Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs
Abstract
1. Introduction
2. Finite Element Modeling Method
2.1. Prototype Structure
2.2. Column Removal Scenario
2.3. Material Constitutive
2.3.1. Concrete
2.3.2. Reinforcement
2.4. Prestress Application and Coupling Treatment
2.4.1. Prestress Application Method
2.4.2. Bond–Slip Behavior
2.5. Boundary Conditions and Loading Method
3. FEM Validation
3.1. Validation of Planar Frame
3.1.1. Overview of the FEM
3.1.2. Mesh Generation and Convergence Analysis
3.1.3. Validation of Prestress Application Method
3.1.4. Results of Validation
3.1.5. Error Analysis
3.2. Validation of Precast Slab
3.2.1. Boundary Conditions and Loading Method
3.2.2. Results of Validation
4. Progressive Collapse Resistance Analysis of Spatial Frame
4.1. Load–Displacement Curve Comparison
4.2. Resistance Contribution
4.3. Horizontal Support Reaction Forces at the Top of Columns Adjacent to the Failed Columns
4.4. Lateral Displacement at the Top of Columns Adjacent to the Failed Columns
4.5. Reinforcement Stress
4.6. Concrete Compressive Damage
4.7. Energy-Based Dynamic Assessment
4.8. Analysis and Discussion of the Progressive Collapse Resistance Mechanism
5. Conclusions
- (1)
- This paper proposes a modeling method for FB-PPC frames, considering the complex bonding behavior between prestressed strands and concrete, the force transfer mechanism at precast component connections, and the interaction between the slabs and the frame. The finite element model was validated against corresponding substructure tests with high correlation.
- (2)
- The role of precast slabs in progressive collapse is significant. Regarding strength contribution, slabs contribute an average of 34.10%, 37.88%, and 42.33% to resistance for interior, side, and corner column failures. For column top lateral displacement, the maximum value is reduced by approximately 17.8% when a slab is present in the interior column removal scenario, and by about 25.99% in the side column removal scenario, compared to the corresponding models without slabs.
- (3)
- For bare frames with interior and side column failures, the collapse resistance during the beam action phase is primarily provided by bending and compressive arch action, while catenary forces arise mainly from prestressed strands due to discontinuous reinforcement at joints. Compressive and tensile membrane actions further enhance resistance in the beam action and catenary action phases. For corner column failure, insufficient horizontal constraints limit catenary and membrane action, and only beam action and collapse phases are observed.
- (4)
- The energy-based dynamic assessment demonstrates that FB-PPC spatial frames maintain high ductility and residual strength under sudden column removal, with load–displacement curves displaying sustained plateaus or gentle slopes in all scenarios. Comparable dynamic response trends were observed in both frames with and without precast slabs, precast slabs consistently increase peak and residual strengths. This reflects effective energy absorption and activation of catenary and compressive membrane actions, which enable the structure to withstand large deformations without brittle failure—even in corner column removal scenarios—thus ensuring robust performance under dynamic loading.
