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Abstract: A 2,4-diarylquinoline derivative, 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-
methylquinoline, was synthesized in a conventional two-step procedure from p-anisidine,
p-chlorobenzaldehyde and methyl isoeugenol as available starting reagents through a sequence
of BF3·OEt2-catalyzed Povarov cycloaddition reaction/oxidative dehydrogenation aromatization
processes under microwave irradiation conditions in the presence of a green oxidative I2-DMSO
system. The structure of the compound was fully characterized by FT-IR, 1H and 13C-NMR, ESI-MS,
and elemental analysis. Its physicochemical parameters (Lipinski’s descriptors) were also calculated
using the Molinspiration Cheminformatics software. The diarylquinoline molecule obtained is an
interesting model with increased lipophilicity and thus permeability, an important descriptor for
quinoline-based drug design. Such types of derivatives are known for their anticancer, antitubercular,
antifungal, and antiviral activities.

Keywords: 2,4-diarylquinoline; methyl isoeugenol; Povarov reaction; oxidative dehydrogenation
aromatization process; Lipinski’s descriptors

1. Introduction

Quinoline and its derivatives are of imperative significance to medicinal and agricul-
tural chemistry, exhibiting a broad array of exciting biological properties [1–5]. In particular,
diaryl-substituted quinoline scaffolds are an integral component of various bioactive agents,
displaying a wide range of biological activity, such as antithyroid cancer, antifungal, anal-
gesic, antimalarial, antibacterial, anti-inflammatory, anti-tuberculosis, and antiproliferative
activity, as well as inhibitory properties against a diverse set of important enzyme targets,
such as EGFR/FAK kinase, Human Ecto-5′-nucleotidase, cyclooxygenase-2, etc. [6–11].
Among them, 2,4-diarylquinolines have been proven to be especially important because
of their potential biological activity (Figure 1) [12–16]. Besides pharmacological activity,
compounds containing a diarylquinoline substructure have found many applications in
functional material chemistry [17–21].

Therefore, the synthesis and study of polyfunctionalized diarylquinolines are a contin-
uous focus of interest. Aryl substitution on the quinoline skeleton may increase lipophilicity,
thereby increasing cell permeability, which has displayed a significant effect on quinoline-
based drug design. Hence, a large number of synthetic protocols are being constantly
developed for the preparation of 2,4-diarylquinolines [15,22–27].

Considering the above-stated aspects, and as a continuation of our efforts in the
preparation of new bioactive quinoline-based molecules [27–30], we designed, synthesized,
and characterized the above-mentioned 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-
methoxy-3-methylquinoline. Thus, in this work, we describe a practical method for the
synthesis of the title compound using a one-pot three-component strategy/oxidative de-
hydrogenation aromatization process sequence through the reaction between arylamine,
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system. The drug-like nature of the final product is also investigated by predicting its
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component cycloaddition reaction (Povarov reaction) [31,32] to give cis-2,4-diaryl-r-3-me-
thyl-1,2,3,4-tetrahydroquinoline (4) [33], which was subjected to a dehydrogenation aro-
matization process under microwave irradiation conditions in the presence of a green ox-
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disappearance of bands corresponding to NH tension (3332 cm−1) and vibrational peaks 
at 1023 cm−1 (C–N) and 808 cm−1 (N–H) of the tetrahydroquinoline precursor (4) (ESI, Fig-
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Figure 1. Structure of pharmacological agents based on the 2,4-diarylquinoline skeleton.

2. Results and Discussion

The title quinoline derivative (5) was easily prepared through a conventional two-
step procedure from commercially available p-anisidine (1), p-chlorobenzaldehyde (2),
and methyl isoeugenol (3) as an activated dienophile, using a BF3·OEt2-catalyzed three-
component cycloaddition reaction (Povarov reaction) [31,32] to give cis-2,4-diaryl-r-3-
methyl-1,2,3,4-tetrahydroquinoline (4) [33], which was subjected to a dehydrogenation
aromatization process under microwave irradiation conditions in the presence of a green
oxidative I2-DMSO system [34,35], which allowed us to obtain the desired target 2,4-
diarylquinoline molecule (5) as a white stable powder with a high degree of purity and
yield (89%) (Scheme 1).
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Scheme 1. Synthesis of 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline
(5) from commercially available p-anisidine (1), p-chlorobenzaldehyde (2), and methyl isoeugenol
(3) using Povarov cycloaddition reaction/oxidative dehydrogenation aromatization sequence.

