Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates
Abstract
:1. Introduction
2. Results
2.1. The PC Storage Milieu Triggers Upregulation of the norA, norB, and norC Efflux Pumps in a Strain-Dependent Manner
2.2. S. aureus Grown in PCs Displays Heightened Resistance to Quinolones
2.3. NorB Is Involved in Virulence of S. aureus in a Silkworm Model
3. Discussion
Recommendations for Further Investigation
- Downregulation of norA and norC in the mgrA mutant strain could be due to the action of other regulators which could be investigated by performing gene expression studies in mgrA mutant strains compared to their parental wild-type counterparts.
- We discussed that our MBC data depend on the expression of efflux pump nor genes in different bacterial backgrounds and potentially the phosphorylation status of the global regulator MgrA. Investigating changes in phosphorylation of MgrA when S. aureus is grown in PCs and consequent expression of nor genes will provide new insight to advance the interpretation of our data.
- Our virulence experiments were conducted in S. aureus RN6390, which has a negative sigB phenotype due to a mutation in rsbU. Therefore, it would be interesting to create a norB mutant in a strain with rsbU+ background and study the role of norB in virulence with a functional SigB regulon.
- We showed that the silkworm model was an appropriate tool to obtain preliminary data on the role of norB in virulence. However, these results could be complemented with assays that reflect human immune response such as experiments using human cell lines or mammalian animal models.
- Our hypothesis of the role on NorB in exporting antimicrobial peptides from cells of infected silkworm larvae could be tested by performing in vitro experiments to test resistance to antimicrobial peptides produced by silkworms using S. aureus with different genetic backgrounds.
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Growth Conditions
4.2. Pooled Platelet Concentrates
4.3. Comparative Genomic Analyses
4.4. Transcriptome Analyses (PCs vs. TSB) and Selection of Differentially Expressed Genes (DEGs)
4.5. Quantitative Reverse Transcription PCR (RT-qPCR)
4.6. Construction of a S. aureus RN6390 norB Deletion Mutant
4.7. Antibiotic Resistance Assays
4.8. Bacterial Growth Curves
4.9. Silkworm Rearing
4.10. Determination of Lethal Dose 50 (LD50)
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meliciano, A.; Salvador, D.; Mendonça, P.; Louro, A.F.; Serra, M. Clinically Expired Platelet Concentrates as a Source of Extracellular Vesicles for Targeted Anti-Cancer Drug Delivery. Pharmaceutics 2023, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Arcos, S.; Goldman, M. Bacterial Contamination. In Practical Transfusion Medicine; Murphy, M.F., Roberts, D.J., Yazer, M.H., Dunbar, N.M., Eds.; Wiley: Hoboken, NJ, USA, 2022; pp. 221–228. ISBN 978-1-119-66581-6. [Google Scholar]
- Ramirez-Arcos, S.; Evans, S.; McIntyre, T.; Pang, C.; Yi, Q.; DiFranco, C.; Goldman, M. Extension of Platelet Shelf Life with an Improved Bacterial Testing Algorithm. Transfusion 2020, 60, 2918–2928. [Google Scholar] [CrossRef] [PubMed]
- Brailsford, S.R.; Tossell, J.; Morrison, R.; McDonald, C.P.; Pitt, T.L. Failure of Bacterial Screening to Detect Staphylococcus Aureus: The English Experience of Donor Follow-up. Vox Sang. 2018, 113, 540–546. [Google Scholar] [CrossRef]
- Chi, S.I.; Kumaran, D.; Zeller, M.P.; Ramirez-Arcos, S. Transfusion of a Platelet Pool Contaminated with Exotoxin-Producing Staphylococcus aureus: A Case Report. Ann. Blood 2022, 7, 43. [Google Scholar] [CrossRef]
- Yousuf, B.; Pasha, R.; Pineault, N.; Ramirez-Arcos, S. Modulation of Staphylococcus aureus Gene Expression during Proliferation in Platelet Concentrates with Focus on Virulence and Platelet Functionality. PLoS ONE 2024, 19, e0307920. [Google Scholar] [CrossRef]
- Loza-Correa, M.; Yousuf, B.; Ramirez-Arcos, S. Staphylococcus epidermidis Undergoes Global Changes in Gene Expression during Biofilm Maturation in Platelet Concentrates. Transfusion 2021, 61, 2146–2158. [Google Scholar] [CrossRef]