- (5)
- This study was limited by the absence of full-scale physical testing and dynamic analysis of complete spatial frame systems, relying solely on quasi-static numerical simulations and a simplified energy-based dynamic assessment. Future research will focus on comprehensive experimental and theoretical investigations of spatial frame systems explicit consideration of dynamic effects, and detailed evaluation of geometric and mechanical parameters. Sensitivity and robustness analyses, as well as the adoption of more advanced modeling approaches, are also anticipated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Izquierdo, E.; Cid, A.; García-Meneses, P.; Peña-Sanabria, K.; Lerner, A.; Matus-Kramer, A.; Escalante, A. From resilience attributes to city resilience. Landsc. Urban Plan. 2022, 226, 104485. [Google Scholar] [CrossRef]
- Datola, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Lim, S.; Kim, T.; Song, J. System-reliability-based disaster resilience analysis: Framework and applications to structural systems. Struct. Saf. 2022, 96, 102202. [Google Scholar] [CrossRef]
- Li, R.; Lu, Y. Toward a resilient and smart city: Analysis on enablers for smart city resilience using an integrated DEMATEL–ISM–ANP method. Technol. Forecast. Soc. Change 2025, 215, 124081. [Google Scholar] [CrossRef]
- Yao, F.; Wang, Y. Towards resilient and smart cities: A real-time urban analytical and geo-visual system for social media streaming data. Sustain. Cities Soc. 2020, 63, 102448. [Google Scholar] [CrossRef]
- Makoond, N.; Setiawan, A.; Buitrago, M.; Adam, J. Arresting failure propagation in buildings through collapse isolation. Nature 2024, 629, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Kiakojouri, F.; Biagi, V.; Chiaia, B.; Sheidaii, M. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda. Eng. Struct. 2022, 262, 114274. [Google Scholar] [CrossRef]
- Kiakojouri, F.; Biagi, V.; Chiaia, B.; Sheidaii, M. Progressive collapse of framed building structures: Current knowledge and future prospects. Eng. Struct. 2020, 206, 110061. [Google Scholar] [CrossRef]
- Elkady, N.; Nelson, L.; Weekes, L.; Makoond, N.; Buitrago, M. Progressive collapse: Past, present, future and beyond. Structures 2024, 62, 106131. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Bhatta, S.; Wang, F.; Liu, Q. Factors influencing the progressive collapse resistance of RC frame structures. J. Build. Eng. 2020, 27, 100986. [Google Scholar] [CrossRef]
- Elkholy, S.; Shehada, A.; El-Ariss, B. Innovative scheme for RC building progressive collapse prevention. Eng. Fail. Anal. 2023, 154, 107638. [Google Scholar] [CrossRef]
- He, J.; Xu, Z.; Li, Q.; Hu, Z.; Wei, Y.; Ge, T.; Dong, Y.; Huang, X.; Milani, G. A time-domain viscoelastic model of nonlinear compression behavior under cyclic loading. Int. J. Eng. Sci. 2025, 208, 104200. [Google Scholar] [CrossRef]
- Li, Y.; Lu, X.; Guan, H.; Ye, L. An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures. Eng. Struct. 2011, 33, 2931–3942. [Google Scholar] [CrossRef]
- Qian, K.; Li, B. Performance of three-dimensional reinforced concrete beam-column substructures under loss of a corner column scenario. J. Struct. Eng. 2012, 139, 584–594. [Google Scholar] [CrossRef]
- Yang, X.; Feng, L.; Gu, X. Progressive collapse resistance of RC beam-slab substructure under two-adjacent-edge-columns removal scenario. J. Build. Eng. 2023, 80, 108115. [Google Scholar] [CrossRef]
- Lu, X.; Lin, K.; Li, Y.; Guan, H.; Ren, P.; Zhou, L. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario. Eng. Struct. 2017, 149, 91–103. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, W.; Huang, T.; Qian, K.; Dong, X. Effect of steel reinforcement corrosion on progressive collapse resistant of beam-slab structure with interior column failure. Eng. Struct. 2024, 312, 118257. [Google Scholar] [CrossRef]
