Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = Povarov reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2618 KiB  
Article
Phosphine Oxide Indenoquinoline Derivatives: Synthesis and Biological Evaluation as Topoisomerase I Inhibitors and Antiproliferative Agents
by Alba Rodriguez-Paniagua, Cinzia Tesauro, Birgitta R. Knudsen, Maria Fuertes and Concepción Alonso
Molecules 2024, 29(24), 5992; https://doi.org/10.3390/molecules29245992 - 19 Dec 2024
Cited by 1 | Viewed by 1219
Abstract
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5H-indeno[2,1-c]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction [...] Read more.
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5H-indeno[2,1-c]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF3·Et2O. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-c]quinolin-7-one phosphine oxides 10. The synthesized derivatives were evaluated as TOP1 inhibitors showing higher inhibition values than CPT at prolonged incubation times (5 min). Inhibition of TOP1 was even observed after 30 min of incubation. The cytotoxic activities of these compounds were also studied against different cancer cell lines and a non-cancerous cell line. While some compounds showed cytotoxicity against some cancerous cells, none of the compounds showed any cytotoxicity against the non-cancerous cell line, MRC-5, in contrast to CPT, which exhibits high toxicity against this cell line. These results represent a very interesting advance since the heterocyclic phosphine oxide derivatives have important properties as TOP1 inhibitors and show an interesting cytotoxicity against different cell lines. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Figure 1

16 pages, 2593 KiB  
Article
Boronic Acid-Containing 3H- pyrazolo[4,3-f]quinoline Compounds as Dual CLK/ROCK Inhibitors with Anticancer Properties
by Neetu Dayal, Riddhi Chaudhuri, Kofi Simpa Yeboah, Nickolas R. Brauer and Herman O. Sintim
Pharmaceuticals 2024, 17(12), 1660; https://doi.org/10.3390/ph17121660 - 10 Dec 2024
Viewed by 1722
Abstract
Background: The protein kinases CLK and ROCK play key roles in cell growth and migration, respectively, and are potential anticancer targets. ROCK inhibitors have been approved by the FDA for various diseases and CLK inhibitors are currently being trialed in the clinic as [...] Read more.
Background: The protein kinases CLK and ROCK play key roles in cell growth and migration, respectively, and are potential anticancer targets. ROCK inhibitors have been approved by the FDA for various diseases and CLK inhibitors are currently being trialed in the clinic as anticancer agents. Compounds with polypharmacology are desired, especially in oncology, due to the potential for high efficacy as well as addressing resistance issues. In this report, we have identified and characterized novel, boron-containing dual CLK/ROCK inhibitors with promising anticancer properties. Methods: A library of boronic acid-based CLK/ROCKi was synthesized via Povarov/Doebner-type multicomponent reactions. Kinase inhibition screening and cancer cell viability assays were performed to identify the hit compounds. To gain insights into the probable binding modes of the compounds to the kinases, docking studies were performed. Cell cycle analysis, qPCR and immunoblotting were carried out to further characterize the mode(s) of action of the lead candidates. Results: At 25 nM, the top compounds HSD1400 and HSD1791 inhibited CLK1 and 2 and ROCK2 at greater than 70%. While HSD1400 also inhibited CLK4, the C1 methylated analog HSD1791 did not inhibit CLK4. Antitumor effects of the top compounds were evaluated and dose–response analysis indicated potent inhibition of renal cancer and leukemia cell growth. Immunoblotting results indicated that the top compounds induce DNA damage via upregulation of p-H2AX. Moreover, flow cytometry results demonstrated that the top compounds promote cell cycle arrest in the renal cancer cell line, Caki-1. qPCR and immunoblotting analysis upon HSD1791 dosing indicated suppression of cyclin D/Rb oncogenic pathway upon compound treatment. Conclusions: Novel boronic acid-containing pyrazolo[4,3-f]quinoline-based dual CLK/ROCK inhibitors were identified. The so-called “magic methylation” design approach was used to tune CLK selectivity. Additionally, the findings demonstrate potent in vitro anticancer activity of the lead candidates against renal cancer and leukemia. This adds to the growing list of boron-containing compounds that display biological activities. Full article
Show Figures

