Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (489)

Search Parameters:
Keywords = Pz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1363 KiB  
Article
Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
by António Paulo, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho and Ana Belchior
Molecules 2025, 30(15), 3240; https://doi.org/10.3390/molecules30153240 - 1 Aug 2025
Viewed by 159
Abstract
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years [...] Read more.
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years as a potential new class of radiosensitizers binding to specific DNA sequences. Recently, we have shown that the Re(I) tricarbonyl complex PDF-Pz-Re and its pyrazolyl-diamine chelator PDF-Pz, carrying a N-methylated pyridostatin (PDF) derivative, act as G4 binders of various G4-forming DNA and RNA sequences. As described in this contribution, these features prompted us to evaluate PDF-Pz-Re and PDF-Pz as radiosensitizers of prostate cancer PC3 cells submitted to concomitant treatment with Co-60 radiation. The compound RHPS4 was also tested, as this G4 ligand was previously shown to exhibit strong radiosensitizing properties in other cancer cell lines. The assessment of the resulting radiobiological effects, namely through clonogenic cell survival, DNA damage, and ROS production assays, showed that PDF-Pz-Re and PDF-Pz were able to radiosensitize PC3 cells despite being less active than RHPS4. Our results corroborate that G4 DNA ligands are a class of compounds with potential interest as radiosensitizers, deserving further studies to optimize their radiosensitization activity and elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

17 pages, 6551 KiB  
Article
Monitoring the Impacts of Human Activities on Groundwater Storage Changes Using an Integrated Approach of Remote Sensing and Google Earth Engine
by Sepide Aghaei Chaleshtori, Omid Ghaffari Aliabad, Ahmad Fallatah, Kamil Faisal, Masoud Shirali, Mousa Saei and Teodosio Lacava
Hydrology 2025, 12(7), 165; https://doi.org/10.3390/hydrology12070165 - 26 Jun 2025
Viewed by 552
Abstract
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. [...] Read more.
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. Although the influence of natural factors on groundwater is well-recognized, the impact of human activities, despite being a major contributor to its change, has been less explored due to the challenges in measuring such effects. To address this gap, our study employed an integrated approach using remote sensing and the Google Earth Engine (GEE) cloud-free platform to analyze the effects of various anthropogenic factors such as built-up areas, cropland, and surface water on groundwater storage in the Lake Urmia Basin (LUB), Iran. Key anthropogenic variables and groundwater data were pre-processed and analyzed in GEE for the period from 2000 to 2022. The processes linking these variables to groundwater storage were considered. Built-up area expansion often increases groundwater extraction and reduces recharge due to impervious surfaces. Cropland growth raises irrigation demand, especially in semi-arid areas like the LUB, leading to higher groundwater use. In contrast, surface water bodies can supplement water supply or enhance recharge. The results were then exported to XLSTAT software2019, and statistical analysis was conducted using the Mann–Kendall (MK) non-parametric trend test on the variables to investigate their potential relationships with groundwater storage. In this study, groundwater storage refers to variations in groundwater storage anomalies, estimated using outputs from the Global Land Data Assimilation System (GLDAS) model. Specifically, these anomalies are derived as the residual component of the terrestrial water budget, after accounting for soil moisture, snow water equivalent, and canopy water storage. The results revealed a strong negative correlation between built-up areas and groundwater storage, with a correlation coefficient of −1.00. Similarly, a notable negative correlation was found between the cropland area and groundwater storage (correlation coefficient: −0.85). Conversely, surface water availability showed a strong positive correlation with groundwater storage, with a correlation coefficient of 0.87, highlighting the direct impact of surface water reduction on groundwater storage. Furthermore, our findings demonstrated a reduction of 168.21 mm (millimeters) in groundwater storage from 2003 to 2022. GLDAS represents storage components, including groundwater storage, in units of water depth (mm) over each grid cell, employing a unit-area, mass balance approach. Although storage is conceptually a volumetric quantity, expressing it as depth allows for spatial comparison and enables conversion to volume by multiplying by the corresponding surface area. Full article
Show Figures

