Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Qinghai–Xizang Plateau

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3822 KiB  
Article
Mechanisms of Tunnel Rockburst Development Under Complex Geostress Conditions in Plateau Regions
by Can Yang, Jinfeng Li, Yuan Qian, Wu Bo, Gen Zhang, Cheng Zhao and Kunming Zhao
Appl. Sci. 2025, 15(15), 8517; https://doi.org/10.3390/app15158517 (registering DOI) - 31 Jul 2025
Viewed by 135
Abstract
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of [...] Read more.
The Qinghai–Xizang Plateau and its surrounding regions have experienced intense tectonic activity, resulting in complex geostress environments that cause frequent and distinctive rockburst disasters in plateau tunnel engineering. In this study, numerical simulations were conducted to investigate the distribution characteristics and patterns of tunnel rockbursts in high-altitude regions, using geostress orientation, lateral pressure coefficient, and tunnel depth as the primary independent variables. Secondary development of FLAC3D 7.00.126 was carried out using FISH language to enable the recording and visualization of tangential stress, the Russense rockburst criterion, and elastic strain energy. Based on this, the influence mechanisms of these key geostress parameters on the location, extent, and intensity of rockbursts within tunnel cross sections were analyzed. Results indicate that geostress orientation predominantly affects the location of rockbursts, with the surrounding rock in the direction of the minimum principal stress on the tunnel cross section being particularly prone to rockburst risks. The lateral pressure coefficient primarily influences the rockburst intensity and pit range within local stress concentration zones, with higher values leading to greater rockburst intensity. Notably, when structural stress is sufficiently large, rockbursts may occur even in tunnels with shallow burial depths. Tunnel depth determines the magnitude of geostress, mainly affecting the overall risk and potential extent of rockbursts within the cross section, with greater depths leading to higher rockburst intensities and a wider affected area. Full article
Show Figures

Figure 1

14 pages, 4249 KiB  
Article
Increased Temporal Overlap in Diel Activity Patterns Potentially Intensifies Interspecific Competition Among Sympatric Large Carnivores in the Sanjiangyuan Region of China
by Dong Wang, Quanbang Li, Jingyu Gao, Xu Su and Xinming Lian
Animals 2025, 15(14), 2059; https://doi.org/10.3390/ani15142059 - 12 Jul 2025
Viewed by 272
Abstract
Activity patterns constitute a critical adaptive trait in large carnivores, enabling them to manage interspecific competition, enhance their foraging efficiency, and adapt to fluctuating environmental conditions. At the community level, elucidating the temporal activity allocation of sympatric large carnivores is essential for understanding [...] Read more.
Activity patterns constitute a critical adaptive trait in large carnivores, enabling them to manage interspecific competition, enhance their foraging efficiency, and adapt to fluctuating environmental conditions. At the community level, elucidating the temporal activity allocation of sympatric large carnivores is essential for understanding species coexistence mechanisms. However, the activity patterns of most large carnivores remain inadequately explored. In this study, spanning a survey period from June 2014 to April 2024, we employed infrared camera technology to collect a total of 3312, 352, 240, and 79 independently validated photographs of snow leopards (Panthera uncia Schreber, 1775), wolves (Canis lupus Linnaeus, 1758), brown bears (Ursus arctos Linnaeus, 1758), and Eurasian lynx (Lynx lynx Linnaeus, 1758), respectively, across six distinct regions in the Sanjiangyuan Region (SR) and during different monitoring time periods. We utilized kernel density estimation and the coefficient of overlaps to assess diel activity pattern overlap and competitive intensities through pairwise comparisons among these four large carnivores. An analysis of the diel activity rhythm curves revealed that all four large carnivores predominantly exhibited nocturnal behavior, although their peak activity periods differed notably. Furthermore, the diel activity rhythm overlap between each pair of species showed moderate to high intensity throughout the year (0.5 ≤ Δ < 1), including during both the cold and warm seasons. Specifically, the diel activity rhythms of snow leopards and wolves, snow leopards and Eurasian lynx, and wolves and Eurasian lynx exhibited high levels of overlap annually and during the cold season (0.8 ≤ Δ < 1) but only moderate overlap during the warm season (0.5 ≤ Δ < 0.8). Our findings suggest that the diel activity rhythms of these four large carnivore species exhibited considerable overlap, potentially intensifying interspecific competition. This study advances our knowledge on the competitive and coexistence mechanisms of large carnivores in high-altitude mountainous ecosystems, offering critical data for their conservation and management. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

