Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (773)

Search Parameters:
Keywords = Prestressed concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 9464 KiB  
Article
Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs
by Manrong Song, Zhe Wang, Xiaolong Chen, Bingkang Liu, Shenjiang Huang and Jiaxuan He
Buildings 2025, 15(15), 2743; https://doi.org/10.3390/buildings15152743 - 4 Aug 2025
Viewed by 72
Abstract
Preventing progressive collapse induced by accidental events poses a critical challenge in the design and construction of resilient structures. While substantial progress has been made in planar structures, the progressive collapse mechanisms of precast concrete spatial structures—particularly regarding the effects of precast slabs—remain [...] Read more.
Preventing progressive collapse induced by accidental events poses a critical challenge in the design and construction of resilient structures. While substantial progress has been made in planar structures, the progressive collapse mechanisms of precast concrete spatial structures—particularly regarding the effects of precast slabs—remain inadequately explored. This study develops a refined finite element modeling approach to investigate progressive collapse mechanisms in fully bonded prestressed precast concrete (FB-PPC) spatial frames, both with and without precast slabs. The modeling approach was validated against available test data from related sub-assemblies, and applied to assess the collapse performance. A series of pushdown analyses were conducted on the spatial frames under various column removal scenarios. The load–displacement curves, slab contribution, and failure modes under different conditions were compared and analyzed. A simplified energy-based dynamic assessment was additionally employed to offer a rapid estimation of the dynamic collapse capacity. The results show that when interior or side columns fail, the progressive collapse process can be divided into the beam action stage and the catenary action (CA) stage. During the beam action stage, the compressive membrane action (CMA) of the slabs and the compressive arch action (CAA) of the beams work in coordination. Additionally, the tensile membrane action (TMA) of the slabs strengthens the CA in the beams. When the corner columns fail, the collapse stages comprise the beam action stage followed by the collapse stage. Due to insufficient lateral restraints around the failed column, the development of CA is limited. The membrane action of the slabs cannot be fully mobilized. The contribution of the slabs is significant, as it can substantially enhance the vertical resistance and restrain the lateral displacement of the columns. The energy-based dynamic assessment further reveals that FB-PPC spatial frames exhibit high ductility and residual strength following sudden column removal, with dynamic load–displacement curves showing sustained plateaus or gentle slopes across all scenarios. The inclusion of precast slabs consistently enhances both the peak load capacity and the residual resistance in dynamic collapse curves. Full article
(This article belongs to the Special Issue Research on the Seismic Performance of Reinforced Concrete Structures)
Show Figures

