | |||||
Yes | 22 (95.7%) | 22 (95.7%) | 13 (56.5%) | 13 (56.5%) | 0 (0%) |
No | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
NA | 1 (4.3%) | 1 (4.3%) | 10 (43.5%) | 10 (43.5%) | 23 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicinelli, E.; Di Gennaro, F.; Gesario, A.; Iachetti Amati, D.; Guido, G.; Frallonardo, L.; Saracino, A.; Vimercati, A.; Cicinelli, R.; Nicolì, P.; et al. Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study. J. Clin. Med. 2025, 14, 4873. https://doi.org/10.3390/jcm14144873
Cicinelli E, Di Gennaro F, Gesario A, Iachetti Amati D, Guido G, Frallonardo L, Saracino A, Vimercati A, Cicinelli R, Nicolì P, et al. Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study. Journal of Clinical Medicine. 2025; 14(14):4873. https://doi.org/10.3390/jcm14144873
Chicago/Turabian StyleCicinelli, Ettore, Francesco Di Gennaro, Antonia Gesario, Daniela Iachetti Amati, Giacomo Guido, Luisa Frallonardo, Annalisa Saracino, Antonella Vimercati, Rossana Cicinelli, Pierpaolo Nicolì, and et al. 2025. "Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study" Journal of Clinical Medicine 14, no. 14: 4873. https://doi.org/10.3390/jcm14144873
APA StyleCicinelli, E., Di Gennaro, F., Gesario, A., Iachetti Amati, D., Guido, G., Frallonardo, L., Saracino, A., Vimercati, A., Cicinelli, R., Nicolì, P., & Vitagliano, A. (2025). Increasing Antimicrobial Resistance to First-Line Therapies in Chronic Endometritis: A 2020–2024 Cross-Sectional Study. Journal of Clinical Medicine, 14(14), 4873. https://doi.org/10.3390/jcm14144873