- Hodgson, S.D.; Greco-Stewart, V.; Jimenez, C.S.; Sifri, C.D.; Brassinga, A.K.C.; Ramirez-Arcos, S. Enhanced Pathogenicity of Biofilm-negative Staphylococcus epidermidis Isolated from Platelet Preparations. Transfusion 2014, 54, 461–470. [Google Scholar] [CrossRef]
- Chi, S.I.; Ramirez-Arcos, S. Platelet Concentrates Safety: A Focus on the Challenging Pathogen Staphylococcus aureus—A Narrative Review. Ann. Blood 2025, 10, 5. [Google Scholar] [CrossRef]
- Kwiecinski, J.M.; Horswill, A.R. Staphylococcus aureus Bloodstream Infections: Pathogenesis and Regulatory Mechanisms. Curr. Opin. Microbiol. 2020, 53, 51–60. [Google Scholar] [CrossRef]
- Costa, S.S.; Viveiros, M.; Amaral, L.; Couto, I. Multidrug Efflux Pumps in Staphylococcus aureus: An Update. Open Microbiol. J. 2013, 7, 59–71. [Google Scholar] [CrossRef]
- Brdová, D.; Ruml, T.; Viktorová, J. Mechanism of Staphylococcal Resistance to Clinically Relevant Antibiotics. Drug Resist. Updates 2024, 77, 101147. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, L.; Pepin, J.; Toulouse, K.; Ouellette, M.-F.; Coulombe, M.-A.; Corriveau, M.-P.; Alary, M.-E. Fluoroquinolones and Risk for Methicillin-Resistant Staphylococcus aureus, Canada. Emerg. Infect. Dis. 2006, 12, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.; Salam, F.; Lekshmi, M.; Kumar, S.H.; Varela, M.F. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics 2023, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Truong-Bolduc, Q.C.; Dunman, P.M.; Eidem, T.; Hooper, D.C. Transcriptional Profiling Analysis of the Global Regulator NorG, a GntR-like Protein of Staphylococcus aureus. J. Bacteriol. 2011, 193, 6207–6214. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Hooper, D.C. Phosphorylation of MgrA and Its Effect on Expression of the NorA and NorB Efflux Pumps of Staphylococcus aureus. J. Bacteriol. 2010, 192, 2525–2534. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Hooper, D.C. The Transcriptional Regulators NorG and MgrA Modulate Resistance to Both Quinolones and β-Lactams in Staphylococcus aureus. J. Bacteriol. 2007, 189, 2996–3005. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Dunman, P.M.; Strahilevitz, J.; Projan, S.J.; Hooper, D.C. MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus. J. Bacteriol. 2005, 187, 2395–2405. [Google Scholar] [CrossRef]
- Giachino, P.; Engelmann, S.; Bischoff, M. ςB Activity Depends on RsbU in Staphylococcus aureus. J. Bacteriol. 2001, 183, 1843–1852. [Google Scholar] [CrossRef]
- Pané-Farré, J.; Jonas, B.; Hardwick, S.W.; Gronau, K.; Lewis, R.J.; Hecker, M.; Engelmann, S. Role of RsbU in Controlling SigB Activity in Staphylococcus aureus Following Alkaline Stress. J. Bacteriol. 2009, 191, 2561–2573. [Google Scholar] [CrossRef]
- Sifri, C.D.; Begun, J.; Ausubel, F.M.; Calderwood, S.B. Caenorhabditis elegans as a Model Host for Staphylococcus aureus Pathogenesis. Infect. Immun. 2003, 71, 2208–2217. [Google Scholar] [CrossRef]
- Irazoqui, J.E.; Troemel, E.R.; Feinbaum, R.L.; Luhachack, L.G.; Cezairliyan, B.O.; Ausubel, F.M. Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010, 6, e1000982. [Google Scholar] [CrossRef] [PubMed]
- Ségalat, L. Invertebrate Animal Models of Diseases as Screening Tools in Drug Discovery. ACS Chem. Biol. 2007, 2, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Reddy, H.A.; Srinivasulu, C.; Venkatappa, B. A Critical Assessment of Bombyx mori Haemolymph Extract on Staphylococcus aureus an In Vitro and In Silico Approach. J. Proteom. Bioinform. 2016, 9, 226–231. [Google Scholar] [CrossRef]
- Kumaran, D. Assessing the Impact of Collection, Production, and Storage of Platelet Concentrates on Bacterial Contamination and Product Safety. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, 2024. Available online: https://ruor.uottawa.ca/server/api/core/bitstreams/8c06e3dd-af9c-42ad-a866-a72918cb941f/content (accessed on 20 June 2025).