15 pages, 8047 KiB  
Article
Comparison of Chloroplast Genome Sequences of Saxifraga umbellulata var. pectinata in Qinghai–Xizang Plateau
by Cui Wang, Kaidi Su, Qiwen Li, Rui Sun, Haoyu Liu, Jingxuan Du, Jinping Li and Likuan Liu
Genes 2025, 16(7), 789; https://doi.org/10.3390/genes16070789 - 30 Jun 2025
Viewed by 302
Abstract
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants [...] Read more.
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants documented in ‘Chinese Medicinal Plant Resources’ are associated with their chloroplast genomes and medicinal mechanisms. Objective: In order to resolve any potential ambiguity in conventional classifications, this study reconstructs the evolutionary position of S. umbellulata var. pectinata within the genus by comparing its chloroplast genetic information with that of other groupings. Methods: The chloroplast genome of S. umbellulata var. pectinata was sequenced using the Illumina NovaSeq 6000 platform. Subsequent sequence assembly, annotation, and characterization were performed using bioinformatics analysis. The NJ phylogenetic tree was constructed using MEGA 7.0 software. Results: The complete chloroplast genome of S. umbellulata var. pectinata is 146,549 bp in length, comprising four subregions: a large single-copy (LSC) region of 79,318 bp and a small single-copy (SSC) region of 16,390 bp, separated by a pair of inverted repeat (IR) regions each 25,421 bp long. This cp genome contains 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content is 38.1%. Phylogenetic analysis based on 20 cp genomes indicates that S. umbellulata var. pectinata is closely related to Saxifraga sinomontana and Saxifraga stolonifera. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

19 pages, 6530 KiB  
Article
Temporal Stability of Plant Species α-Diversity in Alpine Grasslands of the Tibetan Plateau and Their Implications for Biodiversity Conservation
by Tianyu Li, Wei Sun, Shaowei Li, Erfu Dai and Gang Fu
Agronomy 2025, 15(7), 1502; https://doi.org/10.3390/agronomy15071502 - 20 Jun 2025
Viewed by 452
Abstract
The temporal stability of alpine plant α-diversity remains poorly understood, constraining predictions of biodiversity dynamics. Here, this study examined spatiotemporal patterns in the temporal stability of plant α-diversity (species richness, Shannon, Simpson, and Pielou) across the Tibetan grasslands from 2000 to 2020. The [...] Read more.
The temporal stability of alpine plant α-diversity remains poorly understood, constraining predictions of biodiversity dynamics. Here, this study examined spatiotemporal patterns in the temporal stability of plant α-diversity (species richness, Shannon, Simpson, and Pielou) across the Tibetan grasslands from 2000 to 2020. The temporal stability of plant α-diversity was more sensitive to changes in elevation compared to longitude and latitude. The greater the temporal stability of a plant species’ Shannon, the higher its rate of increase under the combined effects of climate change and human activities. The spatial average temporal stability of plant α-diversity declined by 8.83–16.40% across all the grasslands of the Qinghai-Xizang Plateau, while 39.34–43.77% of the region exhibited increasing trends under the combined effects of climate change and human activities. Climate change and human activities dominated 44.12–48.71% and 51.24–55.84% of grassland areas of the change of temporal stability of plant α-diversity, respectively. Radiation variability exerted some exclusive effects on the temporal stability of plant α-diversity. The relative change in plant α-diversity did not exhibit simple linear relationships with the relative change in its temporal stability. Therefore, climate change and human activities resulted in the spatial heterogenization of the temporal stability of plant α-diversity. While the overall temporal stability of plant α-diversity declined, some areas experienced local increases. Human activities drove changes in temporal stability across a broader area than climate change. In addition to climate warming and precipitation changes, attention should also be paid to the impact of radiation variability on the temporal stability of plant α-diversity. The relationships between plant α-diversity and its temporal stability were not always characterized by a trade-off or synergy. In future grassland biodiversity conservation efforts, it is essential to consider the potential influence of global dimming on the temporal stability of plant α-diversity. Simultaneously monitoring both α-diversity and its temporal stability, especially in areas where both are declining, should be a priority. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