Figure 1

23 pages, 4398 KiB  
Article
Modelling of Energy Management Strategies in a PV-Based Renewable Energy Community with Electric Vehicles
by Shoaib Ahmed, Amjad Ali, Sikandar Abdul Qadir, Domenico Ramunno and Antonio D’Angola
World Electr. Veh. J. 2025, 16(6), 302; https://doi.org/10.3390/wevj16060302 - 29 May 2025
Viewed by 545
Abstract
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles [...] Read more.
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles (EVs). EVs offer opportunities for distributed RESs, such as photovoltaic (PV) systems, which can be economically advantageous for RECs whose members own EVs and charge them within the community. This article focuses on the integration of PV systems and the management of energy loads for different participants—consumers and prosumers—along with a small EV charging setup in the REC. A REC consisting of a multi-unit building is examined through a mathematical and numerical model. In the model, hourly PV generation data are obtained from the PVGIS tool, while residential load data are modeled by converting monthly electricity bills, including peak and off-peak details, into hourly profiles. Finally, EV hourly load data are obtained after converting the data of voltage and current data from the charging monitoring portal into power profiles. These data are then used in our mathematical model to evaluate energy fluxes and to calculate self-consumed, exported, and shared energy within the REC based on energy balance criteria. In the model, an energy management system (EMS) is included within the REC to analyze EV charging behavior and optimize it in order to increase self-consumption and shared energy. Following the EMS, it is also suggested that the number of EVs to be charged should be evaluated in light of energy-sharing incentives. Numerical results have been reported for different seasons, showing the possibility for the owners of EVs to charge their vehicles within the community to optimize self-consumption and shared energy. Full article
Show Figures

Figure 1

19 pages, 12928 KiB  
Article
DFT and Molecular Docking Study of HA-Conjugated SWCNTs for CD44-Targeted Delivery of Platinum-Based Chemotherapeutics
by Muhammad Uzair Khan, Ishrat Jabeen, Abdulhamid Althagafi, Muhammad Umar Farooq, Moussab Harb and Bassim Arkook
Pharmaceuticals 2025, 18(6), 805; https://doi.org/10.3390/ph18060805 - 27 May 2025
Viewed by 832
Abstract
Background: Hyaluronicacid (HA)-conjugated nanocarriers leverage CD44 receptor overexpression on tumor cells for targeted delivery of platinum chemotherapeutics. Methods: This study compares non-functionalized (DDS1) versus HA-conjugated single-walled carbon nanotubes (DDS2) for encapsulation stability and CD44 binding of Cisplatin, Carboplatin, and Lobaplatin. Density Functional Theory [...] Read more.
Background: Hyaluronicacid (HA)-conjugated nanocarriers leverage CD44 receptor overexpression on tumor cells for targeted delivery of platinum chemotherapeutics. Methods: This study compares non-functionalized (DDS1) versus HA-conjugated single-walled carbon nanotubes (DDS2) for encapsulation stability and CD44 binding of Cisplatin, Carboplatin, and Lobaplatin. Density Functional Theory calculations employed PBE-GGA with Tkatchenko–Scheffler dispersion and ZORA relativistic treatment, using a finite (8,8) armchair SWCNT (24.6 Å, H-capped) for DDS1 and an EDC/NHS-coupled HA oligomer for DDS2. We computed binding energies, HOMO–LUMO gaps, Molecular Electrostatic Potentials, and energy decompositions. Molecular docking to CD44 (PDB ID: 4PZ3) used Molegro Virtual Docker, validated by re-docking the native HA fragment (RMSD 1.79 Å). Results: DFT binding energies (eV) for DDS2 versus DDS1 were −7.92/−7.48 (Cisplatin), −8.93/−8.30 (Carboplatin), and −9.72/−9.25 (Lobaplatin), indicating enhanced stabilization by HA functionalization. Energy decomposition showed increases of ∼0.4 eV (vdW) and ∼0.2 eV (electrostatic) in DDS2. MEP maps confirmed additional negative-potential regions on DDS2, complementing drug-positive sites. Molecular docking yielded MolDock scores of −171.26 for DDS2 versus −106.68 for DDS1, reflecting stronger CD44 affinity. Docking scores indicate that HA conjugation notably strengthens the predicted affinity of CNT carriers toward the CD44 receptor (ΔScore ≈ −65 kcal mol−1). Conclusions: These results motivate experimental follow-up to confirm whether DDS2 can translate the in silico affinity gains into improved targeted delivery of platinum chemotherapeutics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