- Yousuf, B.; Flint, A.; Weedmark, K.; Pagotto, F.; Ramirez-Arcos, S. Genome Sequence of Staphylococcus aureus Strain CBS2016-05, Isolated from Contaminated Platelet Concentrates in Canada. Microbiol. Resour. Announc. 2021, 10, e00288-21. [Google Scholar] [CrossRef]
- Paredes, C.; Chi, S.I.; Flint, A.; Weedmark, K.; McDonald, C.; Bearne, J.; Ramirez-Arcos, S.; Pagotto, F. Complete Genome Sequence of Staphylococcus aureus CI/BAC/25/13/W, Isolated from Contaminated Platelet Concentrates in England. Microbiol. Resour. Announc. 2021, 10, e00840-21. [Google Scholar] [CrossRef]
- Paredes, C.; Chi, S.I.; Flint, A.; Weedmark, K.; McDonald, C.; Bearne, J.; Ramirez-Arcos, S.; Pagotto, F. Complete Genome Sequence of Staphylococcus aureus PS/BAC/169/17/W, Isolated from a Contaminated Platelet Concentrate in England. Microbiol. Resour. Announc. 2021, 10, e00841-21. [Google Scholar] [CrossRef]
- Yousuf, B.; Flint, A.; Weedmark, K.; McDonald, C.; Bearne, J.; Pagotto, F.; Ramirez-Arcos, S. Genome Sequence of Staphylococcus aureus Strain PS/BAC/317/16/W, Isolated from Contaminated Platelet Concentrates in England. Microbiol. Resour. Announc. 2021, 10, e00577-21. [Google Scholar] [CrossRef]
- Garrett, S.R.; Mariano, G.; Palmer, T. Genomic Analysis of the Progenitor Strains of Staphylococcus aureus RN6390. Access Microbiol. 2022, 4, acmi000464.v3. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Zhang, X.; Hooper, D.C. Characterization of NorR Protein, a Multifunctional Regulator of norA Expression in Staphylococcus aureus. J. Bacteriol. 2003, 185, 3127–3138. [Google Scholar] [CrossRef]
- Wang, H.H. Unraveling Gene Regulation of MDR and ABC-Transporters in Bacteria. Bachelor’s Thesis, University of Groningen, Groningen, The Netherlands, 2012. Available online: https://fse.studenttheses.ub.rug.nl/10095/1/LST_Bc_2012_HWang.pdf (accessed on 20 June 2025).
- Li, X.-Z.; Nikaido, H. Efflux-Mediated Drug Resistance in Bacteria: An Update. Drugs 2009, 69, 1555–1623. [Google Scholar] [CrossRef]
- Ding, Y.; Onodera, Y.; Lee, J.C.; Hooper, D.C. NorB, an Efflux Pump in Staphylococcus aureus Strain MW2, Contributes to Bacterial Fitness in Abscesses. J. Bacteriol. 2008, 190, 7123–7129. [Google Scholar] [CrossRef] [PubMed]
- Government of Canada, C.C. for O.H. and S. CCOHS. What Is a LD50 and LC50? Available online: https://www.ccohs.ca/oshanswers/chemicals/ld50.html (accessed on 2 April 2025).