20 pages, 16569 KiB  
Article
Simulating the Carbon, Nitrogen, and Phosphorus of Plant Above-Ground Parts in Alpine Grasslands of Xizang, China
by Mingxue Xiang, Gang Fu, Jianghao Cheng, Tao Ma, Yunqiao Ma, Kai Zheng and Zhaoqi Wang
Agronomy 2025, 15(6), 1413; https://doi.org/10.3390/agronomy15061413 - 9 Jun 2025
Viewed by 467
Abstract
Carbon (C), nitrogen (N), and phosphorus (P) act as pivotal regulators of biogeochemical cycles, steering organic matter decomposition and carbon sequestration in terrestrial ecosystems through the stoichiometric properties of photosynthetic organs. Deciphering their multi-scale spatiotemporal dynamics is central to unraveling plant nutrient strategies [...] Read more.
Carbon (C), nitrogen (N), and phosphorus (P) act as pivotal regulators of biogeochemical cycles, steering organic matter decomposition and carbon sequestration in terrestrial ecosystems through the stoichiometric properties of photosynthetic organs. Deciphering their multi-scale spatiotemporal dynamics is central to unraveling plant nutrient strategies and their coupling mechanisms with global element cycling. In the current study, we modeled biogeochemical parameters (C/N/P contents, stoichiometry, and pools) in plant aboveground parts by using the growing mean temperature, total precipitation, total radiation, and maximum normalized difference vegetation index (NDVImax) across nine models (i.e., random forest model, generalized boosting regression model, multiple linear regression model, artificial neural network model, generalized linear regression model, conditional inference tree model, extreme gradient boosting model, support vector machine model, and recursive regression tree) in Xizang grasslands. The results showed that the random forest model had the highest predictive accuracy for nitrogen content, C:P, and N:P ratios under both grazing and fencing conditions (training R2 ≥ 0.61, validation R2 ≥ 0.95). Additionally, the random forest model had the highest predictive accuracy for C:N ratios under fencing conditions (training R2 = 0.84, validation R2 = 1.00), as well as for C pool and P content and pool under grazing conditions (training R2 ≥ 0.62, validation R2 ≥ 0.90). Therefore, the random forest algorithm based on climate data and/or the NDVImax demonstrated superior predictive performance in modeling these biogeochemical parameters. Full article
(This article belongs to the Special Issue Advanced Machine Learning in Agriculture)
Show Figures