- Ibrahim, M.; Aref, A.; Khaled, S.; Moncef, L.; Rabin, T.; Rabin, A. Progressive collapse resistance of RC beam–slab substructures made with rubberized concrete. Buildings 2022, 12, 1724. [Google Scholar] [CrossRef]
- Shan, S.; Wang, H.; Li, S.; Wang, B. Evaluation of progressive collapse resistances of RC frame with contributions of beam, slab and infill wall. Structures 2023, 53, 1463–1475. [Google Scholar] [CrossRef]
- Kumar, P.; Raghavendra, T. Numerical studies on the effects of infill walls for progressive collapse resistance of RC building. J. Build. Pathol. Rehabil. 2025, 10, 35. [Google Scholar] [CrossRef]
- Feng, D.; Zhang, M.; Brunesi, E.; Parisi, F.; Yu, J.; Zhou, Z. Investigation of 3D effects on dynamic progressive collapse resistance of RC structures considering slabs and infill walls. J. Build. Eng. 2022, 54, 104421. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Kang, S.; Hwang, H.; Choi, H. Effect of joint details on progressive collapse resistance of precast concrete structures. J. Build. Eng. 2023, 69, 106217. [Google Scholar] [CrossRef]
- Shaheen, M.; Atar, M.; Cunningham, L. Enhancing progressive collapse resistance of steel structures using a new bolt sleeve device. J. Constr. Steel Res. 2023, 203, 107843. [Google Scholar] [CrossRef]
- Alrubaidi, M.; Alhammadi, S. Effectiveness of masonry infill walls on steel frames with different beam-column connections under progressive collapse. Structures 2022, 38, 202–224. [Google Scholar] [CrossRef]
- Ji, S.; Wang, W.; Chen, W.; Xian, W.; Wang, R.; Shi, Y. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Struct. 2023, 190, 110968. [Google Scholar] [CrossRef]
- Kiakojouri, F.; Zeinali, E.; Adam, J.; Biagi, V. Experimental studies on the progressive collapse of building structures: A review and discussion on dynamic column removal techniques. Structures 2023, 48, 105059. [Google Scholar] [CrossRef]
- Trapani, F.; Sberna, A.; Benedetto, M.; Villar, S.; Demartino, C.; Marano, G. Dynamic progressive collapse response of multi-storey frame structures with masonry infills. Structures 2023, 54, 1336–1349. [Google Scholar] [CrossRef]
- Elsanadedy, H.; Khawaji, M.; Abbas, H.; Almusallam, T.; Al-Salloum, Y. Numerical modeling for assessing progressive collapse risk of RC buildings exposed to blast loads. Structures 2023, 48, 1190–1208. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Shi, Y.; Ding, Y.; Zhang, H. Experimental investigation on dynamic response behavior of PC beam-column sub-assemblages under middle-joint drop-weight loading. J. Build. Eng. 2023, 80, 108084. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, J.; Zhao, W.; Yu, X. Numerical study on the dynamic behaviors of masonry wall under far-range explosions. Buildings 2023, 13, 443. [Google Scholar] [CrossRef]
- Ke, C.; Long, H.; Jiang, J. Study on the anti-progressive collapse behavior of steel frame structures under close-range blast loading. Buildings 2024, 14, 1387. [Google Scholar] [CrossRef]
- Kocaman, I. Examination of the damage limits and collapse mechanism of Adıyaman Ulu Mosque with finite element model. Structures 2024, 70, 107787. [Google Scholar] [CrossRef]
- ACI 318-14; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2014.
- GSA2016; Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects. United States General Services Administration: Washington, DC, USA, 2016.
- DoD2016; Design of Buildings to Resist Progressive Collapse. Department of Defense: Washington, DC, USA, 2016.
- T/CECS 392—2021; Standard for Anti-Collapse Design of Building Structures. China Planning Press: Beijing, China, 2021.