- Neidig, A.; Strempel, N.; Waeber, N.B.; Nizer, W.S.d.C.; Overhage, J. Knock-out of Multidrug Efflux Pump MexXY-OprM Results in Increased Susceptibility to Antimicrobial Peptides in Pseudomonas aeruginosa. Microbiol. Immunol. 2023, 67, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Trochanowska-Pauk, N.; Walski, T.; Bohara, R.; Mikolas, J.; Kubica, K. Platelet Storage—Problems, Improvements, and New Perspectives. Int. J. Mol. Sci. 2024, 25, 7779. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Su, Y.; Guo, W.; Ma, X.; Qiao, R. The Platelet Storage Lesion, What Are We Working For? Clin. Lab. Anal. 2024, 38, e24994. [Google Scholar] [CrossRef]
- Chi, S.I.; Yousuf, B.; Paredes, C.; Bearne, J.; McDonald, C.; Ramirez-Arcos, S. Proof of Concept for Detection of Staphylococcal Enterotoxins in Platelet Concentrates as a Novel Safety Mitigation Strategy. Vox Sang. 2023, 118, 543–550. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Strahilevitz, J.; Hooper, D.C. NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 1104–1107. [Google Scholar] [CrossRef]
- Yu, X.H.; Hao, Z.H.; Liu, P.L.; Liu, M.M.; Zhao, L.L.; Zhao, X. Increased Expression of Efflux Pump norA Drives the Rapid Evolutionary Trajectory from Tolerance to Resistance against Ciprofloxacin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2022, 66, e00594-22. [Google Scholar] [CrossRef]
- Hamady, A.B.; Abd El-Fadeal, N.M.; Imbaby, S.; Nassar, H.M.; Sakr, M.G.; Marei, Y.E. Expression of norA, norB and norC Efflux Pump Genes Mediating Fluoroquinolones Resistance in MRSA Isolates. J. Infect. Dev. Ctries 2024, 18, 399–406. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Bolduc, G.R.; Okumura, R.; Celino, B.; Bevis, J.; Liao, C.-H.; Hooper, D.C. Implication of the NorB Efflux Pump in the Adaptation of Staphylococcus aureus to Growth at Acid pH and in Resistance to Moxifloxacin. Antimicrob. Agents Chemother. 2011, 55, 3214–3219. [Google Scholar] [CrossRef]
- Rollin, G.; Tan, X.; Tros, F.; Dupuis, M.; Nassif, X.; Charbit, A.; Coureuil, M. Intracellular Survival of Staphylococcus aureus in Endothelial Cells: A Matter of Growth or Persistence. Front. Microbiol. 2017, 8, 1354. [Google Scholar] [CrossRef]
- Kebaier, C.; Chamberland, R.R.; Allen, I.C.; Gao, X.; Broglie, P.M.; Hall, J.D.; Jania, C.; Doerschuk, C.M.; Tilley, S.L.; Duncan, J.A. Staphylococcus aureus α-Hemolysin Mediates Virulence in a Murine Model of Severe Pneumonia through Activation of the NLRP3 Inflammasome. J. Infect. Dis. 2012, 205, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.; Diep, B.A.; Mai, T.T.; Vo, N.H.; Warrener, P.; Suzich, J.; Stover, C.K.; Sellman, B.R. Differential Expression and Roles of Staphylococcus aureus Virulence Determinants during Colonization and Disease. mBio 2015, 6, e02272-14. [Google Scholar] [CrossRef] [PubMed]
- Truong-Bolduc, Q.C.; Wang, Y.; Hooper, D.C. Role of Staphylococcus aureus Tet38 in Transport of Tetracycline and Its Regulation in a Salt Stress Environment. J. Bacteriol. 2022, 204, e0014222. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100, Table 2C (58-67); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-066-9; ISBN 978-1-68440-067-6. [Google Scholar]