24 pages, 3764 KiB  
Article
Development and Characterization of KOH-Activated Carbons Derived from Zeolite-Catalyzed Pyrolysis of Waste Tires
by Camila Aguilar-Ccuno, Rossibel Churata, Kattia Martínez and Jonathan Almirón
Sustainability 2025, 17(11), 4822; https://doi.org/10.3390/su17114822 - 23 May 2025
Viewed by 678
Abstract
This study focuses on the production and characterization of activated carbons derived from the carbonaceous residue obtained through the catalytic pyrolysis of waste tires. A catalytic pyrolysis process was conducted at 450 °C and 575 °C, employing two zeolitic catalysts, the commercial ZSM-5 [...] Read more.
This study focuses on the production and characterization of activated carbons derived from the carbonaceous residue obtained through the catalytic pyrolysis of waste tires. A catalytic pyrolysis process was conducted at 450 °C and 575 °C, employing two zeolitic catalysts, the commercial ZSM-5 and a synthesized zeolite (PZ2), developed from natural pozzolan, which played a key role in the pyrolysis performance and the quality of the resulting carbons. After pyrolysis, the solid residues were chemically activated using KOH to improve their porous structure and surface characteristics. Comprehensive characterization was carried out, including textural properties (BET surface area and porosity) and morphological (SEM) analysis of the activated carbons, as well as crystallinity evaluation (XRD) of the zeolitic catalysts. The BET surface areas of activated carbons PZ2-T1-AK and PZ2-T2-AK reached 608.65 m2/g and 624.37 m2/g, respectively, values that surpass those reported for similar materials under comparable activation conditions. The developed porous structure suggests strong potential for applications in adsorption processes, including pollutant removal. These findings demonstrate the effectiveness of zeolite-catalyzed pyrolysis, particularly using PZ2, as a sustainable strategy for transforming tire waste into high-performance adsorbent materials. This approach supports circular economy principles through innovative waste valorization and offers a promising solution to an environmental challenge. Full article
Show Figures