- Thamboo, J.; Zahra, T.; Navaratnam, S.; Asad, M.; Poologanathan, K. Prospects of developing prefabricated masonry walling systems in Australia. Buildings 2021, 11, 294. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Yang, D.; Deng, E.; Wang, H.; Pang, S.; Cai, L.; Gao, S. Mechanical-property tests on assembled-type light steel modular house. J. Constr. Steel Res. 2020, 168, 105981. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Long, E.; Deng, S. An experimental study on the indoor thermal environment in prefabricated houses in the subtropics. Energy Build. 2016, 127, 529–539. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Z.; Ning, H.; Zhang, X. Field Investigation on Indoor Thermal Environment at a Rural Passive Solar House in Severe Cold Area of China. Procedia Eng. 2020, 28, 1265–1290. [Google Scholar] [CrossRef]
- He, J.; Xu, Z.; Zhang, L.; Lin, Z.; Hu, Z.; Li, Q.; Dong, Y. Shaking table tests and seismic assessment of a full-scale precast concrete sandwich wall panel structure with bolt connections. Eng. Struct. 2023, 278, 115543. [Google Scholar] [CrossRef]
- He, J.; Xu, Z.; Hu, Z.; Zhang, L.; Li, Q.; Dong, Y.; Milani, G. A novel multi-dimensional viscoelastic mitigation device: Shake table tests and numerical assessment of precast concrete sandwich wall panel structure. Eng. Struct. 2025, 336, 120388. [Google Scholar] [CrossRef]
- Kang, S.; Tan, K. Behaviour of precast concrete beam column sub-assemblages subject to column removal. Eng. Struct. 2015, 93, 85–96. [Google Scholar] [CrossRef]
- Joshi, D.; Patela, P.; Rangwala, H.; Patoliya, B. Experimental and numerical studies of precast connection under progressive collapse scenario. Adv. Concr. Constr. 2020, 9, 235–248. [Google Scholar] [CrossRef]
- Zhang, R.; Gou, T.; Li, A. Experimental investigation into demountable dry connections for fully precast frame structures through shaking table tests. Thin-Walled Struct. 2024, 201, 112014. [Google Scholar] [CrossRef]
- Zhao, Z.; Cheng, X.; Li, Y.; Diao, M.; Guan, H.; Zhang, W.; Liu, Y. Progressive collapse resistance of precast concrete beam–column assemblies using dry connections under uniformly distributed loading condition. Eng. Struct. 2024, 306, 117820. [Google Scholar] [CrossRef]
- Al-Salloum, Y.; Alrubaidi, M.; Elsanadedy, H. Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates. Eng. Struct. 2018, 161, 146–160. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, T.; Pei, Y.; Hwang, H.; Hu, X.; Yi, W.; Deng, L. Static load test on progressive collapse resistance of fully assembled precast concrete frame structure. Eng. Struct. 2019, 200, 109719. [Google Scholar] [CrossRef]
- Qian, K.; Liu, Y.; Yang, T.; Li, B. Progressive Collapse Resistance of Posttensioned Concrete Beam-Column Subassemblages with Unbonded Posttensioning Strands. J. Struct. Eng. 2017, 144, 04017182. [Google Scholar] [CrossRef]
- Qian, K.; Liang, S.; Fu, F.; Fang, Q. Progressive collapse resistance of precast concrete beam-column sub-assemblages with high-performance dry connections. Eng. Struct. 2019, 198, 109552. [Google Scholar] [CrossRef]
- Buitrago, M.; Satiawan, A.; Makoond, N.; Gerbaudo, M.; Marin, L.; Cetina, D.; Caredda, G.; Sempertegui, G.; Oliver, M.; Adam, J. Failure analysis after the progressive collapse of a precast building. Eng. Struct. 2024, 321, 118893. [Google Scholar] [CrossRef]
- Buitrago, M.; Sagaseta, J.; Makoond, N.; Setiawan, A.; Adam, J. Robustness of a full-scale precast building structure after edge column failure. Eng. Struct. 2025, 326, 119495. [Google Scholar] [CrossRef]
