Two-Dimensional Amphibian Diversity along a 3500 m Elevational Gradient at the Eastern Edge of the Qinghai–Xizang Plateau
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey and Museum Specimen Retrieval
2.3. Elevational Range Size Analysis
3. Results
3.1. Species Composition and Conservation Status
3.2. Elevational Range Size of Amphibians in the Gongga Mountains
3.3. Elevational Distribution Pattern
4. Discussion
4.1. Species Richness of Amphibians along the Elevational Gradient in the Gongga Mountains
4.2. Threat Factors and Conservation Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef]
- Navas, C.A. Herpetological diversity along Andean elevational gradients: Links with physiological ecology and evolutionary physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 469–485. [Google Scholar] [CrossRef]
- McCain, C.M.; Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd: Chichester, UK, 2010; pp. 1–10. [Google Scholar]
- Chettri, B.; Acharya, B.K. Distribution of amphibians along an elevation gradient in the Eastern Himalaya, India. Basic Appl. Ecol. 2020, 47, 57–70. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Becker, A.; Bugmann, H. Global Change and Mountain Regions; 0284-8015; IGBP: Stockholm, Sweden, 2001. [Google Scholar]
- Beniston, M. Mountain Weather and Climate: A General Overview and a Focus on Climatic Change in the Alps. Hydrobiologia 2006, 562, 3–16. [Google Scholar] [CrossRef]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, M.A.; Vellore, R.; Xu, Y.; You, Q. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer: Cham, Germany, 2019; pp. 57–97. [Google Scholar]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar]
- Hopkins, W.A. Amphibians as models for studying environmental change. ILAR J. 2007, 48, 270–277. [Google Scholar] [CrossRef]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzee, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.; Fischman, D.L.; Waller, R.W. Status and trends of amphibian declines and extinctions worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef]
- Beebee, T.J.; Griffiths, R.A. The amphibian decline crisis: A watershed for conservation biology? Biol. Conserv. 2005, 125, 271–285. [Google Scholar] [CrossRef]
- Waddle, J.H. Use of amphibians as ecosystem indicator species. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2006. [Google Scholar]
- Welsh Jr, H.H.; Ollivier, L.M. Stream amphibians as indicators of ecosystem stress: A case study from California’s redwoods. Ecol. Appl. 1998, 8, 1118–1132. [Google Scholar] [CrossRef]
- Sinsch, U. Migration and orientation in anuran amphibians. Ethol. Ecol. Evol. 1990, 2, 65–79. [Google Scholar] [CrossRef]
- McKinney, M.L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 1997, 28, 495–516. [Google Scholar] [CrossRef]
- Purvis, A.; Gittleman, J.L.; Cowlishaw, G.; Mace, G.M. Predicting extinction risk in declining species. Proc. R. Soc. London. Ser. B Biol. Sci. 2000, 267, 1947–1952. [Google Scholar] [CrossRef]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. The State of the World’s Forests: Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar]
- Díaz-García, J.; López-Barrera, F.; Toledo-Aceves, T.; Andresen, E.; Pineda, E. Does forest restoration assist the recovery of threatened species? A study of cloud forest amphibian communities. Biol. Conserv. 2020, 242, 108400. [Google Scholar] [CrossRef]
- Thompson, M.E.; Donnelly, M.A. Effects of Secondary Forest Succession on Amphibians and Reptiles: A Review and Meta-analysis. Copeia 2018, 106, 10–19. [Google Scholar] [CrossRef]
- Otto, C.R.; Kroll, A.J.; McKenny, H.C. Amphibian response to downed wood retention in managed forests: A prospectus for future biomass harvest in North America. For. Ecol. Manag. 2013, 304, 275–285. [Google Scholar] [CrossRef]
- Gutiérrez-Rodríguez, J.; Barbosa, A.M.; Martínez-Solano, Í. Present and past climatic effects on the current distribution and genetic diversity of the Iberian spadefoot toad (Pelobates cultripes): An integrative approach. J. Biogeogr. 2017, 44, 245–258. [Google Scholar] [CrossRef]
- Fisher, M.C.; Garner, T.W.; Walker, S.F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 2009, 63, 291–310. [Google Scholar] [CrossRef]
- Reid, W.V. Biodiversity hotspots. Trends Ecol. Evol. 1998, 13, 275–280. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Liu, J.; Cao, X.; Hou, J.; Zhu, L.; Xu, X.; Liu, X.; Wang, M.; Wu, D. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat. Sci. Rev. 2020, 243, 106444. [Google Scholar] [CrossRef]
- Thomas, A. Overview of the geoecology of the Gongga Shan range, Sichuan province, China. Mt. Res. Dev. 1999, 19, 17–30. [Google Scholar] [CrossRef]
- Wang, J.; Pan, B.; Zhang, G.; Cui, H.; Cao, B.; Geng, H. Late Quaternary glacial chronology on the eastern slope of Gongga Mountain, eastern Tibetan Plateau, China. Sci. China Earth Sci. 2013, 56, 354–365. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, M.; Chang, R.; Zhan, Q.; Li, Z.L. Surface warming trend analysis based on MODIS/Terra land surface temperature product at Gongga Mountain in the southeastern Tibetan Plateau. J. Geophys.Res. Atmos. 2021, 126, e2020JD034205. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Wang, Y. Vertical distributions of soil fauna communities on the eastern slope of Gongga Mountain. Acta Ecol. Sin. 2015, 35, 2295–2307. [Google Scholar]
- Zhu, H.; Zhou, S.; Yan, L.; Shi, J.; Shen, Y. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China. Bot. Rev. 2019, 85, 131–148. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, G.; Sun, X.; Zhu, M.; Song, C.; Huang, K.; Chen, X. Spatial-temporal patterns of evapotranspiration along an elevation gradient on Mount Gongga, Southwest China. Water Resour. Res. 2018, 54, 4180–4192. [Google Scholar] [CrossRef]
- Fei, L.; Ye, C.; Jiang, J. Colored Atlas of Chinese Amphibians and Their Distributions; Sichuan Publishing Group: Chengdu, China, 2012. [Google Scholar]
- Fei, L.; Ye, C.-Y.; Wang, Y.-F.; Jiang, K. A new species of the genus Amolops (Anura: Ranidae) from high-altitude Sichuan, southwestern China, with a discussion on the taxonomic status of Amolops kangtingensis. Zool. Res. 2017, 38, 138. [Google Scholar]
- Song, Y.; Chen, C.; Wang, Y. A dataset on the life-history and ecological traits of Chinese amphibians. Biodivers. Sci. 2022, 30, 22053. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, S.N.; Guo, C.P.; Tang, K.; Jiang, J.P.; Hu, J.H. Amphibian diversity and conservation along an elevational gradient on Mount Emei, southwestern China. Amphib. Reptile Conserv. 2020, 14, 46–56. [Google Scholar]
- Jiang, Z.; Jiang, J.; Wang, Y.; Zhang, E.; Zhang, Y.; Li, L.; Xie, F.; Cai, B.; Cao, L.; Zheng, G. Red list of China’s vertebrates. Biodivers. Sci. 2016, 24, 500. [Google Scholar]
- Luo, Z.; Wang, X.; Yang, S.; Cheng, X.; Liu, Y.; Hu, J. Combining the responses of habitat suitability and connectivity to climate change for an East Asian endemic frog. Front. Zool. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Rahbek, C. The Elevational Gradient of Species Richness: A Uniform Pattern? Ecography 1995, 18, 200–205. [Google Scholar] [CrossRef]
- Chen, C.; Chen, C.; Wang, Y. Ecological correlates of extinction risk in Chinese amphibians. Divers. Distrib. 2019, 25, 1586–1598. [Google Scholar] [CrossRef]
- Naniwadekar, R.; Vasudevan, K. Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India. J. Biogeogr. 2007, 34, 842–853. [Google Scholar] [CrossRef]
- Liu, G.; Cui, J.; Wang, Y.; Wang, H.; Xiang, B.; Xiao, N. Amphibian diversity and its spatio-temporal distribution patterns in Kangding City, Sichuan Province. Biodivers. Sci. 2022, 30, 21494. [Google Scholar] [CrossRef]
- Murray, A.H.; Nowakowski, A.J.; Frishkoff, L.O. Climate and land-use change severity alter trait-based responses to habitat conversion. Glob. Ecol. Biogeogr. 2021, 30, 598–610. [Google Scholar] [CrossRef]
- Burrow, A.; Maerz, J. How plants affect amphibian populations. Biol. Rev. 2022, 97, 1749–1767. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, T.; Liu, Y.; Ma, R.; Chen, Z. Carbon Isotope Composition and Geochemical Features of Sediments From Gongga Mountain, China, and Potential Environmental Implications. Front. Earth Sci. 2022, 10, 865575. [Google Scholar] [CrossRef]
- Chang, Z.-H.; Lu, Z.-H.; Guan, W.-B. Water holding effect of subalpine dark coniferous forest soil in Gongga Mountain, China. J. For. Res. 2003, 14, 205–209. [Google Scholar]
- Tao, N.; Liu, D.; Wu, J. Evaluation study on ecosystem based on system dynamics: A case study of Gongga Mountain forest ecosystem. J. Interdiscip. Math. 2017, 20, 1415–1418. [Google Scholar] [CrossRef]
- Muñoz, A.; Santos, X.; Felicísimo, Á.M. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions. PeerJ 2016, 4, e2405. [Google Scholar] [CrossRef]
- Miró, A.; O’Brien, D.; Tomàs, J.; Buchaca, T.; Sabás, I.; Osorio, V.; Lucati, F.; Pou-Rovira, Q.; Ventura, M. Rapid amphibian community recovery following removal of non-native fish from high mountain lakes. Biol. Conserv. 2020, 251, 108783. [Google Scholar] [CrossRef]
- Martín-Torrijos, L.; Sandoval-Sierra, J.V.; Muñoz, J.; Diéguez-Uribeondo, J.; Bosch, J.; Guayasamin, J.M. Rainbow trout (Oncorhynchus mykiss) threaten Andean amphibians. Neotrop. Biodivers. 2016, 2, 26–36. [Google Scholar] [CrossRef]
- Gaston, K.J. Species-range-size distributions: Patterns, mechanisms and implications. Trends Ecol. Evol. 1996, 11, 197–201. [Google Scholar] [CrossRef]
- Pearson, R.G.; Thuiller, W.; Araújo, M.B.; Martinez-Meyer, E.; Brotons, L.; McClean, C.; Miles, L.; Segurado, P.; Dawson, T.P.; Lees, D.C. Model-based uncertainty in species range prediction. J. Biogeogr. 2006, 33, 1704–1711. [Google Scholar] [CrossRef]
- Di Marco, M.; Santini, L. Human pressures predict species’ geographic range size better than biological traits. Glob. Change Biol. 2015, 21, 2169–2178. [Google Scholar] [CrossRef]
Order | Family | Species | Slope of Mt. Gongga | Local Elevation Range: m | Overall Elevation Range: m | SVL: mm |
---|---|---|---|---|---|---|
Caudata | Hynobiidae | Batrachuperus karlschmidti | W | 2997~4300 | 1800~4000 | 186 |
Hynobiidae | B. pinchonii | E | 2430~3950 | 1500~3950 | 155 | |
Salamandridae | Liangshantriton taliangensis | E | 2100~2410 | 1390~3232 | 203 | |
Anura | Bufonidae | Bufo gargarizans | W and E | 1100~3764 | 120~4300 | 77 |
Bufonidae | B. tibetanus | W | 2702~4206 | 2400~4300 | 63 | |
Dicroglossidae | Nanorana pleskei | W | 3100~4600 | 3300~4500 | 32 | |
Dicroglossidae | Quasipaa boulengeri | E | 1500~1700 | 300~1900 | 89 | |
Hylidae | Hyla annectans | E | 1150~1750 | 750~2400 | 34 | |
Megophryidae | Megophrys shapingensis | E | 1668~2965 | 2000~3200 | 77 | |
Megophryidae | M. minor | E | 1700~2686 | 300~2850 | 37 | |
Megophryidae | Oreolalax major | E | 1600~1800 | 1600~2000 | 64 | |
Megophryidae | Scutiger boulengeri | W | 2900~4300 | 2700~5100 | 54 | |
Megophryidae | S. glandulatus | W | 2450~4220 | 2200~4000 | 79 | |
Megophryidae | S. jiulongensis | W | 3329~3932 | 3120~3750 | 75 | |
Megophryidae | S. mammatus | W | 3116~4220 | 2600~4200 | 72 | |
Ranidae | Amolops loloensis | E | 1150~3469 | 2100~3200 | 58 | |
Ranidae | A. mantzorum | E | 1283~2650 | 1000~3800 | 53 | |
Ranidae | A. xinduqiao | W | 2655~3646 | 3300~3500 | 44 | |
Ranidae | Rana chaochiaoensis | E | 1290~2600 | 1150~3500 | 54 | |
Ranidae | R. kukunoris | W | 3200~3800 | 2000~4400 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Cui, J.; Wang, G.; Jiang, Y.; Zhou, H.; Jiang, J.; Xie, F.; Wang, J.; Chen, G. Two-Dimensional Amphibian Diversity along a 3500 m Elevational Gradient at the Eastern Edge of the Qinghai–Xizang Plateau. Animals 2024, 14, 1723. https://doi.org/10.3390/ani14121723
Tang J, Cui J, Wang G, Jiang Y, Zhou H, Jiang J, Xie F, Wang J, Chen G. Two-Dimensional Amphibian Diversity along a 3500 m Elevational Gradient at the Eastern Edge of the Qinghai–Xizang Plateau. Animals. 2024; 14(12):1723. https://doi.org/10.3390/ani14121723
Chicago/Turabian StyleTang, Jiaxing, Jiaxin Cui, Gang Wang, Yong Jiang, Huaming Zhou, Jianping Jiang, Feng Xie, Jie Wang, and Guiying Chen. 2024. "Two-Dimensional Amphibian Diversity along a 3500 m Elevational Gradient at the Eastern Edge of the Qinghai–Xizang Plateau" Animals 14, no. 12: 1723. https://doi.org/10.3390/ani14121723
APA StyleTang, J., Cui, J., Wang, G., Jiang, Y., Zhou, H., Jiang, J., Xie, F., Wang, J., & Chen, G. (2024). Two-Dimensional Amphibian Diversity along a 3500 m Elevational Gradient at the Eastern Edge of the Qinghai–Xizang Plateau. Animals, 14(12), 1723. https://doi.org/10.3390/ani14121723