Figure 1

32 pages, 2613 KiB  
Review
Energy Storage Systems: Scope, Technologies, Characteristics, Progress, Challenges, and Future Suggestions—Renewable Energy Community Perspectives
by Shoaib Ahmed and Antonio D’Angola
Energies 2025, 18(11), 2679; https://doi.org/10.3390/en18112679 - 22 May 2025
Viewed by 1537
Abstract
A paradigm transition from centralized to decentralized energy systems has occurred, which has increased the deployment of renewable energy sources (RESs) in renewable energy communities (RECs), promoting energy independence, strengthening local resilience, increasing self-sufficiency, and moving toward CO2 emission reduction. However, the [...] Read more.
A paradigm transition from centralized to decentralized energy systems has occurred, which has increased the deployment of renewable energy sources (RESs) in renewable energy communities (RECs), promoting energy independence, strengthening local resilience, increasing self-sufficiency, and moving toward CO2 emission reduction. However, the erratic and unpredictable generation of RESs like wind, solar, and other sources make these systems necessary, and a lot of interest in energy storage systems is increasing because they have rapidly become the cornerstone of modern energy infrastructure, and there is a trend towards using more RESs and decentralization, resulting in increased self-sufficiency. Additionally, ESS is increasingly being installed at or close to the point of energy generation and consumption, like within residences, buildings, or community microgrids, instead of at centralized utility-scale facilities, referred to be decentralized. By storing and using energy in the same location, this localized deployment reduces transmission losses, facilitates quicker response to changes in demand, and promotes local autonomy in energy management. Since the production of renewable energy is naturally spread, decentralizing storage is crucial to optimizing efficiency and dependability. This article also focuses on energy storage systems, highlighting the role and scope of ESSs along with the services of ESSs in different parts of the power system network, particularly in renewable energy communities (RECs). The classification of various ESS technologies and their key features, limitations, and applications is discussed following the current technological and significant information trends and discussing the ESS types for the RECs with different options as per the capacity, like small, medium, and large scale. It covers the overall scenario and progress, like overall European ESS installed capacity, and the work relevant to ESSs in RECs with different aspects, following the literature review. Additionally, it draws attention to the gaps and significant challenges related to ESS technologies and their deployment. Key future suggestions have also been given as per the current trends of technological information and significant information that may affect those trends globally in the future and would be helpful in the growth of ESSs integration in RECs. The authors also suggest the role of the government, stakeholders, and supportive policies that can aid in the implementation of ESS technologies in RECs. Full article
Show Figures

Figure 1

15 pages, 3425 KiB  
Article
Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Pavonia zeylanica to Mediate Photocatalytic Degradation of Methylene Blue: Studies on Reaction Kinetics, Reusability and Mineralization
by Dhananjay Purushotham, Abhilash Mavinakere Ramesh, Divakara Shetty Thimmappa, Nataraj Kalegowda, Gowtham Hittanahallikoppal Gajendramurthy, Shiva Prasad Kollur and Murali Mahadevamurthy
Int. J. Mol. Sci. 2025, 26(10), 4739; https://doi.org/10.3390/ijms26104739 - 15 May 2025
Cited by 2 | Viewed by 793
Abstract
Nanoparticles (especially zinc and titanium oxide) have been found to be effective in photodegrading pollutants (organic/inorganic) from industrial wastewater. Presently, this study aimed at biosynthesizing zinc oxide nanoparticles (ZnO-NPs) from the leaf extract of Pavonia zeylanica, a plant with significant medical value, [...] Read more.
Nanoparticles (especially zinc and titanium oxide) have been found to be effective in photodegrading pollutants (organic/inorganic) from industrial wastewater. Presently, this study aimed at biosynthesizing zinc oxide nanoparticles (ZnO-NPs) from the leaf extract of Pavonia zeylanica, a plant with significant medical value, and evaluating their photocatalytic properties against methylene blue (MB), an azo dye (100 mg L−1, pH 7), using solar irradiation, along with the measurement of their reusability and mineralization efficiency. The characterization of the Pz-ZnO-NPs showed an absorbance peak at 313 nm, with a bandgap value of 3.04 eV and a size of 19.58 nm. This study’s results show that the synthesized Pz-ZnO-NPs, upon treatment with MB dye after 2 h of solar irradiation, showed an 89.32% degradation, which was concentration-dependent and followed pseudo-first-order kinetics. The reusability studies indicated that the Pz-ZnO-NPs were able to degrade MB dye after five repeated cycles of its usage. The structural composition of the Pz-ZnO-NPs evaluated by XRD showed that the peak position stayed constant. Nevertheless, the peak intensity dropped, indicating that the ZnO-NPs’ crystal structure was unaffected. Furthermore, advanced oxidation process studies, which included an evaluation of COD and TOC, revealed that both the contents decreased significantly during the photocatalysis process, wherein the electron-rich organic dyes were converted to nontoxic products through mineralization. Full article
Show Figures