Figure 1

16 pages, 2028 KiB  
Article
Succession Characteristics of Soil Microbial Communities Along Elevational Gradients in the Lhasa River Basin and Analysis of Environmental Driving Factors
by Xiaoyu Li, Xiangyang Sun, Baosheng An, Suyan Li, Jiule Li and Chuanfei Wang
Microbiol. Res. 2025, 16(6), 117; https://doi.org/10.3390/microbiolres16060117 - 4 Jun 2025
Viewed by 775
Abstract
The Qinghai-Xizang Plateau is among the most ecologically vulnerable and responsive areas worldwide. Studying the characteristics of soil microbial communities along altitudinal gradients on plateaus and revealing the response mechanisms and vertical distribution patterns of microbial communities in alpine ecosystems is of significant [...] Read more.
The Qinghai-Xizang Plateau is among the most ecologically vulnerable and responsive areas worldwide. Studying the characteristics of soil microbial communities along altitudinal gradients on plateaus and revealing the response mechanisms and vertical distribution patterns of microbial communities in alpine ecosystems is of significant academic value for assessing the ecological stability of the Qinghai-Xizang Plateau. This research examines the Lhasa River Basin by employing Illumina NovaSeq high-throughput sequencing to investigate how soil bacterial and fungal communities shift across elevation gradients in the Duilong Qu subbasin. This study also explored the key environmental drivers behind these microbial distribution patterns. The results indicate the following: (1) Key bacterial groups in the Duilong Qu Basin soil include Proteobacteria, Acidobacteria, and Actinobacteria, with Ascomycota, Mortierellomycota, and Basidiomycota as the prevalent fungal phyla. (2) Soil bacterial richness fluctuates with increasing elevation, and diversity exhibits a V-shaped distribution; fungal richness increases monotonically with elevation, whereas diversity shows no altitudinal dependence. (3) Principal coordinate analysis (PCoA) revealed that bacterial community structures exhibit separation trends across different elevations, with high intragroup consistency; fungal community structures at mid-elevations (4000–5000 m) show clustering similarity, whereas those at 3650–5000 m and 5500 m remain highly distinct from those at other elevations. (4) RDA reveals that factors such as accessible phosphorus, potassium, and organic content have a major effect on how bacterial communities are arranged. On the other hand, soil conductivity, along with available and total phosphorus levels, as well as pH, plays a key role in shaping fungal communities. (5) Functional prediction analysis suggests that soil bacteria shift from aerobic and biofilm-forming to facultatively anaerobic, stress-tolerant, and pathogenic traits with increasing elevation. Fungi are predominantly undefined saprotrophs, transitioning from ectomycorrhizal and pathogenic functions to saprotrophic functions at relatively high elevations. Full article
Show Figures

Figure 1

25 pages, 4439 KiB  
Article
Genetic Diversity and Metabolic Profile of Tibetan Medicinal Plant Saussurea obvallata
by Shengnan Zhang, Sujuan Wang, Shiyan Wang, Hao Su and Ji De
Genes 2025, 16(5), 593; https://doi.org/10.3390/genes16050593 - 17 May 2025
Viewed by 567
Abstract
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its [...] Read more.
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its genetic and chemical diversity to provide a scientific basis for the conservation and sustainable use of S. obv. Methods: Seven populations of S. obv were sampled from Xizang, China. The genetic diversity was analyzed using inter-simple sequence repeat (ISSR) markers, and metabolites were identified by ultra-high-performance liquid chromatography-tandem-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). Correlation analysis among genetic diversity, differential metabolites, and climatic factors were performed by R. Results: The genetic diversity among and within populations were both lowly and significantly correlated with geographical distance, showing a decreasing trend from east to west of the QTP. A total of 110 compounds were identified, including flavonoids, phenylpropanoids, lipids, fatty acids, terpenoids, alkaloids, etc. The metabolite contents among populations varied greatly and were related to environmental factors, mainly annual mean temperature and temperature fluctuation. The genetic diversity had little effect on the metabolic differences. Conclusions: These findings provided valuable baseline information for the conservation and pharmacological utilization of S. obv. Meanwhile, further research is necessary for the efficacy evaluation of anti-inflammatory, anti-tumor, radiation protection, and scar removal both in vitro and in vivo. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