The structural elucidation of the compound (5) was achieved based on spectroscopic
data, and the results are presented in the experimental section and in the electronic sup-
porting information (ESI). Analyzing its IR spectrum (ESI, Figure S7), we could note the
disappearance of bands corresponding to NH tension (3332 cm−1) and vibrational peaks
at 1023 cm−1 (C–N) and 808 cm−1 (N–H) of the tetrahydroquinoline precursor (4) (ESI,
Figure S1). Instead of this, –C=N– stretching at 1619 cm−1 and strong additional –C=C–
stretching within the zone at 1560–1480 cm−1 were also observed, confirming the success
of the aromatization of the system. The structure of (5) was verified by 1H, 13C NMR,
and DEPT-135 spectra (Figures S8 and S9). Observing the 1H-NMR spectrum, from high
fields a singlet could be observed at 2.18 ppm corresponding to the signal from the methyl
group at C-3. It was also noted that its multiplicity and position had changed compared
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to that of the tetrahydroquinoline precursor (4) (ESI, Figures S2–S4). At lower fields, the
signals at 3.75, 3.91, and 4.02 ppm corresponded to the methoxy groups which did not
undergo any significant alteration. On the other hand, in the aromatic region, a doublet
could be observed at 8.05 ppm (J = 9.1 Hz), which corresponded to the 8-H proton since
it was the most unprotected proton of the molecule. The data provided by the COSY
spectrum revealed that the signal at 7.33 ppm (J = 9.1, 2.8 Hz) corresponded to the 7-H
proton; furthermore, the multiplicity and the coupling constants corroborate this fact. The
signal at 6.74 ppm (J = 2.8 Hz) agreed with the 5-H proton since it had a coupling constant
equal to that of the 7-H proton with which it was coupling, as expected given the structure
of the molecule. Analyzing the same signal pattern and taking the coupling constants as a
reference, it was possible to assign the signals at 7.07 ppm (J = 8.1 Hz), 6.88 ppm (J = 8.1,
1.9 Hz), and 6.83 ppm (J = 1.9 Hz) to the 5′-H, 6′-H, and 2′-H protons of the C-4-aryl ring,
respectively. Finally, the signals at 7.57 ppm and 7.47 ppm corresponded to the equivalent
3”-H(5”-H) and 2”-H(6”-H) protons of the C-2-aryl ring, respectively (Figure S8).

To complete the characterization, the 13C-NMR and DEPT-135 spectra shown in Figure
S9 were analyzed. The signals located at 157.7, 157.0, 149.1, 148.5, 146.6, 142.4, 140.0,
134.0, 130.2, 128.3, and 127.0 ppm in the 13C-NMR spectrum disappeared in the DEPT-135
spectrum, from which it could be concluded that these correspond to the 11 quaternary
carbons of the molecule. The signals at 130.9, 130.5, 128.4, 121.6, 121.0, 112.3, 111.4, and
104.0 ppm corresponded to the CHAr carbons, among which the signals at 130.5 and
128.4 ppm corresponded to the two equivalent carbon signals of the molecule. In total,
23 signals could be observed, which was in line with our expectations due to the aromatic
2,4-arylquinoline structure. The mass spectrum also confirmed the condensed formula
of the target product (5): the molecular ion (M+·) at m/z = 419.59, corresponding to its
mass, was quite intensive, exhibiting the isotopic contribution of 37Cl in the ratio of 1:3
(37Cl/35Cl). In general, the mass spectrum presented a poor fragmentation pattern (ESI,
Figure S10), which is characteristic of heteroaromatic compounds.

Given that the pharmacological activity of organic molecules is strictly related to
their hydrophilic/lipophilic nature, we easily calculated some of the physicochemical
properties (molecular weight, lipophilicity (LogP), hydrogen bond acceptor and donor
properties, polar surface area and rotatable bonds, and so-called Lipinski descriptors [36])
of the title compound and its closest precursor. Calculations were performed using the
Molinspiration software, available online [37]. Exploring the physicochemical properties
obtained in the in silico study for the target 2,4-diarylquinoline compound (5) and its
2,6-diaryl-tetrahydroquinoline precursor (4), we could note that these molecules possessed
a more pronounced lipophilic character (cLogP 6.59 and cLogP 5.86, respectively) (Table
S1). This particular descriptor was above the lipophilicity optimum interval (0 < LogP
< 3). This means that high lipophilic parameters could compromise the compounds’ ab-
sorption properties. On the other hand, both (tetrahydro)quinoline compounds (4 and 5)
could achieve good hematoencephalic barrier permeation according to Veber’s rules (the
total molecular polar surface area, TPSA < 140 A2) [38] (Table S1). Although the synthe-
sized compounds did not meet the Lipinski “rule of five” (RO5), failing in terms of the
lipophilicity parameter, they are important and interesting models for the development of
new antifungal, anticancer, and above all antibacterial/antitubercular agents. These latter
agents exhibit a specific physicochemical profile that usually differs from other drugs, i.e.,
they have higher molecular weight, larger total polar surface area, and lesser lipophilicity
as compared to other drugs utilized for human diseases [29,39].