Figure 1

24 pages, 5386 KiB  
Article
Impact of Emotional Design: Improving Sustainable Well-Being Through Bio-Based Tea Waste Materials
by Ming Lei, Shenghua Tan, Pin Gao, Zhiyu Long, Li Sun and Yuekun Dong
Buildings 2025, 15(9), 1559; https://doi.org/10.3390/buildings15091559 - 5 May 2025
Viewed by 1452
Abstract
Commercial progress concerning biobased materials has been slow, with success depending on functionality and emotional responses. Emotional interaction research provides a novel way to shift perceptions of biobased materials. This study proposes a human-centered emotional design framework using biobased tea waste to explore [...] Read more.
Commercial progress concerning biobased materials has been slow, with success depending on functionality and emotional responses. Emotional interaction research provides a novel way to shift perceptions of biobased materials. This study proposes a human-centered emotional design framework using biobased tea waste to explore how sensory properties (form, color, odor, surface roughness) shape emotional responses and contribute to sustainable wellbeing. We used a mixed-methods approach combining subjective evaluations (Self-Assessment Manikin scale) with physiological metrics (EEG, skin temperature, pupil dilation) from 24 participants. Results demonstrated that spherical forms and high surface roughness significantly enhanced emotional valence and arousal, while warm-toned yellow samples elicited 23% higher pleasure ratings than dark ones. Neurophysiological data revealed that positive emotions correlated with reduced alpha power in the parietal lobe (αPz, p = 0.03) and a 0.3 °C rise in skin temperature, whereas negative evaluations activated gamma oscillations in central brain regions (γCz, p = 0.02). Mapping these findings to human factors engineering principles, we developed actionable design strategies—such as texture-optimized surfaces and color–emotion pairings—that transform tea waste into emotionally resonant, sustainable products. This work advances emotional design’s role in fostering ecological sustainability and human wellbeing, demonstrating how human-centered engineering can align material functionality with psychological fulfillment. Full article
Show Figures

Figure 1

15 pages, 833 KiB  
Article
Kinetic Analysis of pH Effect on the Paracetamol Degradation by an Ozonation–Blast Furnace Slags Coupled System by Neural Network Approximation
by Andrea García-Oseguera, Arizbeth Pérez-Martínez, Mariel Alfaro-Ponce, Isaac Chairez and Elizabeth Reyes
Water 2025, 17(9), 1364; https://doi.org/10.3390/w17091364 - 1 May 2025
Viewed by 1987
Abstract
The presence of paracetamol (PCT) in aquatic environments has raised environmental concerns due to its incomplete removal in conventional wastewater treatment plants. This study evaluates the degradation kinetics of PCT using an ozonation system enhanced with blast furnace slags (BFSs) as a heterogeneous [...] Read more.
The presence of paracetamol (PCT) in aquatic environments has raised environmental concerns due to its incomplete removal in conventional wastewater treatment plants. This study evaluates the degradation kinetics of PCT using an ozonation system enhanced with blast furnace slags (BFSs) as a heterogeneous catalyst under acidic (pH 3), neutral (pH 7), and basic (pH 10) conditions. Experimental results show that a simple ozonation process achieves up to 85% PCT removal within 30 min, with the highest rates being observed at pH 10. The addition of BFSs increases the reaction rate constants by 20–30% across all pH levels, attributed to the catalytic activity of metallic oxides in BFSs, which promote radical-based degradation pathways. Biochemical oxygen demand (BOD5) and HPLC analyses confirm a significant reduction in PCT and its byproducts, while ozone consumption is optimized in the catalytic system. A hybrid kinetic modeling approach, integrating pseudo-first-order kinetics and a long short-term memory (LSTM) neural network, was developed and validated, demonstrating superior predictive accuracy (R2 > 0.98) for PCT degradation dynamics compared with traditional models. Full article
(This article belongs to the Special Issue Physical–Chemical Wastewater Treatment Technologies)
Show Figures