25 pages, 12927 KiB  
Article
Experimental and Numerical Analysis of Freeze–Thaw-Induced Mechanical Degradation in the Coarse-Grained Soil of the Southeastern Qinghai–Xizang Plateau
by Huan Niu, Peiqing Wang, Liang Chen, Ding Sang, Chao Li, Congyou Shi and Wengang Zhang
Appl. Sci. 2025, 15(9), 4900; https://doi.org/10.3390/app15094900 - 28 Apr 2025
Viewed by 357
Abstract
To investigate the effects of freeze–thaw (FT) cycles on the mechanical properties of coarse-grained soil in southeastern Xizang under different moisture contents, this study focuses on coarse-grained soil from a large landslide deposit in Linzhi City, Xizang. FT cycle tests, triaxial shear tests, [...] Read more.
To investigate the effects of freeze–thaw (FT) cycles on the mechanical properties of coarse-grained soil in southeastern Xizang under different moisture contents, this study focuses on coarse-grained soil from a large landslide deposit in Linzhi City, Xizang. FT cycle tests, triaxial shear tests, and numerical simulations were employed to systematically examine the comprehensive impact of varying FT cycles, moisture content, and confining pressure on the soil’s mechanical characteristics. The results show that FT cycles significantly affect the stress–strain behavior of coarse-grained soil in southeastern Xizang. The degree of strain softening increased from approximately 11.6% initially to 31.2% after 15 FT cycles, with shear strength decreasing by an average of 31.8%. Specifically, cohesion decreased by 38% to 55% after 0 to 15 FT cycles, and the internal friction angle decreased by approximately 29% to 32%. Additionally, higher moisture content led to more pronounced strain softening and strength degradation, while increased confining pressure effectively mitigated these deteriorative effects. Numerical simulation results indicated that as moisture content increased from 7.6% to 11.6%, the number of FT cycles required to reach the critical instability state decreased from approximately 150 to 106, and finally to only 15, with the maximum equivalent plastic strain increasing from 0.20 to 2.47. The findings of this study provide key mechanical parameters for understanding the formation and evolution of FT landslide disasters in southeastern Xizang and lay a scientific foundation for the assessment and long-term prevention of cold-region geological hazards. Full article
Show Figures

Figure 1

22 pages, 4587 KiB  
Article
The Effects of Fungal Pathogen Infestation on Soil Microbial Communities for Morchella sextelata Cultivation on the Qinghai–Xizang Plateau
by Ming-Chen Guo, Bo-Chun Wu, Cai-Yun Luo, Wei Sa, Le Wang, Zhong-Hu Li and Qian-Han Shang
J. Fungi 2025, 11(4), 264; https://doi.org/10.3390/jof11040264 - 28 Mar 2025
Viewed by 448
Abstract
Fungi infestation as a disease has serious impacts on the cultivation of Morchella species. To investigate the effects of fungi infestation on the microbial diversity and community structure of soil when cultivating Morchella sextelata, we sampled soil samples of Morchella cultivars in [...] Read more.
Fungi infestation as a disease has serious impacts on the cultivation of Morchella species. To investigate the effects of fungi infestation on the microbial diversity and community structure of soil when cultivating Morchella sextelata, we sampled soil samples of Morchella cultivars in the Qinghai–Xizang Platea and used metagenome sequencing technology to identify the disease fungi and analyze the differences in microbial diversity and structure between disease-infested and healthy soils. The disease fungi identified were Tricharina gilva and Peziza lohjaoensis, and the microbial diversity of T. gilva-infected soil was higher than that of healthy soil, while the diversity of P. lohjaoensis-infected soil was lower. Interestingly, whether infected with T. gilva or P. lohjaoensis, the soil microbial community was changed, and the dominant phyla and genera were different in different soil samples. When infected with P. lohjaoensis, the dominant phyla with relatively high abundances included Proteobacteria, Bacteroidetes, and Ascomycota, with average relative abundances of 44%, 18%, and 15%, respectively, and the dominant genera with high relative abundances encompassed Pseudomonadaceae, Terfezia, and Pedobacter, with average relative abundances of 8%, 9%, and 5%, respectively. Following infection with T. gilva, the dominant phyla with higher relative abundances were Proteobacteria, Acidobacteria, and Bacteroidetes, with average relative abundances of 46%, 15%, and 12%, respectively, and the dominant genera with high relative abundances included Hydrogenophaga, Sphingomonas, and Polaromonas, with average relative abundances of 9%, 3%, and 2%, respectively. Additionally, we found that lipid-metabolism-related genes were less abundant in the soil infected with P. lohjaoensis than in the other soil samples, and glycoside hydrolase diversity was lower in the soil infected with T. gilva than in other healthy soils. The results showed that the effects of different disease fungi on soil microbial communities and functional genes were different, which provided a theoretical basis for the sustainable cultivation of Morchella. Full article
Show Figures