3. Materials and Methods
3.1. Chemical Analysis

The melting points (uncorrected) were determined on a Fisher–Johns melting point
apparatus (00590Q, Thermo Scientific, Waltham, MA, USA). The IR spectra were recorded
using an Infralum spectrophotometer (FT-02, Lumex Co., Solon, OH, USA) in KBr. 1H-NMR
spectra were recorded on a Bruker Avance-400 spectrometer (Bruker, Hamburg, Germany).
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Chemical shifts are reported in ppm (δ) relative to the solvent peak (CHCl3 in CDCl3 at
7.24 ppm for protons). Signals are designated as follows: s, singlet; d, doublet; dd, doublet
of doublets; m, multiplet. A Hewlett Packard 5890a Series II Gas Chromatograph interfaced
to an HP 5972 Mass Selective Detector (MSD) with an HP MS Chemstation Data System
(PerkinElmer, Akron, OH, USA) was used for MS identification at 70 eV, using a 60 m
capillary column that was coated with HP-5 [5%-phenyl-poly(dimethyl-siloxane)] (for
comp. (4)). Mass spectrum of comp. (5) was obtained in ultrascan mode using a Hitachi
LaChrom Elite HPLC liquid chromatography instrument coupled to a Bruker Daltonics
AmaZon-X mass-selective detector equipped with electrospray ionization (ESI) in positive
mode and a quadrupole ion trap (QIT) analyzer. Elemental analyses were performed on a
Perkin Elmer 2400 Series II analyzer (PerkinElmer, Akron, OH, USA) and were within±0.4 of
theoretical values. The reaction’s progress was monitored using thin-layer chromatography
on a Silufol UV254 TLC aluminum sheet (Merck KGaA, Darmstadt, Germany).

3.2. Synthesis of 2-(4-chlorophenyl)-4-(3,4-dimethoxyphenyl)-6-methoxy-3-methylquinoline (5)

Step 1. In a clean, dry 20 mL vial, 0.39 g (2.80 mmol) of aniline (1) and 0.34 g (2.80 mmol)
of aldehyde (2) were added, followed by 3 mL of acetonitrile. The mixture was stirred for
15 min at room temperature, and then 0.40 g (2.80 mmol) of BF3·OEt2 was added, followed
by 0.50 g (2.80 mmol) of methyl isoeugenol (3) dropwise. The vial was sealed, and the
system was subjected to heating in an oil bath at 80 ◦C for 3 h, monitoring the progress of
the reaction by thin-layer chromatography (TLC). Once the reaction was complete, liquid–
liquid extraction was carried out with dichloromethane (3 × 30 mL) and the crude product
of the reaction was purified by column chromatography using mixtures of petroleum
ether–ethyl acetate (10:1), thus obtaining the pure tetrahydroquinoline precursor (4) as a
white, crystalline solid (70%). Mp: 201–202 ◦C; Rf = 0.5 (1:1 petroleum ether/ethyl acetate);
IR (KBr, disk): 3332 ν(NH), 2959 ν(O-CH3), 2826 (CH Aliphatic), 1259 ν(C-O), 808 ν(NH)
cm−1. 1H NMR (400 MHz, CDCl3) δ(ppm) 7.40 (2H, d, J = 8.5 Hz, HAr), 7.36 (2H, d,
J = 8.5 Hz, HAr), 6.84 (1H, d, J = 8.1 Hz, HAr), 6.80 (1H, dd, J = 8.2, 1.9 Hz, HAr), 6.69 (1H, d,
J = 1.9 Hz, HAr), 6.64 (1H, ddd, J = 8.7, 2.9, 0.8 Hz, HAr), 6.52 (1H, d, J = 8.6 Hz, HAr), 6.23
(1H, dd, J = 2.9, 1.1 Hz, HAr), 4.07 (1H, d, J = 9.9 Hz, 2-H), 3.90 (3H, s, OCH3), 3.85 (3H, s,
OCH3), 3.73 (1H, d, J = 10.9 Hz, 4-H), 3.61 (3H, s, OCH3), 2.17 (1H, m, 3-H), 0.59 (3H, d,
J = 6.5 Hz, CH3). 13C-NMR (101 MHz, CDCl3) δ(ppm) 152.2, 149.1, 147.7, 141.3, 139.0, 136.6,
133.4, 129.2 (2), 128.7 (2), 126.9, 122.0, 115.8, 114.7, 111.8, 111.0, 113.0, 113.0 63.6, 55.9, 55.8,
55.7, 52.4, 41.8, 16.4. MS m/z (%): 425.49 (6), 424.50 (32), 423.50 (M+, 30), 422.50 (100), 421.50
(16), 388.55 (10). Anal. Calcd. (%) for [C25H26ClNO3]: C, 70.83; H, 6.18; N, 3.30; found (%):
C, 70.66; H, 6.25; N, 3.37.

Step 2. In a clean and dry 20 mL vial, 0.59 g (1.40 mmol) of comp. (4) was added and
3 mL of dimethylsulfoxide was added. Subsequently, 0.35 g (1.40 mmol) of molecular iodine
(I2) was added and the vial was sealed and placed inside a Biotage Initiator+® microwave
reactor. The reaction system was subjected to heating with microwave energy for 30 min.
Once the reaction was complete, liquid–liquid extraction was carried out with ethyl acetate
(3 × 30 mL) and the crude product of the reaction was purified by column chromatography
using mixtures of petroleum ether–ethyl acetate (10:1), thus obtaining the quinoline (5) as a
white, crystalline solid (89%). Mp: 178–179 ◦C; Rf = 0.4 (1:1 petroleum ether/ethyl acetate);
IR (KBr, disk): 3077 ν (CAr-HAr), 2959 (OCH3), 2836 (CH3), 1619 ν (C=N), 1253 (C-O) cm−1.
1H-NMR (400 MHz, CDCl3) δ(ppm) 8.05 (1H, d, J = 9.2 Hz, HAr), 7.57 (2H, m, HAr), 7.47
(2H, m, HAr), 7.33 (1H, dd, J = 9.2, 2.8 Hz, HAr), 7.07 (1H, d, J = 8.1 Hz, HAr), 6.88 (1H, dd,
J = 8.1, 1.9 Hz, HAr), 6.83 (1H, d, J = 1.9 Hz, HAr), 6.74 (1H, d, J = 2.8 Hz, HAr), 4.01 (3H,
s, OCH3), 3.91 (3H, s, OCH3), 3.75 (3H, s, OCH3), 2.18 (3H, s, CH3). 13C-NMR (101 MHz,
CDCl3) δ(ppm) 157.7, 157.0, 149.1, 148.5, 146.6, 142.4, 140.0, 134.0, 130.9, 130.5 (2), 130.2,
128.4 (2), 128.3, 121.0, 127.0, 112.3, 111.4, 104.0, 56.0, 55.9, 55.4, 18.6. ESI-MS m/z (%): 667.73
(38), 633.64 (28), 421.59 (30), 419.59 (M+·, 100). Anal. Calcd. (%) for [C25H22ClNO3]: C,
71.51; H, 5.28; N, 3.34; found (%): C, 71.46; H, 5.35; N, 3.27.
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4. Conclusions

We have successfully synthesized a new compound, 2-(4-chlorophenyl)-4-(3,4-
dimethoxyphenyl)-6-methoxy-3-methylquinoline, using a one-pot three-component strat-
egy/dehydrogenation aromatization process sequence through the reaction between ary-
lamine, benzaldehyde, and activated (methyl isoeugenol) by using BF3·OEt2 as a homoge-
neous catalyst and a microwave-assisted aromatization reaction with the green oxidative
I2-DMSO system. The 2,4-diarylquinoline derivative that was synthesized in our work is
an interesting biological model for pharmacological agent research, especially regarding
antibacterial and antifungal drug design.

Supplementary Materials: The following are available online, FT-R, 1H-, 13C-NMR, and GC-MS for
compounds (4) and (5).
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