- Elsanadedy, H.; Alrubaidi, M.; Abbas, H.; Almusallam, T.; Al-Salloum, Y. Progressive collapse risk of 2D and 3D steel-frame assemblies having shear connections. J. Constr. Steel Res. 2021, 179, 106533. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R. Extreme response of reinforced concrete buildings through fiber force-based finite element analysis. Eng. Struct. 2014, 69, 206–215. [Google Scholar] [CrossRef]
- Brunesi, E.; Nascimbene, R.; Parisi, F.; Augenti, N. Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis. Eng. Struct. 2015, 104, 65–79. [Google Scholar] [CrossRef]
- Brunesi, E.; Parisi, F. Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis. Eng. Struct. 2017, 152, 579–596. [Google Scholar] [CrossRef]
- Parisi, F. Blast fragility and performance-based pressure–impulse diagrams of European reinforced concrete columns. Eng. Struct. 2015, 103, 285–297. [Google Scholar] [CrossRef]
- Parisi, F.; Scalvenzi, M. Progressive collapse assessment of gravity-load designed European RC buildings under multi-column loss scenarios. Eng. Struct. 2020, 209, 110001. [Google Scholar] [CrossRef]
- Mousapoor, E.; Ghiasi, V.; Madandoust, R. Macro modeling of slab-column connections in progressive collapse with post-punching effect. Structures 2020, 27, 837–852. [Google Scholar] [CrossRef]
- Feng, D.; Shi, H.; Parisi, F.; Brunesi, E.; Wang, C. Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures. Eng. Fail. Anal. 2021, 129, 105683. [Google Scholar] [CrossRef]
- Huber, J.; Bita, H.; Tannert, T.; Berg, S. Finite element analysis of alternative load paths to prevent disproportionate collapse in platform-type CLT floor systems. Eng. Struct. 2021, 240, 112362. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Shi, Y.; Ding, Y. Numerical and analytical investigation on progressive collapse resistance of prestressed precast concrete frame structures. J. Build. Eng. 2022, 52, 104417. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for Design of Concrete Structures. China Building Industry Press: Bejing, China, 2011.
- Zhu, X.; Pang, R.; Xu, Q. Experimental study on vertical mechanical behavior of new-type precast RC floor. J. Build. Struct. 2013, 34, 123–130. [Google Scholar] [CrossRef]
- Nzabonimpa, J.; Hong, W.; Kim, J. Nonlinear finite element model for the novel mechanical beam-column joints of precast concrete-based frames. Comput. Struct. 2017, 189, 31–48. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Y. Finite element analysis of progressive collapse resistance of precast concrete frame beam-column substructures with UHPC connections. J. Build. Eng. 2024, 82, 108338. [Google Scholar] [CrossRef]
- Feng, F.; Hwang, H.; Zhou, Y. Effect of three-dimensional space on progressive collapse resistance of reinforced concrete frames under various column removal scenarios. J. Build. Struct. 2024, 90, 109405. [Google Scholar] [CrossRef]
- Abaqus 6.14, Analysis User’s Manual; Dassault Systems Simulia Corp., USA (2014). Available online: https://www.3ds.com/support/documentation/user-guides (accessed on 27 May 2025).
- Dang, C.; Murray, C.; Floyd, R.; Hale, W.; Martí-Vargas, J. Analysis of bond stress distribution for prestressing strand by Standard Test for Strand Bond. Eng. Struct. 2014, 72, 152–159. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Shi, Y.; Zhao, Y.; Zhao, B. Experimental investigation on progressive collapse performance of prestressed precast concrete frames with dry joints. Eng. Struct. 2021, 246, 113071. [Google Scholar] [CrossRef]