Graphical abstract

7 pages, 1393 KiB  
Proceeding Paper
Synthesis and In-Silico Analysis of Novel Tetrahydroquinolines and Their Antioxidant Activity
by Cristóbal Dinamarca, Mercedes Pinochet and Margarita Gutierrez
Chem. Proc. 2024, 16(1), 99; https://doi.org/10.3390/ecsoc-28-20135 - 14 Nov 2024
Viewed by 532
Abstract
Within the area of study of neurodegenerative diseases, particularly Alzheimer’s disease (AD), this research focused on the synthesis and evaluation of novel tetrahydroquinoline (THQ) derivatives with potential antioxidant activity. The toluidine N-propargylation synthesis protocol was optimized, achieving a significant increase in yield by [...] Read more.
Within the area of study of neurodegenerative diseases, particularly Alzheimer’s disease (AD), this research focused on the synthesis and evaluation of novel tetrahydroquinoline (THQ) derivatives with potential antioxidant activity. The toluidine N-propargylation synthesis protocol was optimized, achieving a significant increase in yield by using sodium carbonate and reaction temperature variation. Subsequently, four THQ compounds with alkene variation were successfully synthesized, including some which had not been previously reported in the literature. The synthesized compounds were characterized by nuclear magnetic resonance (NMR), mass spectrometry, and infrared spectroscopy (IR), which confirmed their structures and purity. In silico analyses performed with SwissADME and OSIRIS Property Explorer indicated that most of the compounds exhibited excellent drug-like characteristics and favorable pharmacokinetic profiles. Antioxidant evaluation was performed using DPPH and ABTS assays, in which all compounds demonstrated excellent antioxidant capacity, with EC50 values below 10 μg/mL in the ABTS assay, significantly outperforming the ascorbic acid control (EC50 = 35 μg/mL). The results suggest that the predominant radical-scavenging mechanism is single electron transfer (SET). This study provides a solid foundation for further investigations into the potential of THQs’ derivatives as antioxidants, and potential cholinesterase inhibitors in the context of neurodegenerative diseases such as Alzheimer’s. As a future projection, an enzymatic evaluation, including regarding mechanisms of action and the exploration of a hybrid synthesis of THQ/triazole, is proposed based on these promising results. Full article
18 pages, 10785 KiB  
Article
Divergent Synthesis of 5,7-Diazaullazines Derivatives through a Combination of Cycloisomerization with Povarov or Alkyne–Carbonyl Metathesis
by Jonas Polkaehn, Peter Ehlers, Alexander Villinger and Peter Langer
Molecules 2024, 29(9), 2159; https://doi.org/10.3390/molecules29092159 - 6 May 2024
Viewed by 1445
Abstract
Ullazines and their π-expanded derivatives have gained much attention as active components in various applications, such as in organic photovoltaic cells or as photosensitizers for CO2 photoreduction. Here, we report the divergent synthesis of functionalized diazaullazines by means of two different domino-reactions [...] Read more.
Ullazines and their π-expanded derivatives have gained much attention as active components in various applications, such as in organic photovoltaic cells or as photosensitizers for CO2 photoreduction. Here, we report the divergent synthesis of functionalized diazaullazines by means of two different domino-reactions consisting of either a Povarov/cycloisomerization or alkyne–carbonyl metathesis/cycloisomerization protocol. The corresponding quinolino-diazaullazine and benzoyl-diazaullazine derivatives were obtained in moderate to good yields. Their optical and electronic properties were studied and compared to related, literature-known compounds to obtain insights into the impact of nitrogen doping and π-expansion. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

20 pages, 6261 KiB  
Article
A Molecular Electron Density Theory Study of the Domino Reaction of N-Phenyl Iminoboranes with Benzaldehyde Yielding Fused Bicyclic Compounds
by Luis R. Domingo, María José Aurell and Mar Ríos-Gutiérrez
Molecules 2023, 28(17), 6211; https://doi.org/10.3390/molecules28176211 - 23 Aug 2023
Cited by 2 | Viewed by 1538
Abstract
The reaction of N-phenyl iminoborane with benzaldehyde yielding a fused aromatic compound, recently reported by Liu et al., has been studied within the Molecular Electron Density Theory (MEDT). Formation of the fused aromatic compound is a domino process that comprises three consecutive [...] Read more.
The reaction of N-phenyl iminoborane with benzaldehyde yielding a fused aromatic compound, recently reported by Liu et al., has been studied within the Molecular Electron Density Theory (MEDT). Formation of the fused aromatic compound is a domino process that comprises three consecutive reactions: (i) formation of a weak molecular complex between the reagents; (ii) an intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent of iminoborane; and (iii) a formal 1,3-hydrogen shift yielding the final fused aromatic compound. The two last steps correspond to a Friedel–Crafts acylation reaction, the product of the second reaction being the tetrahedral intermediate of an electrophilic aromatic substitution reaction. However, the presence of the imino group adjacent to the aromatic ring strongly stabilizes the corresponding intermediate, being the reaction product when the ortho positions are occupied by t-butyl substituents. This domino reaction shows a great similitude with the Brønsted acid catalyzed Povarov reaction. Although N-phenyl iminoborane can experience a formal [2+2] cycloaddition reaction with benzaldehyde, its higher activation Gibbs free energy compared to the intramolecular electrophilic attack of the activated carbonyl carbon of benzaldehyde on the ortho position of the N-phenyl substituent, 6.6 kcal·mol−1, prevents the formation of the formal [2+2] cycloadduct. The present MEDT study provides a different vision of the molecular mechanism of these reactions based on the electron density. Full article
(This article belongs to the Special Issue Recent Progress in Heteroorganic Chemistry)
Show Figures

Figure 1

13 pages, 1638 KiB  
Entry
Cycloadditions and Cyclization Reactions via Post-Synthetic Modification and/or One-Pot Methodologies for the Stabilization of Imine-Based Covalent Organic Frameworks
by Elena Gala, M. Mar Ramos and José L. Segura
Encyclopedia 2023, 3(3), 795-807; https://doi.org/10.3390/encyclopedia3030057 - 25 Jun 2023
Cited by 1 | Viewed by 3397
Definition
Interest in covalent organic frameworks as high-value materials has grown steadily since their development in the 2000s. However, the great advantage that allows us to obtain these crystalline materials—the reversibility of the bonds that form the network—supposes a drawback in terms of thermal [...] Read more.
Interest in covalent organic frameworks as high-value materials has grown steadily since their development in the 2000s. However, the great advantage that allows us to obtain these crystalline materials—the reversibility of the bonds that form the network—supposes a drawback in terms of thermal and chemical stability. Among the different strategies employed for the stabilization of imine-based Covalent Organic Frameworks (COFs), cycloaddition and other related cyclization reactions are especially significant to obtain highly stable networks with extended π-delocalization and new functionalities, expanding even further the potential application of these materials. Therefore, this entry gathered the most recent research strategies for obtaining stable COFs by means of cyclization reactions, including the Povarov reaction and intramolecular oxidative cyclization reactions as well as some other recent innovative approaches. Full article
(This article belongs to the Section Chemistry)
Show Figures

Graphical abstract

14 pages, 3551 KiB  
Article
Efficient AntiMycolata Agents by Increasing the Lipophilicity of Known Antibiotics through Multicomponent Reactions
by Angela Trejo, Carme Masdeu, Irene Serrano-Pérez, Marina Pedrola, Narcís Juanola, Ouldouz Ghashghaei, Guadalupe Jiménez-Galisteo, Rodolfo Lavilla, Francisco Palacios, Concepción Alonso and Miguel Viñas
Antibiotics 2023, 12(1), 83; https://doi.org/10.3390/antibiotics12010083 - 3 Jan 2023
Cited by 4 | Viewed by 3991
Abstract
New antibiotic agents were prepared using Povarov and Ugi multicomponent reactions upon the known drugs sulfadoxine and dapsone. The prepared derivatives, with increased lipophilicity, showed improved efficiency against Mycolata bacteria. Microbiological guidance for medicinal chemistry is a powerful tool to design new and [...] Read more.
New antibiotic agents were prepared using Povarov and Ugi multicomponent reactions upon the known drugs sulfadoxine and dapsone. The prepared derivatives, with increased lipophilicity, showed improved efficiency against Mycolata bacteria. Microbiological guidance for medicinal chemistry is a powerful tool to design new and effective antimicrobials. In this case, the readily synthesized compounds open new possibilities in the search for antimicrobials active on mycolic acid-containing bacteria. Full article
Show Figures

Figure 1

23 pages, 5550 KiB  
Article
4-(Aryl)-Benzo[4,5]imidazo[1,2-a]pyrimidine-3-Carbonitrile-Based Fluorophores: Povarov Reaction-Based Synthesis, Photophysical Studies, and DFT Calculations
by Victor V. Fedotov, Maria I. Valieva, Olga S. Taniya, Semen V. Aminov, Mikhail A. Kharitonov, Alexander S. Novikov, Dmitry S. Kopchuk, Pavel A. Slepukhin, Grigory V. Zyryanov, Evgeny N. Ulomsky, Vladimir L. Rusinov and Valery N. Charushin
Molecules 2022, 27(22), 8029; https://doi.org/10.3390/molecules27228029 - 19 Nov 2022
Cited by 12 | Viewed by 3728
Abstract
A series of novel 4-(aryl)-benzo[4,5]imidazo[1,2-a]pyrimidine-3-carbonitriles were obtained through the Povarov (aza-Diels–Alder) and oxidation reactions, starting from benzimidazole-2-arylimines. Based on the literature data and X-ray diffraction analysis, it was discovered that during the Povarov reaction, [1,3] sigmatropic rearrangement leading to dihydrobenzimidazo[1,2-a [...] Read more.
A series of novel 4-(aryl)-benzo[4,5]imidazo[1,2-a]pyrimidine-3-carbonitriles were obtained through the Povarov (aza-Diels–Alder) and oxidation reactions, starting from benzimidazole-2-arylimines. Based on the literature data and X-ray diffraction analysis, it was discovered that during the Povarov reaction, [1,3] sigmatropic rearrangement leading to dihydrobenzimidazo[1,2-a]pyrimidines took place. The structures of all the obtained compounds were confirmed based on the data from 1H- and 13C-NMR spectroscopy, IR spectroscopy, and elemental analysis. For all the obtained compounds, their photophysical properties were studied. In all the cases, a positive emission solvatochromism with Stokes shifts from 120 to 180 nm was recorded. Aggregation-Induced Emission (AIE) has been illustrated for compound 6c using different water fractions (fw) in THF. The compounds 6c and 6f demonstrated changes in emission maxima or/and intensities after mechanical stimulation. Full article
(This article belongs to the Special Issue Synthesis of Heteroaromatic Compounds)
Show Figures

Figure 1

92 pages, 71810 KiB  
Review
An Overview on the Synthesis of Fused Pyridocoumarins with Biological Interest
by Matina D. Douka and Konstantinos E. Litinas
Molecules 2022, 27(21), 7256; https://doi.org/10.3390/molecules27217256 - 26 Oct 2022
Cited by 22 | Viewed by 4592
Abstract
Pyridocoumarins are a class of synthetic and naturally occurring organic compounds with interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyridocoumarins and presents the biological properties of those compounds. The synthesis involves the formation of the pyridine [...] Read more.
Pyridocoumarins are a class of synthetic and naturally occurring organic compounds with interesting biological activities. This review focuses on the synthetic strategies for the synthesis of pyridocoumarins and presents the biological properties of those compounds. The synthesis involves the formation of the pyridine ring, at first, from a coumarin derivative, such as aminocoumarins, hydroxycoumarins, or other coumarins. The formation of a pyranone moiety follows from an existing pyridine or piperidine or phenol derivative. For the above syntheses, [4 + 2] cycloaddition reactions, multi-component reactions (MCR), as well as metal-catalyzed reactions, are useful. Pyridocoumarins present anti-cancer, anti-HIV, antimalarial, analgesic, antidiabetic, antibacterial, antifungal, anti-inflammatory, and antioxidant activities. Full article
(This article belongs to the Special Issue Coumarin and Its Derivatives II)
Show Figures

Graphical abstract

42 pages, 13456 KiB  
Review
Multicomponent Reactions for the Synthesis of Active Pharmaceutical Ingredients
by Ángel Cores, José Clerigué, Emmanuel Orocio-Rodríguez and J. Carlos Menéndez
Pharmaceuticals 2022, 15(8), 1009; https://doi.org/10.3390/ph15081009 - 17 Aug 2022
Cited by 51 | Viewed by 9742
Abstract
Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis. While relatively less [...] Read more.
Multicomponent reactions 9i.e., those that engage three or more starting materials to form a product that contains significant fragments of all of them), have been widely employed in the construction of compound libraries, especially in the context of diversity-oriented synthesis. While relatively less exploited, their use in target-oriented synthesis offers significant advantages in terms of synthetic efficiency. This review provides a critical summary of the use of multicomponent reactions for the preparation of active pharmaceutical principles. Full article
(This article belongs to the Special Issue Multicomponent and Domino Reactions in Drug Discovery)
Show Figures

Graphical abstract

7 pages, 999 KiB  
Short Note
[4-(3,4-Dimethoxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-yl)](furan-2-yl)methanone
by Sandra M. Bonilla-Castañeda, Andrés F. Villamizar-Mogotocoro and Vladimir V. Kouznetsov
Molbank 2022, 2022(3), M1413; https://doi.org/10.3390/M1413 - 25 Jul 2022
Cited by 1 | Viewed by 2986
Abstract
A N-(2,4-diaryltetrahydroquinolin-1-yl) furan-2-carboxamide derivative, [4-(3,4-dimethoxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-yl)](furan-2-yl)methanone, was synthesized in a two-step procedure from p-toluidine, benzaldehyde, and trans-methyl-isoeugenol as commercial starting reagents through a sequence of Povarov cycloaddition reaction/N-furoylation processes. The structure of the compound was fully characterized [...] Read more.
A N-(2,4-diaryltetrahydroquinolin-1-yl) furan-2-carboxamide derivative, [4-(3,4-dimethoxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-yl)](furan-2-yl)methanone, was synthesized in a two-step procedure from p-toluidine, benzaldehyde, and trans-methyl-isoeugenol as commercial starting reagents through a sequence of Povarov cycloaddition reaction/N-furoylation processes. The structure of the compound was fully characterized by IR, 1H, 13C-NMR, and X-ray diffraction data. Such types of derivatives are known as relevant therapeutic agents exhibiting potent anticancer, antibacterial, antifungal, anti-inflammatory, and immunological modulator properties. Full article
Show Figures

Graphical abstract

7 pages, 569 KiB  
Short Note
2-(4-Chlorophenyl)-4-(3,4-dimethoxy-phenyl)-6-methoxy-3-methylquinoline
by Duván A. Rodríguez Enciso, Carlos E. Puerto Galvis and Vladimir V. Kouznetsov
Molbank 2022, 2022(2), M1383; https://doi.org/10.3390/M1383 - 13 Jun 2022
Cited by 2 | Viewed by 2876
Abstract
A 2,4-diarylquinoline derivative, 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline, was synthesized in a conventional two-step procedure from p-anisidine, p-chlorobenzaldehyde and methyl isoeugenol as available starting reagents through a sequence of BF3·OEt2-catalyzed Povarov cycloaddition reaction/oxidative dehydrogenation aromatization processes under microwave irradiation conditions in [...] Read more.
A 2,4-diarylquinoline derivative, 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline, was synthesized in a conventional two-step procedure from p-anisidine, p-chlorobenzaldehyde and methyl isoeugenol as available starting reagents through a sequence of BF3·OEt2-catalyzed Povarov cycloaddition reaction/oxidative dehydrogenation aromatization processes under microwave irradiation conditions in the presence of a green oxidative I2-DMSO system. The structure of the compound was fully characterized by FT-IR, 1H and 13C-NMR, ESI-MS, and elemental analysis. Its physicochemical parameters (Lipinski’s descriptors) were also calculated using the Molinspiration Cheminformatics software. The diarylquinoline molecule obtained is an interesting model with increased lipophilicity and thus permeability, an important descriptor for quinoline-based drug design. Such types of derivatives are known for their anticancer, antitubercular, antifungal, and antiviral activities. Full article
Show Figures

Graphical abstract

24 pages, 3301 KiB  
Article
Hybrid Quinolinyl Phosphonates as Heterocyclic Carboxylate Isosteres: Synthesis and Biological Evaluation against Topoisomerase 1B (TOP1B)
by Asier Selas, María Fuertes, Estela Melcón-Fernández, Yolanda Pérez-Pertejo, Rosa M. Reguera, Rafael Balaña-Fouce, Birgitta R. Knudsen, Francisco Palacios and Concepcion Alonso
Pharmaceuticals 2021, 14(8), 784; https://doi.org/10.3390/ph14080784 - 9 Aug 2021
Cited by 9 | Viewed by 3483
Abstract
This work describes, for the first time, the synthesis of dialkyl (2-arylquinolin-8-yl)phosphonate derivatives. The preparation was carried out through a direct and simple process as a multicomponent Povarov reaction of aminophenylphosphonates, aldehydes, and styrenes and subsequent oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or, alternatively, by [...] Read more.
This work describes, for the first time, the synthesis of dialkyl (2-arylquinolin-8-yl)phosphonate derivatives. The preparation was carried out through a direct and simple process as a multicomponent Povarov reaction of aminophenylphosphonates, aldehydes, and styrenes and subsequent oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or, alternatively, by a cycloaddition reaction between phosphonate aldimines and acetylenes. Based on phosphonate group structural characteristics, considered as phosphorous isosteres of carboxylic heterocycles, they may present interesting biological properties related to cell proliferation. In the current report, a new series of dialkyl (2-arylquinolin-8-yl)phosphonates have been synthesized and their antiproliferative effect evaluated on different human cancer and embryonic cells, as well as on Leishmania infantum parasites, a eukaryotic protist responsible for visceral leishmaniasis. Thereby, the antitumor effect was assessed in human lung adenocarcinoma cells (A549), human ovarian carcinoma cells (SKOV3), and human embryonic kidney cells (HEK293) versus the non-cancerous lung fibroblasts cell line (MRC5). On the other hand, the antileishmanial activity was tested against both stages of L. infantum cell cycle, namely free-living promastigotes and intramacrophage amastigotes, using a primary culture of Balb/c splenocytes to calculate the selectivity index. Besides the antiproliferative and antileishmanial capacities, their behavior as topoisomerase 1B inhibitors has been evaluated as a possible mechanism of action. Full article
(This article belongs to the Special Issue Privileged Structures as Leads in Medicinal Chemistry)
Show Figures

Figure 1

5 pages, 953 KiB  
Short Note
(2S*,4S*)-4-[(E)-(2,2-Dimethylhydrazono)methyl]-6-methoxy-4-methyl-2-[(E)-styryl]-1,2,3,4-tetrahydroquinoline
by José Clerigué, M. Teresa Ramos and J. Carlos Menéndez
Molbank 2021, 2021(2), M1220; https://doi.org/10.3390/M1220 - 1 Jun 2021
Cited by 1 | Viewed by 2445
Abstract
The Povarov reaction of p-anisidine, cinnamaldehyde and methacrolein dimethylhydrazone afforded a 1,2,3,4-tetrahydroquinoline derivative bearing 2-styryl, 4-methyl and 4-dimethylhydrazono substituents in a fully diastereoselective fashion. This is the first example of the combination of a type I aza-vinylogous Povarov reaction and a type [...] Read more.
The Povarov reaction of p-anisidine, cinnamaldehyde and methacrolein dimethylhydrazone afforded a 1,2,3,4-tetrahydroquinoline derivative bearing 2-styryl, 4-methyl and 4-dimethylhydrazono substituents in a fully diastereoselective fashion. This is the first example of the combination of a type I aza-vinylogous Povarov reaction and a type II vinylogous Povarov reaction in the same process. Full article
(This article belongs to the Special Issue Quinoline, Derivatives and Applications)
Show Figures

Graphical abstract

15 pages, 4881 KiB  
Article
The Role of the Catalyst on the Reactivity and Mechanism in the Diels–Alder Cycloaddition Step of the Povarov Reaction for the Synthesis of a Biological Active Quinoline Derivative: Experimental and Theoretical Investigations
by Soumia Lamri, Affaf Heddam, Meriem Kara, Wassila Yahia and Abdelmalek Khorief Nacereddine
Organics 2021, 2(1), 57-71; https://doi.org/10.3390/org2010006 - 18 Mar 2021
Cited by 11 | Viewed by 5281
Abstract
An experimental and theoretical study of the reactivity and mechanism of the non-catalyzed and catalyzed Povarov reaction for the preparation of a 4-ethoxy-2,3,4,4a-tetrahydro-2-phenylquinoline as a biological active quinoline derivative has been performed. The optimization of experimental conditions indicate that the use of a [...] Read more.
An experimental and theoretical study of the reactivity and mechanism of the non-catalyzed and catalyzed Povarov reaction for the preparation of a 4-ethoxy-2,3,4,4a-tetrahydro-2-phenylquinoline as a biological active quinoline derivative has been performed. The optimization of experimental conditions indicate that the use of a catalyst, namely Lewis acid with an electron-releasing group, creates the best experimental conditions for this kind of reaction. The chemical structure was characterized by the usual spectroscopic methods. The prepared quinoline derivative has been also tested in vitro for antibacterial activity, which displays moderate inhibitory activity against both Escherichia coli and Staphylococcus aureus. The antioxidant activity was investigated in vitro by evaluating their reaction with 1,1-diphenyl-2-picrylhydrazyl DPPH radical, which reveals high reactivity. The computational study was performed on the Diels–Alder step of the Povarov reaction using a B3LYP/6-31G(d,p) level of theory. The conceptual DFT reactivity indices explain well the reactivity and the meta regioselectivity experimentally observed. Both catalysts enhance the reactivity of the imine, favoring the formation of the meta regioisomers with a low activation energy, and they change the mechanism to highly synchronous for the Lewis acid and to stepwise for the Brønsted acid. The reaction of imine with allyl alcohol does not give any product, which requires high activation energy. Full article
(This article belongs to the Special Issue Cycloaddition Reaction in Organic Synthesis)
Show Figures

Figure 1

Back to TopTop