Figure 1

14 pages, 4596 KiB  
Article
A Systematic Preparation of Liposomes with Yerba Mate (Ilex paraguariensis) Extract
by Yasmine Miguel Serafini Micheletto, Brenda Vieira de Jesus, Gisele Louro Peres and Vânia Zanella Pinto
Plants 2025, 14(9), 1325; https://doi.org/10.3390/plants14091325 - 28 Apr 2025
Viewed by 603
Abstract
Lipid vesicles, liposomes and phytosomes have been gaining significant attention in various applications for phytochemical preservation. Furthermore, yerba mate (Ilex paraguariensis) contains a high content of bioactive compounds with functional properties; however, its liquid extract exhibits limited stability. For the first [...] Read more.
Lipid vesicles, liposomes and phytosomes have been gaining significant attention in various applications for phytochemical preservation. Furthermore, yerba mate (Ilex paraguariensis) contains a high content of bioactive compounds with functional properties; however, its liquid extract exhibits limited stability. For the first time, lipid vesicles containing yerba mate extract were produced and characterized. They were prepared using pure or purified phosphatidylcholine (PC) and n-hexane as a solvent via the reverse phase evaporation method. Their characterization was conducted using Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, Zeta potential (PZ), and dynamic light scattering (DLS). The decrease or absence of FTIR bands and UV–vis absorbance (325 nm) from the yerba mate extract suggests the successful dispersion of yerba mate extract in the liposome membrane, ensuring its encapsulation or complexation. Additionally, the size of lipid vesicles decreased from 625.1 nm to 440.5 nm (pure PC) and from 690.0 nm to 518.6 nm (purified PC) after the addition of yerba mate extract PZ values showed a slight change in all vesicles enhancing colloidal stability. This, combined with the reduction observed in DLS, suggests membrane reorganization, leading to the formation of unilamellar liposomes. Our observations indicate the possible formation of phytosomes, although additional studies are necessary to confirm this mechanism. Full article
Show Figures

Figure 1

34 pages, 353 KiB  
Article
Adaptive Clinical Trials and Sample Size Determination in the Presence of Measurement Error and Heterogeneity
by Hassan Farooq, Sajid Ali, Ismail Shah, Ibrahim A. Nafisah and Mohammed M. A. Almazah
Stats 2025, 8(2), 31; https://doi.org/10.3390/stats8020031 - 25 Apr 2025
Viewed by 604
Abstract
Adaptive clinical trials offer a flexible approach for refining sample sizes during ongoing research to enhance their efficiency. This study delves into improving sample size recalculation through resampling techniques, employing measurement error and mixed distribution models. The research employs diverse sample size-recalculation strategies [...] Read more.
Adaptive clinical trials offer a flexible approach for refining sample sizes during ongoing research to enhance their efficiency. This study delves into improving sample size recalculation through resampling techniques, employing measurement error and mixed distribution models. The research employs diverse sample size-recalculation strategies standard simulation, R1 and R2 approaches where R1 considers the mean and R2 employs both mean and standard deviation as summary locations. These strategies are tested against observed conditional power (OCP), restricted observed conditional power (ROCP), promising zone (PZ) and group sequential design (GSD). The key findings indicate that the R1 approach, capitalizing on mean as a summary location, outperforms standard recalculations without resampling as it mitigates variability in recalculated sample sizes across effect sizes. The OCP exhibits superior performance within the R1 approach compared to ROCP, PZ and GSD due to enhanced conditional power. However, a tendency to inflate the initial stage’s sample size is observed in the R1 approach, prompting the development of the R2 approach that considers mean and standard deviation. The ROCP in the R2 approach demonstrates robust performance across most effect sizes, although GSD retains superiority within the R2 approach due to its sample size boundary. Notably, sample size-recalculation designs perform worse than R1 for specific effect sizes, attributed to inefficiencies in approaching target sample sizes. The resampling-based approaches, particularly R1 and R2, offer improved sample size recalculation over conventional methods. The R1 approach excels in minimizing recalculated sample size variability, while the R2 approach presents a refined alternative. Full article
11 pages, 3188 KiB  
Article
Interaction Between Iso-α-Acid Extracted from Hops and Protein Z Improves Beer Foam Quality and Stability
by Canyan Chen and Chenyan Lv
Chemistry 2025, 7(2), 65; https://doi.org/10.3390/chemistry7020065 - 19 Apr 2025
Viewed by 595
Abstract
Foam quality is an important index for judging the quality of beer. In this experiment, the interaction between PZ and iso-α-acid extracted from hops and its effect on beer foam production were investigated. According to the results of fluorescence titration experiments, the stoichiometric [...] Read more.
Foam quality is an important index for judging the quality of beer. In this experiment, the interaction between PZ and iso-α-acid extracted from hops and its effect on beer foam production were investigated. According to the results of fluorescence titration experiments, the stoichiometric number ratio of PZ interacting with iso-α-acid was 3.91 ± 0.39, and the binding constant K was (2.16 ± 0.23) × 105 M−1. According to the results of molecular dynamics simulations, the binding sites of iso-α-acid in PZ were Leu-396, Ser-292 and Lys-290. The secondary structure of PZ was altered by the addition of iso-α-acid, and the percentage of β-sheets increased from 21.75% to 29.74%. which increased the protein’s flexibility, leading to enhanced foaming, stability, and texture of the foam. Full article
(This article belongs to the Section Food Science)
Show Figures