Figure 1

17 pages, 3582 KiB  
Article
Fencing vs. Grazing: Divergent Effects on Soil Seed Bank Structure and Grassland Recovery Pathways in Northern Tibetan Alpine Grasslands
by Yuyuan Xie, Yongjie Liu, Wencheng Li, Ningning Zhao, Xuehao Li, Yifan Chen, Guozhi Lai, Xin Lou, Xiangtao Wang and Xuehong Wei
Plants 2025, 14(6), 900; https://doi.org/10.3390/plants14060900 - 13 Mar 2025
Viewed by 587
Abstract
Alpine grasslands are a critical component of the Qinghai–Tibet Plateau ecosystem, but their soil seed bank (SSB) patterns and driving mechanisms remain unclear under the influence of climate change and human activities. This study analyzed grazing exclusion (via fencing) and grazing effects using [...] Read more.
Alpine grasslands are a critical component of the Qinghai–Tibet Plateau ecosystem, but their soil seed bank (SSB) patterns and driving mechanisms remain unclear under the influence of climate change and human activities. This study analyzed grazing exclusion (via fencing) and grazing effects using 12 sites in the alpine steppe (AS) and alpine desert steppe (AD) in northern Tibet to analyze the effects of fencing and grazing management, as well as hydrothermal and soil factors, on the SSB density and diversity. Linear regression models were applied to explore the relationships between the SSB density and environmental factors, while comparisons of the management modes revealed the potential impacts of fencing. The results show that fencing significantly increased the SSB density and diversity, especially in the AS, while grazing negatively impacted the SSB density and the Pielou evenness index. Hydrothermal factors strongly influenced the SSB in the AS, with the density positively correlated with precipitation and negatively with temperature, while responses in the AD were weak. Soil factors, such as the available phosphorus (SAP) and available potassium (SAK), were key to SSB formation in the AD, whereas ammonium nitrogen (NH4_N) and the pH were critical in the AS. Fencing optimized the hydrothermal conditions and nutrient availability, promoting SSB recovery, though its effects varied between the grassland types. This study provides scientific insights for alpine grassland restoration and sustainable management. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 10610 KiB  
Article
Accessibility Assessment of the Iron Deposits on the Qinghai–Xizang Plateau: Integrating Transport Networks, Economic Dynamics, and Ecological Constraints
by Chengen Wu, Chonghao Liu, Jianan Zhao, Farui Jiang and Xue Yang
Minerals 2025, 15(3), 275; https://doi.org/10.3390/min15030275 - 8 Mar 2025
Viewed by 619
Abstract
The Qinghai–Xizang Plateau (QXP) is the highest plateau on Earth, with a significant quantity of iron resources that significantly contribute to regional economic development in Western China. However, the exploitation of these iron deposits on the QXP is confronted with dual challenges. The [...] Read more.
The Qinghai–Xizang Plateau (QXP) is the highest plateau on Earth, with a significant quantity of iron resources that significantly contribute to regional economic development in Western China. However, the exploitation of these iron deposits on the QXP is confronted with dual challenges. The complex geography and weak infrastructure lead to inadequate transport accessibility, while the strict ecological regulations and stringent environmental protection policies further complicate resource development. This study focuses on the transport accessibility issues related to iron deposits on the QXP, aiming to assess the suitability for regional iron resource development. This study conducts a comprehensive, multidimensional analysis encompassing the spatial distribution of iron deposits, the characteristics of the transport network, and economic dynamics. Based on these analyses, an integrated suitability evaluation model is developed to assess the accessibility of iron deposits on the QXP. The results indicate that the transport accessibility of iron deposits on the QXP displays obvious spatial disparities. The deposits on the western QXP exhibit lower accessibility due to the remoteness from major economic centers and underdeveloped transport infrastructure. In contrast, the deposits on the eastern QXP, which are closer to transportation and economic centers, show greater development potential. Additionally, this study innovatively incorporates economic dynamics and ecological protection factors into the transport accessibility evaluation framework, revealing the coupling relationship between the transport conditions, economic patterns, and mineral resource development potential. It provides scientific evidence for the balancing of resource development and environmental protection in ecologically sensitive areas. The findings could contribute to optimizing the iron resource development strategies on the QXP and provide theoretical support for future regional infrastructure planning. Full article
Show Figures