- Mah, T.-F. Establishing the Minimal Bactericidal Concentration of an Antimicrobial Agent for Planktonic Cells (MBC-P) and Biofilm Cells (MBC-B). J. Vis. Exp. 2014, 83, e50854. [Google Scholar] [CrossRef]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
Strains | Origin | Reference |
---|---|---|
Transfusion Relevant Strains (TRSs) | ||
CBS2016-05 | PCs (involved in a septic transfusion reaction, Canada) | [26] |
CI/BAC/25/13/W | PCs (involved in a near-miss case, UK) | [27] |
PS/BAC/169/17/W | PCs (detected during PC screening, UK) | [28] |
PS/BAC/317/16/W | PCs (detected during PC screening, UK) | [29] |
Laboratory Strains | ||
RN6390 | Wild type, descendent of NCTC8325-4 (rsbU mutant) | [30] |
RN6390ΔnorB | RN6390 (norB mutant, rsbU mutant) | This study |
RN6390ΔmgrA | RN6390 (mgrA mutant, rsbU mutant) | [31] |
Control Strain | ||
ATCC 29213 | American Type Culture Collection |
Strains | Ciprofloxacin (μg/mL) | Norfloxacin (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|
TSB | PCs | p Value (PCs vs. TSB) | TSB | PCs | p Value (PCs vs. TSB) | ||||
ATCC 29213 | 0.25–2 | 16–64 | <0.0001 | 1 | 2–128 | <0.0001 | |||
CBS2016-05 CI/BAC/25/13/W PS/BAC/169/17/W PS/BAC/317/16/W | 0.5–1 | 1–8 | 0.0478 | 1–2 | 4–8 | p > 0.05 | |||
0.5–2 | 2–8 | 0.0303 | 1–4 | 1–4 | p > 0.05 | ||||
1–8 | 8–32 | 0.0002 | 1–4 | 8–128 | 0.0571 | ||||
0.5–2 | 1–16 | 0.0571 | 1–2 | 1–16 | p > 0.05 | ||||
RN6390 RN6390ΔnorB RN6390ΔmgrA | 0.125–1 | 0.5–16 | <0.0001 | 1 | 1–16 | <0.0001 | |||
0.125–0.5 | 0.5–4 | <0.0001 | 0.5 | 1–8 | <0.0001 | ||||
0.5–1 | 2–16 | <0.0001 | 0.25–1 | 2–32 | <0.0001 | ||||
Comparison between (RN6390 “wild type” and deletion mutant isolates)—Mann–Whitney U test | |||||||||
Ciprofloxacin | p value | Norfloxacin | p value | ||||||
WT vs. ΔnorB (PCs) | 0.6501 | WT vs. ΔnorB (PCs) | 0.2720 | ||||||
WT vs. ΔmgrA (PCs) | 0.0002 | WT vs. ΔmgrA (PCs) | 0.0011 |
S. aureus Isolates | LD50 (Per Larvae) |
---|---|
RN6390 “wild type” (WT) | ~1.02 × 104 CFU (±1.01 × 104) |
RN6390ΔnorB | ~3.29 × 106 CFU (±2.04 × 106) |
RN6390ΔmgrA | ~2.85 × 105 CFU (±1.90 × 105) |
Comparison between strains | T-test with Welch’s correction (p value) |
WT vs. ΔnorB | 0.1518 |
WT vs. ΔmgrA | 0.1773 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes, C.; Truong-Bolduc, Q.C.; Wang, Y.; Hooper, D.C.; Ramirez-Arcos, S. Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates. Antibiotics 2025, 14, 635. https://doi.org/10.3390/antibiotics14070635
Paredes C, Truong-Bolduc QC, Wang Y, Hooper DC, Ramirez-Arcos S. Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates. Antibiotics. 2025; 14(7):635. https://doi.org/10.3390/antibiotics14070635
Chicago/Turabian StyleParedes, Carina, Que Chi Truong-Bolduc, Yin Wang, David C. Hooper, and Sandra Ramirez-Arcos. 2025. "Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates" Antibiotics 14, no. 7: 635. https://doi.org/10.3390/antibiotics14070635
APA StyleParedes, C., Truong-Bolduc, Q. C., Wang, Y., Hooper, D. C., & Ramirez-Arcos, S. (2025). Enhanced Quinolone Resistance and Differential Expression of Efflux Pump nor Genes in Staphylococcus aureus Grown in Platelet Concentrates. Antibiotics, 14(7), 635. https://doi.org/10.3390/antibiotics14070635