Figure 1

18 pages, 7618 KiB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Viewed by 192
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 7257 KiB  
Article
The Development and Statistical Analysis of a Material Strength Database of Existing Italian Prestressed Concrete Bridges
by Michele D’Amato, Antonella Ranaldo, Monica Rosciano, Alessandro Zona, Michele Morici, Laura Gioiella, Fabio Micozzi, Alberto Poeta, Virginio Quaglini, Sara Cattaneo, Dalila Rossi, Carlo Pettorruso, Walter Salvatore, Agnese Natali, Simone Celati, Filippo Ubertini, Ilaria Venanzi, Valentina Giglioni, Laura Ierimonti, Andrea Meoni, Michele Titton, Paola Pannuzzo and Andrea Dall’Astaadd Show full author list remove Hide full author list
Infrastructures 2025, 10(8), 203; https://doi.org/10.3390/infrastructures10080203 - 2 Aug 2025
Viewed by 316
Abstract
This paper reports a statistical analysis of a database archiving information on the strengths of the materials in existing Italian bridges having pre- and post-tensioned concrete beams. Data were collected in anonymous form by analyzing a stock of about 170 bridges built between [...] Read more.
This paper reports a statistical analysis of a database archiving information on the strengths of the materials in existing Italian bridges having pre- and post-tensioned concrete beams. Data were collected in anonymous form by analyzing a stock of about 170 bridges built between 1960 and 2000 and located in several Italian regions. To date, the database refers to steel reinforcing bars, concrete, and prestressing steel, whose strengths were gathered from design nominal values, acceptance certificates, and in situ test results, all derived by consulting the available documents for each examined bridge. At first, this paper describes how the available data were collected. Then, the results of a statistical analysis are presented and commented on. Moreover, goodness-of-fit tests are carried out to verify the assumption validity of a normal distribution for steel reinforcing bars and prestressing steel, and a log-normal distribution for concrete. The database represents a valuable resource for researchers and practitioners for the assessment of existing bridges. It may be applied for the use of prior knowledge within a framework where Bayesian methods are included for reducing uncertainties. The database provides essential information on the strengths of the materials to be used for a simulated design and/or for verification in the case of limited knowledge. Goodness-of-fit tests make the collected information very useful, even if probabilistic methods are applied. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Shear Mechanism of Precast Segmental Concrete Beam Prestressed with Unbonded Tendons
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su and Zi-Wei Song
Buildings 2025, 15(15), 2668; https://doi.org/10.3390/buildings15152668 - 28 Jul 2025
Viewed by 230
Abstract
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup [...] Read more.
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup strain, and tendon stress are recorded. The factors of shear span ratio, the position of segmental joints, and hybrid tendon ratio are focused on, and their effects on the shear behaviors are compared. Based on the measured responses, the shear contribution proportions of concrete segments, prestressed tendons, and stirrups are decomposed and quantified. With the observed failure modes, the truss–arch model is employed to clarify the shear mechanism of PSCBs, and simplified equations are further developed for predicting the shear strength. Using the collected test results of 30 specimens, the validity of the proposed equations is verified with a mean ratio of calculated-to-test values of 0.96 and a standard deviation of 0.11. Furthermore, the influence mechanism of shear span ratio, segmental joints, prestressing force, and hybrid tendon ratio on the shear strength is clarified. The increasing shear span ratio decreases the inclined angle of the arch ribs, thereby reducing the shear resistance contribution of the arch action. The open joints reduce the number of stirrups passing through the diagonal cracks, lowering the shear contribution of the truss action. The prestressing force can reduce the inclination of diagonal cracks, improving the contribution of truss action. The external unbonded tendon will decrease the height of the arch rib due to the second-order effects, causing lower shear strength than PSCBs with internal tendons. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

24 pages, 1295 KiB  
Article
A Performance-Based Ranking Approach for Optimizing NDT Selection for Post-Tensioned Bridge Assessment
by Carlo Pettorruso, Dalila Rossi and Virginio Quaglini
Infrastructures 2025, 10(8), 194; https://doi.org/10.3390/infrastructures10080194 - 23 Jul 2025
Viewed by 260
Abstract
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT [...] Read more.
Post-tensioned (PT) reinforced concrete bridges are particularly vulnerable structures, as the deterioration of internal tendons is often difficult to detect using conventional inspection methods or visual assessments. This paper introduces a practical framework for ranking non-destructive testing (NDT) techniques employed to assess PT systems. The ranking is based on four performance categories: measurement accuracy, ease of use, cost, and impact of disruption to bridge operations on traffic. For each NDT technique, a score is assigned for each evaluation category, and the final ranking is determined using the weighted sum model (WSM). This approach enables the final assessment to reflect the priorities of different decision-making contexts defined by the end-user such as accuracy-oriented, cost-oriented, and impact-oriented scenarios. The proposed method is then applied to an existing bridge in order to practically demonstrate its effectiveness and the flexibility of the proposed criteria. Full article
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 324
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