Figure 1

20 pages, 9429 KiB  
Article
Molecular Phylogeny and Morphology Reveal Four New Species of Conocybe (Bolbitiaceae, Agaricales) from the Qinghai-Xizang Plateau, China
by Xi-Xi Han, Dorji Phurbu, Bin Cao, Jia-Xin Li, Xin-Yu Zhu, Lin-Hui Liu, Naritsada Thongklang, Kevin D. Hyde and Rui-Lin Zhao
J. Fungi 2025, 11(1), 45; https://doi.org/10.3390/jof11010045 - 7 Jan 2025
Viewed by 1824
Abstract
The Qinghai-Xizang Plateau, known for its high altitude, geological history of plate collision, crustal uplift, and special ecology factors, provides an ideal environment for studying fungal biodiversity in extreme environmental conditions. Some species within the Conocybe, containing secondary metabolites such as psilocybin, [...] Read more.
The Qinghai-Xizang Plateau, known for its high altitude, geological history of plate collision, crustal uplift, and special ecology factors, provides an ideal environment for studying fungal biodiversity in extreme environmental conditions. Some species within the Conocybe, containing secondary metabolites such as psilocybin, phallotoxins, and amatoxins, have potential medicinal value for treating psychiatric disorders and for use in drug development. This study investigates Conocybe (Bolbitiaceae, Agaricales) on the Plateau, based on specimens collected over the past decade, using morphological and molecular phylogenetic analyses. Seven species were identified, including four new species: C. alticola, C. alticoprophila, C. versicolor, and C. yadongensis. Molecular analyses, utilizing multi-gene sequence data (ITS, nrLSU, and tef-1α), support the taxonomic position of these new species within this genus as new species. Detailed descriptions, illustrations, photographs, line drawings, and comparisons with related species are provided for the new taxa. This study enriches the species diversity of Conocybe on the Qinghai-Tibet Plateau, further enhancing our understanding of fungal biodiversity in this region. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

11 pages, 2618 KiB  
Article
Two-Dimensional Amphibian Diversity along a 3500 m Elevational Gradient at the Eastern Edge of the Qinghai–Xizang Plateau
by Jiaxing Tang, Jiaxin Cui, Gang Wang, Yong Jiang, Huaming Zhou, Jianping Jiang, Feng Xie, Jie Wang and Guiying Chen
Animals 2024, 14(12), 1723; https://doi.org/10.3390/ani14121723 - 7 Jun 2024
Cited by 2 | Viewed by 1416
Abstract
Amphibians serve as reliable indicators of ecosystem health and are the most threatened group of vertebrates. Studies on their spatial distribution pattern and threats are crucial to formulate conservation strategies. Gongga Mountains, with a peak at 7509 m a.s.l. and running latitudinally, are [...] Read more.
Amphibians serve as reliable indicators of ecosystem health and are the most threatened group of vertebrates. Studies on their spatial distribution pattern and threats are crucial to formulate conservation strategies. Gongga Mountains, with a peak at 7509 m a.s.l. and running latitudinally, are in the center of the Hengduan Mountains Range and at the eastern steep edge of the Qinghai–Xizang Plateau, providing heterogeneous habitats and varied niches for amphibians. In this study, we combined 83 days of field work with information from 3894 museum specimens that were collected over the past 80 years, and identified twenty amphibian species belonging to seven families and twelve genera by morphology. Of these species, seven were listed in the threatened categories of the Red List of China’s Biodiversity and thirteen were endemic to China. Ten species were found on the plateau side (western slope) and eleven species were found on the other side close to the Sichuan Basin (eastern slope). Only one species was found on both sides, indicating different community structures horizontally. The species richness was unimodal vertically and peaking at mid elevation on both sides, with the maximum number (ten vs. nine) of species occurring at 3300–3700 vs. 1700–1900 m a.s.l. and in different types of vegetation. The elevation span and body length of species distributed on both slopes did not show significant differences. These findings help to understand the horizontal and vertical distribution pattern of amphibian diversity, laying a foundation for future biogeographical and conservation research in this area. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

14 pages, 3947 KiB  
Article
Modelling Soil Ammonium Nitrogen, Nitrate Nitrogen and Available Phosphorus Using Normalized Difference Vegetation Index and Climate Data in Xizang’s Grasslands
by Wei Sun, Huxiao Qi, Tianyu Li, Yong Qin, Gang Fu, Fusong Han, Shaohua Wang and Xu Pan
Sustainability 2024, 16(11), 4695; https://doi.org/10.3390/su16114695 - 31 May 2024
Cited by 5 | Viewed by 1213
Abstract
There is still a lack of high-precision and large-scale soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N) and available phosphorus (AP) in alpine grasslands at least on the Qinghai–Xizang Plateau, which may limit our understanding of the sustainability [...] Read more.
There is still a lack of high-precision and large-scale soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N) and available phosphorus (AP) in alpine grasslands at least on the Qinghai–Xizang Plateau, which may limit our understanding of the sustainability of alpine grassland ecosystems (e.g., changes in soil NH4+-N, NO3-N and AP can affect the sustainability of grassland productivity, which in turn may alter the sustainability of livestock development), given that nitrogen and phosphorus are important limiting factors in alpine regions. The construction of big data mining models is the key to solving the problem mentioned above. Therefore, observed soil NH4+-N, NO3-N and AP at 0–10 cm and 10–20 cm, climate data (air temperature, precipitation and radiation) and/or normalized vegetation index (NDVI) data were used to model NH4+-N, NO3-N and AP in alpine grasslands of Xizang under fencing and grazing conditions. Nine algorithms, including random forest algorithm (RFA), generalized boosted regression algorithm (GBRA), multiple linear regression algorithm (MLRA), support vector machine algorithm (SVMA), recursive regression tree algorithm (RRTA), artificial neural network algorithm (ANNA), generalized linear regression algorithm (GLMA), conditional inference tree algorithm (CITA), and eXtreme gradient boosting algorithm (eXGBA), were used. The RFA had the best performance among the nine algorithms. Climate data based on the RFA can explain 78–92% variation of NH4+-N, NO3-N and AP under fencing conditions. Climate data and NDVI together can explain 83–93% variation of NH4+-N, NO3-N and AP under grazing conditions based on the RFA. The absolute values of relative bias, linear slopes, R2 and RMSE values between simulated soil NH4+-N, NO3-N and AP based on RFA were ≤8.65%, ≥0.90, ≥0.91 and ≤3.37 mg kg−1, respectively. Therefore, random forest algorithm can be used to model soil available nitrogen and phosphorus based on observed climate data and/or normalized difference vegetation index in Xizang’s grasslands. The random forest models constructed in this study can be used to obtain a long-term (e.g., 2000–2020) raster dataset of soil available nitrogen and phosphorus in alpine grasslands on the whole Qinghai–Tibet Plateau. The raster dataset can explain changes in grassland productivity from the perspective of nitrogen and phosphorus constraints across the Tibetan grasslands, which can provide an important basis for the sustainable development of grassland ecosystem itself and animal husbandry on the Tibetan Plateau. Full article
Show Figures

Figure 1

17 pages, 2717 KiB  
Article
Proline Metabolism in Response to Climate Extremes in Hairgrass
by Qiaoyu Luo, Yonggui Ma, Huichun Xie, Feifei Chang, Chiming Guan, Bing Yang and Yushou Ma
Plants 2024, 13(10), 1408; https://doi.org/10.3390/plants13101408 - 18 May 2024
Cited by 4 | Viewed by 1372
Abstract
Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation [...] Read more.
Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry–wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways. Full article
Show Figures

Figure 1

Back to TopTop