- Shan, S.; Li, S. Collapse performances of 3D post-tensioned RC frame structures considering combined influences of infill walls and floor slabs. J. Build. Eng. 2023, 77, 107566. [Google Scholar] [CrossRef]
- Song, M.; Hu, R.; Huang, S.; Liu, C.; He, J.; Liu, B. Experimental research and theoretical analysis on the continuous collapse resistance performance of prefabricated prestressed concrete frame side columns during demolition. J. Build. Sci. Eng. 2022, 39, 64–74. [Google Scholar] [CrossRef]
- Liu, Y. Experimental Study on the Performance of Pre-Compressed Assembled Prestressed Concrete Frame Against Continuous Collapse During Center Column Removal. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019. [Google Scholar]
- Sagiroglu, S.; Sasani, M. Progressive Collapse-Resisting Mechanisms of Reinforced Concrete Structures and Effects of Initial Damage Locations. J. Struct. Eng. 2013, 140, 04013073. [Google Scholar] [CrossRef]
- Izzuddin, B.; Vlassis, A.; Elghazouli, A.; Nethercot, D. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Eng. Struct. 2008, 30, 1308–1318. [Google Scholar] [CrossRef]
- Pham, A.; Tan, K.; Yu, J. Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse. Eng. Struct. 2017, 149, 2–20. [Google Scholar] [CrossRef]
Materials | Material Property | Test Value | Design Code Value [63] |
---|---|---|---|
Reinforcement | Yield strength (MPa) | 457.1 | 400 |
Ultimate strength (MPa) | 625.9 | 540 | |
Elastic modulus (MPa) | 2.0 × 105 | 2.0 × 105 | |
Prestressed strand | Ultimate strength (MPa) | 1860 | 1860 |
Elastic modulus (MPa) | 1.95 × 105 | 1.95 × 105 | |
Concrete | Compressive strength (MPa) | 37.1 | 40 |
Elastic modulus (MPa) | 3.19 × 104 | 3.25 × 104 |
Type | Mesh1 | Mesh2 | Mesh3 | Mesh4 |
---|---|---|---|---|
Beam and column | 50 × 50 × 50 | 50 × 50 × 50 | 25 × 25 × 25 | 15 × 15 × 15 |
Corbel | 50 × 50 × 50 | 25 × 25 × 25 | 25 × 25 × 25 | 15 × 15 × 15 |
Steel rebars | 50 | 30 | 30 | 15 |
Prestressed strands | 50 | 15 | 15 | 15 |
Total number of elements | 20,830 | 36,966 | 99,888 | 444,610 |
Increment step | 205,779 | 541,742 | 544,194 | 893,940 |
Steps | Current Load (kN·m−2) | Total Load (kN·m−2) |
---|---|---|
1 | 0.94 | 0.94 |
⋯ | ⋯ | ⋯ |
4 | 0.94 | 3.76 |
5 | 0.47 | 4.23 |
⋯ | ⋯ | ⋯ |
17 | 0.47 | 9.87 |
18 | 0.17 | 10.04 |
19 | 0.34 | 10.38 |
20 | 0.34 | 10.72 |
21 | 1.33 | 12.05 |
22 | 2.35 | 14.55 |
P1 (kN) | ∆1 (mm) | Transition Displacement (mm) | P2 (kN) | ∆2 (mm) | θ (rad) | |
---|---|---|---|---|---|---|
IC | 402.17 | 98.22 | 355.95 | 465.20 | 647.24 | 0.243 |
IC–S | 629.91 | 90.81 | 542.29 | 702.26 | 613.81 | 0.259 |
SC | 300.32 | 109.05 | 95.24 | 329.65 | 582.97 | 0.232 |
SC–S | 462.24 | 86.93 | 279.75 | 525.91 | 580.85 | 0.243 |
CC | 196.34 | 75.04 | / | / | / | 0.205 |
CC–S | 268.74 | 57.76 | / | / | / | 0.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Wang, Z.; Chen, X.; Liu, B.; Huang, S.; He, J. Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs. Buildings 2025, 15, 2743. https://doi.org/10.3390/buildings15152743
Song M, Wang Z, Chen X, Liu B, Huang S, He J. Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs. Buildings. 2025; 15(15):2743. https://doi.org/10.3390/buildings15152743
Chicago/Turabian StyleSong, Manrong, Zhe Wang, Xiaolong Chen, Bingkang Liu, Shenjiang Huang, and Jiaxuan He. 2025. "Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs" Buildings 15, no. 15: 2743. https://doi.org/10.3390/buildings15152743
APA StyleSong, M., Wang, Z., Chen, X., Liu, B., Huang, S., & He, J. (2025). Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs. Buildings, 15(15), 2743. https://doi.org/10.3390/buildings15152743