Figure 1

12 pages, 251 KiB  
Communication
Effects of Polymorphism of the Growth Hormone Receptor (GHR) Gene on the Longevity and Milk Performance of White-Backed Cattle
by Karolina Kasprzak-Filipek, Paweł Żółkiewski, Witold Chabuz and Wioletta Sawicka-Zugaj
Animals 2025, 15(8), 1151; https://doi.org/10.3390/ani15081151 - 17 Apr 2025
Viewed by 631
Abstract
Longevity is a trait influenced by numerous factors, including environmental factors, animal health, and productivity, which translate into economic considerations. In addition to many others, genetic factors are also very important. One of the genes indirectly associated with longevity parameters is the growth [...] Read more.
Longevity is a trait influenced by numerous factors, including environmental factors, animal health, and productivity, which translate into economic considerations. In addition to many others, genetic factors are also very important. One of the genes indirectly associated with longevity parameters is the growth hormone receptor gene (GHR). Therefore, an attempt was made to link polymorphism in the 5’UTR region of the GHR gene with longevity and productivity parameters, as well as the content of individual components of milk dry matter. The study was conducted among 100 individuals of the Polish White-Backed breed, covered by genetic resources conservation. The PCR-RFLP method was used. The 836 pz product was digested with the restriction enzyme AluI, and three genotypes were identified: AA, AB, and BB, with frequencies of 0.60, 0.32, and 0.08, respectively. The results obtained were compared with the utility parameters of the animals, and the following indicators were estimated: herd life, productive life, and milking life. The conducted research shows that GHR AluI polymorphism is associated with indicators of longevity, the number of milking days, milk yield, and the content of individual components of milk dry matter. Full article
(This article belongs to the Collection Advances in Cattle Breeding, Genetics and Genomics)
19 pages, 2066 KiB  
Article
Diorganotin(IV) Complexes of Organoselenolato Ligands with Pyrazole Moieties—Synthesis, Structure and Properties
by Melinda Tamas, Roxana A. Butuza, Monica Dan and Anca Silvestru
Molecules 2025, 30(7), 1648; https://doi.org/10.3390/molecules30071648 - 7 Apr 2025
Viewed by 644
Abstract
Diorganotin(IV) compounds of types RR′Sn(SeCH2CH2pz)2 [R = R′ = nBu (2), Ph (3); R = 2-(Me2NCH2)C6H4, R′ = Me (4), nBu ( [...] Read more.
Diorganotin(IV) compounds of types RR′Sn(SeCH2CH2pz)2 [R = R′ = nBu (2), Ph (3); R = 2-(Me2NCH2)C6H4, R′ = Me (4), nBu (5), Ph (6)], and RR′SnX(SeCH2CH2pz) [R = 2-(Me2NCH2)C6H4, R′ = nBu, X = Cl (7), R′ = Me, X = SCN (9)], as well as [2-(Me2NCH2)C6H4](Me)Sn(NCS)2 (8), and the tin(II) Sn(SeCH2CH2pz)2 (10) (pz = pyrazole), were prepared by salt metathesis reactions between the appropriate diorganotin(IV) dichloride or dipseudohalide and Na[SeCH2CH2pz], with the latter freshly prepared from (pzCH2CH2)2Se2 (1). The solution behaviour of these compounds was investigated by multinuclear NMR (1H, 13C, 77Se, 119Sn), and the NMR spectra showed the existence of the Se–Sn bonds in solution. Compounds 4 and 5 showed decomposition in a solution of chlorinated solvents with the formation of selenium bridged dimeric species of type {[2-(Me2NCH2)C6H4](R’)Se}2 [R′ = Me (4-a), nBu (5-a)], as the single-crystal X-ray diffraction studies revealed, in contrast with compound 9, for which a monomeric structure was observed with the desired composition. The solid state structures of 4-a, 5-a, 8, and 9 revealed N→Sn intramolecular coordination of the nitrogen atom in the pendant CH2NMe2 arm. The NMR spectra suggested such a coordination at room temperature only for compound 7. Full article
Show Figures