23 pages, 20067 KiB  
Article
On-Site Construction and Experimental Study of Prefabricated High-Strength Thin Concrete Segment Liners for the Reinforcement of Underground Box Culverts
by Shi-Qing Wang, Yanpo Bai, Hongwen Gu, Ning Zhao and Xu-Yang Cao
Buildings 2025, 15(14), 2509; https://doi.org/10.3390/buildings15142509 - 17 Jul 2025
Viewed by 292
Abstract
Conventional trenchless pipeline rehabilitation technologies are primarily designed for circular pipelines, with limited applicability to box culvert structures. Even when adapted, these methods often lead to significant reductions in the effective cross-sectional area and fail to enhance the structural load-bearing capacity due to [...] Read more.
Conventional trenchless pipeline rehabilitation technologies are primarily designed for circular pipelines, with limited applicability to box culvert structures. Even when adapted, these methods often lead to significant reductions in the effective cross-sectional area and fail to enhance the structural load-bearing capacity due to geometric incompatibilities. To overcome these limitations, this study proposes a novel construction approach that employs prefabricated high-strength thin concrete segment liners for the reinforcement of underground box culverts. The feasibility of this method was validated through full-scale (1:1) experimental construction in a purpose-built test culvert, demonstrating rapid and efficient installation. A static stacking load test was subsequently conducted on the reinforced upper section of the culvert. Results indicate that the proposed reinforcement method effectively restores structural integrity and satisfies load-bearing and serviceability requirements, even after removal of the original roof slab. Additionally, a finite element analysis was performed to simulate the stacking load test conditions. The simulation revealed that variations in the mechanical properties of the grout between the existing structure and the new lining had minimal impact on the internal force distribution and deformation behavior of the prefabricated segments. The top segment consistently exhibited semi-rigid fixation behavior. This study offers a promising strategy for the rehabilitation of urban underground box culverts, achieving structural performance recovery while minimizing traffic disruption and enhancing construction efficiency. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

26 pages, 7471 KiB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 319
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

24 pages, 4306 KiB  
Article
Structural Behavior Analyses and Simple Calculation of Asynchronous-Pouring Construction in PC Composite Girder Bridges with Corrugated Webs for Sustainability
by Bo Gan, Jun He, Sidong Feng, Baojun Guo, Bo Liu and Weisheng Lu
Buildings 2025, 15(14), 2434; https://doi.org/10.3390/buildings15142434 - 11 Jul 2025
Viewed by 293
Abstract
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges [...] Read more.
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges with CSWs, this study analyzes the sustainable development of APC from two aspects, including environmental impact and economic performance. Finite element models of APC and traditional balanced cantilever construction (TBCC) were established for the case bridge with a main span of 105 m. The stress distribution and deflection of the main girder in the cantilever construction state are compared with field measurements, and the variations in stress and deflection in typical sections during construction are analyzed. Additionally, a simplified theoretical method is proposed for calculating stress and deflection in PC composite girder bridges during the cantilever construction stage using APC. Results demonstrate that APC demonstrates significant advantages in reducing economic costs and minimizing long-term environmental impacts. Furthermore, this method ensures acceptable stress and deflection throughout construction. The proposed simplified formula for CSW deflection in the maximum segment agrees well with both measured data and finite element results, providing a valuable reference for deflection calculation in APC applications. Full article
Show Figures

Figure 1

14 pages, 12026 KiB  
Proceeding Paper
Numerical Modeling of Post-Tensioned Concrete Flat Slabs with Unbonded Tendons in Fire
by Ya Wei, Daoan Fan and Francis T. K. Au
Eng. Proc. 2025, 98(1), 31; https://doi.org/10.3390/engproc2025098031 - 4 Jul 2025
Viewed by 181
Abstract
The structural fire of post-tensioned concrete flat slabs with unbonded tendons has not been well investigated so far. An investigation based on experimental results was conducted in this study using a numerical model. Three-dimensional nonlinear finite element models of the flat slabs were [...] Read more.
The structural fire of post-tensioned concrete flat slabs with unbonded tendons has not been well investigated so far. An investigation based on experimental results was conducted in this study using a numerical model. Three-dimensional nonlinear finite element models of the flat slabs were established by employing the software ABAQUS, where nonlinear material models of concrete and prestressing steel tendons at elevated temperatures were incorporated. Meanwhile, both the transient creep strain of concrete and thermal creep strain of prestressing steel were explicitly considered, based on which the numerical results obtained agreed well with those of the tests for vertical displacements and crack patterns of slabs. The variations in the tendon stresses were examined as well. The effects of tendon distribution, level of prestressing, and slab soffit area exposed to fire were investigated in relation to the structural responses of the slabs. Tendon distribution had a minor effect, while the level of prestressing and area exposed to fire had significant effects. Full article
Show Figures

Figure 1

27 pages, 9778 KiB  
Article
Flexural Behavior of Pre-Tensioned Precast High-Performance Steel-Fiber-Reinforced Concrete Girder Without Conventional Reinforcement: Full-Scale Test and FE Modeling
by Ling Kang, Haiyun Zou, Tingmin Mu, Feifei Pei and Haoyuan Bai
Buildings 2025, 15(13), 2308; https://doi.org/10.3390/buildings15132308 - 1 Jul 2025
Viewed by 370
Abstract
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on [...] Read more.
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on the flexural behavior of a type of pre-tensioned precast HPSFRC girder without longitudinal and shear reinforcement. This type of girder consists of HPSFRC and prestressed steel strands, balancing structural performance, fabrication convenience, and cost-effectiveness. A 30.0 m full-scale girder was randomly selected from the prefabrication factory and tested through a four-point bending test. The failure mode, load–deflection relationship, and strain distribution were investigated. The experimental results demonstrated that the girder exhibited ductile deflection-hardening behavior (47% progressive increase in load after the first crack), extensive cracking patterns, and large total deflection (1/86 of effective span length), meeting both the serviceability and ultimate limit state design requirements. To complement the experimental results, a nonlinear finite element model (FEM) was developed and validated against the test data. The flexural capacity predicted by the FEM had a marginal 0.8% difference from the test result, and the predicted load–deflection curve, crack distribution, and load–strain curve were in adequate agreement with the test outcomes, demonstrating reliability of the FEM in predicting the flexural behavior of the girder. Based on the FEM, parametric analysis was conducted to investigate the effects of key parameters, namely concrete tensile strength, concrete compressive strength, and prestress level, on the flexural responses of the girder. Eventually, design recommendations and future studies were suggested. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Prefabricated Structures)
Show Figures

Figure 1

28 pages, 2766 KiB  
Article
Parameter Analysis of Pile Foundation Bearing Characteristics Based on Pore Water Pressure Using Rapid Load Test
by Jing-Jie Su, Xue-Liang Zhao, Qing Guo, Wei-Ming Gong, Yu-Chen Wang and Tong-Xing Zeng
Infrastructures 2025, 10(7), 159; https://doi.org/10.3390/infrastructures10070159 - 26 Jun 2025
Viewed by 249
Abstract
A novel approach for determining the bearing capacity of pile foundations using rapid load testing is suggested to rectify the inaccuracies arising from the presumption of a constant damping coefficient and excess pore water pressure during the evaluation of pile foundation bearing capacity [...] Read more.
A novel approach for determining the bearing capacity of pile foundations using rapid load testing is suggested to rectify the inaccuracies arising from the presumption of a constant damping coefficient and excess pore water pressure during the evaluation of pile foundation bearing capacity in soil. This research focuses on the characteristics associated with the segmented damping coefficient of pile foundations and the permeability coefficient of sand at the pile terminus, resulting in a long pulse vibration equation derived from dynamic effects. A numerical model incorporating the damping coefficient and permeability coefficient is developed, yielding the time history features of load, displacement, and acceleration. The findings indicate that (1) the long pulse vibration equation, predicated on dynamic effects, aligns more closely with the actual bearing capacity of pile foundations than traditional detection theory; (2) in the rapid load test method, the maximum load applied to sand pile foundations occurs prior to peak displacement, while the ultimate bearing capacity, after accounting for inertial forces, corresponds to the maximum displacement value; (3) the permeability coefficient significantly influences the ultra-static pore water pressure, and the testing error regarding the bearing capacity of low permeability sand pile foundations using the rapid loading method is elevated. Full article
Show Figures

Figure 1

16 pages, 1784 KiB  
Essay
Identification of Mechanical Parameters of Prestressed Box Girder Bridge Based on Falling Weight Deflectometer
by Yijun Chen, Wenqi Wu, Qingzhao Li, Pan Guo, Yingchun Cai and Jiandong Wei
Buildings 2025, 15(13), 2243; https://doi.org/10.3390/buildings15132243 - 26 Jun 2025
Viewed by 239
Abstract
Traditional damage detection methods of prestressed concrete box girder bridges have low efficiency and cannot quantify the structure’s internal damage. We used an inversion method and a falling weight deflectometer to estimate the mechanical parameters of prestressed box girder bridges. A finite element [...] Read more.
Traditional damage detection methods of prestressed concrete box girder bridges have low efficiency and cannot quantify the structure’s internal damage. We used an inversion method and a falling weight deflectometer to estimate the mechanical parameters of prestressed box girder bridges. A finite element model of the bridge dynamics under impact loading was established. A perturbation-based update was conducted, and a multi-parameter inversion algorithm was constructed. The measured data were used for the efficient identification of the bridge’s elasticity modulus and the prestressing tensile force. The theoretical validation indicated a high modeling accuracy and inversion efficiency, with a convergence accuracy within 1%. The initial value had a minimal influence on the inversion results. The engineering application showed that the maximum error of the elastic modulus between the inversion and the rebound methods was 1.55%. The loss rates of the deck slab’s elastic modulus and the prestressing force obtained from the inversion were 4.39% and 7.64%, respectively. The proposed method provides a new strategy for evaluating damage to prestressed box girder bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 8739 KiB  
Article
Bending Test and Numerical Simulation of Externally Prestressed Reinforced Concrete Beams on the Side Facade
by Zhenhua Ren, Ke Zhang, Chengwang Wu, Yi Zhang, Xiantao Zeng and Xuanming Ding
Materials 2025, 18(13), 3024; https://doi.org/10.3390/ma18133024 - 26 Jun 2025
Viewed by 251
Abstract
China has a vast number of infrastructure projects, with concrete structures accounting for the majority. To achieve the rapid and effective reinforcement and renovation of existing engineering structures, this paper proposes a novel approach for the rapid strengthening of concrete beams: an external [...] Read more.
China has a vast number of infrastructure projects, with concrete structures accounting for the majority. To achieve the rapid and effective reinforcement and renovation of existing engineering structures, this paper proposes a novel approach for the rapid strengthening of concrete beams: an external prestressed reinforcement method applied to the side facade. To investigate the effectiveness of this new reinforcement method, we used three ordinary concrete beams serving as control specimens without prestress application, nine beams reinforced using traditional external prestressing, and nine beams reinforced with external prestressing applied to the side facade. The results indicated that, in comparison to the control beam and depending on the initial prestress level, the ultimate bearing capacity of the concrete beams reinforced with traditional external prestressing increased by 152% to 155%. Additionally, for the concrete beams reinforced with external prestressing on the side face, the ultimate bearing capacity improved by 53% to 61%. Both the cracking load and yield load of the reinforced concrete significantly increased, thereby enhancing the overall working performance. Based on the finite element simulation results, it can be observed that the simulation calculation outcomes aligned closely with the experimental test results. Full article
Show Figures

Figure 1

23 pages, 17087 KiB  
Article
Assessment of Premature Failures in Concrete Railway Ties: A Case Study from Brazil
by Eliane Betânia Carvalho Costa, Maria Eduarda Guedes Coutinho, Rondinele Alberto Dos Reis Ferreira, Antonio Carlos Dos Santos and Luciano Oliveira
Materials 2025, 18(13), 2994; https://doi.org/10.3390/ma18132994 - 24 Jun 2025
Viewed by 381
Abstract
Prestressed concrete railroad ties are the global standard for railway infrastructure due to their structural stability, durability, and cost-effective maintenance. However, their long-term performance is often compromised by premature deterioration. This study investigates the degradation of prestressed concrete railways ties from a Brazilian [...] Read more.
Prestressed concrete railroad ties are the global standard for railway infrastructure due to their structural stability, durability, and cost-effective maintenance. However, their long-term performance is often compromised by premature deterioration. This study investigates the degradation of prestressed concrete railways ties from a Brazilian rail line after ten years of natural exposure, emphasizing critical implications for infrastructure maintenance. Two groups of ties, separated by 30 km, were analyzed through physical property assessments, petrography, X-ray diffraction (XRD), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The results reveal that deterioration was driven by the combined effects of alkali–silica reaction (ASR) and sulfate attack, confirmed by the presence of (N, C)ASH gels, ettringite crystallization, and cryptocrystalline materials within cracks and voids. Prestressing-induced stresses and environmental moisture further accelerated degradation, leading to a 66% reduction in mechanical strength in the T1 group. These findings demonstrate that internal swelling reactions and moisture exposure synergistically accelerate deterioration in prestressed concrete ties, particularly in low-prestress, poorly drained zones. Full article
(This article belongs to the Special Issue Performance and Durability of Reinforced Concrete Structures)
Show Figures

Figure 1

Back to TopTop