Figure 1

20 pages, 5003 KiB  
Article
Assessment of Mercury Contamination in the Chalk Aquifer of the Pays de Caux and Its Implications for Public Health (France)
by Lahcen Zouhri, Jacques Delépine and Lockman Zouhri
Water 2025, 17(7), 1087; https://doi.org/10.3390/w17071087 - 5 Apr 2025
Viewed by 612
Abstract
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the [...] Read more.
Mercury is naturally present in soils at trace concentrations, but its cycle is increasingly disrupted by anthropogenic activities, which affect its distribution and behavior. Due to its toxic nature, mercury has become a significant focus in environmental and public health policies. Following the detection of mercury anomalies during groundwater quality monitoring at the Pays de Caux study site (France), a comprehensive multidisciplinary research effort was initiated. This included geological and hydrogeological studies aimed at tracking mercury concentrations in piezometric wells and identifying the sources of these anomalies. This study seeks to assess the groundwater quality and characteristics from ten hydrogeological wells. The evaluation will focus on key hydrogeological parameters, including pH, redox potential (Eh), suspended solids, and groundwater levels, as well as a detailed geochemical analysis of elements such as Hg, Fe, Mn, Zn, Pb, and Cu. The mobilization of mercury and other metallic traces elements is strongly governed by environmental factors. Hydrochemical analyses highlight the complex interplay of various parameters that influence the chemical forms and behavior of mercury in both soil and groundwater. The results from the piezometric measurement campaigns (Pz1 to Pz7) have provided crucial insights, enabling the development of hypotheses about mercury’s behavior in the chalk aquifer. It is hypothesized that impermeable areas may trap groundwater for extended periods, leading to the accumulation and abnormal concentration of mercury. This could cause mercury to be intermittently released, potentially affecting the surrounding environment. Mercury concentrations in groundwater are highly sensitive to pH and redox potential (Eh), with low pH and reducing conditions promoting mercury mobilization and the formation of toxic methylated species. The study suggests the chalk aquifer is generally in equilibrium with mercury, but fluctuations in mercury levels between Pz7 and Pz4 are likely due to the heterogeneity of the clay and geological factors such as mineral composition and fracturing. This research provides insights into mercury transfer in heterogeneous environments and emphasizes the need for continuous hydrogeological monitoring, including piezometer readings, to manage mercury dispersion in the aquifer. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop