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Abstract: A N-(2,4-diaryltetrahydroquinolin-1-yl) furan-2-carboxamide derivative, [4-(3,4-dimeth-
oxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-yl)](furan-2-yl)methanone, was syn-
thesized in a two-step procedure from p-toluidine, benzaldehyde, and trans-methyl-isoeugenol as
commercial starting reagents through a sequence of Povarov cycloaddition reaction/N-furoylation
processes. The structure of the compound was fully characterized by IR, 1H, 13C-NMR, and X-ray
diffraction data. Such types of derivatives are known as relevant therapeutic agents exhibiting potent
anticancer, antibacterial, antifungal, anti-inflammatory, and immunological modulator properties.

Keywords: 2,6-diaryl-tetrahydroquinolines; trans-methyl-isoeugenol; green Povarov reaction; deep
eutectic solvents; N-furoylation; N-(tetrahydroquinolin-1-yl) furancarboxamides

1. Introduction

The tetrahydroquinoline (THQ) moiety is present in various natural products [1–5],
which exhibit a broad range of biological activities; it is used in the production of new ma-
terials, and it is an important precursor for more complex molecules with bio-utilities [6–9].
Due to these reasons, interest in small THQ molecules and their N-acyl derivatives has re-
mained, mainly to understand biological processes, as they are pharmacologically relevant
therapeutic agents (Figure 1). In particular, N-(tetrahydroquinolin-1-yl) amide compound
A can be used as NF-κB inhibitors, which could be useful in anticancer drug research;
additionally, retinoid nuclear modulators B are important agents for the treatment of
metabolic and immunological diseases, and lipopolysaccharide (LPS)-induced inflamma-
tory mediators C and D might have a beneficial impact on various brain disorders where
neuroinflammation involving microglial activation plays a crucial role in the pathogenesis
of these diseases [10–12]. Additionally, nicainoprol E, a THQ-based 3-pyridinyl amide
derivative, is an antiarrhythmic drug [13,14]. On the other hand, furan-2-carboxamide
derivatives exhibited interesting antihyperlipidemic, anti-breast cancer, antibacterial, an-
timicrobial, and antifungal activities [15–18]. Therefore, the importance of the generation
of new pathways for the rapid and efficient construction of molecular libraries based on
bioactive natural products has pushed our research toward new synthetic methods in order
to construct the privileged 1,2,3,4-THQ core. Due to the great importance of the THQ
nucleus in the search for drug candidates and medicinal chemistry, the development of
new synthetic methodologies continues to be an active area. The 1,2,3,4-THQ ring can be
formed through various synthetic strategies that involve the reduction process of the re-
spective quinoline derivatives [14,19–21] or the THQ ring construction from aminobenzene
precursors using a formation of one or two bounds simultaneously or alternately. Out of
the set of tactics, the Povarov reaction is undoubtedly the most powerful tool in the genera-
tion of N-heterocycle systems, with excellent regio-, diastereo-selective control [22–29]. The
preparation of N-acylated THQs through the N-acylation reaction is the most widely used
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method for the formation of amide bonds [30–32]. However, the examples regarding the
synthesis and characterization of N-acylated 2,6-diaryl-3-methyl-THQs are still very scarce.
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Figure 1. Structure of pharmacological agents based on the N-(tetrahydroquinolin-1-yl) amide skeleton.

Considering the above-stated aspects, and as a continuation of our efforts to prepare
new bioactive quinoline-based molecules, we designed, synthesized, and characterized the
above-mentioned, [(4-(3,4-dimethoxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-
1(2H)-yl)](furan-2-yl)methanone. Therefore, in this work, we describe a practical method
for the synthesis of the title compound using a one-pot, three-component strategy/N-
furoylation process sequence through the reaction between arylamine benzaldehyde and
activated olefin (methyl isoeugenol) by using choline chloride-zinc chloride deep-eutectic
solvent (ChCl-ZnCl2, DES) as a homogeneous deep eutectic mixture, which serves as a
promotor and a green reaction medium to give the 2,4-diAr-3-Me-THQ precursor, and its
subsequent N-acylation reaction with the respective acid chloride.

2. Results and Discussion

The title N-(tetrahydroquinolin-1-yl) furan-2-carboxamide derivative (6) was eas-
ily prepared through a conventional two-step procedure from commercially available
p-toluidine (1), trans-methyl-isoeugenol (2) as activated dienophile, and benzaldehyde (3),
following a previously reported method by our group [29], in which the selected DES are
used as the reaction medium using a three-component Povarov reaction as a key step of
the procedure (Scheme 1).
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In this case, the ChCl/ZnCl2 eutectic mixture readily promoted the formation of 2,4-
diaryl-3-Me-1,2,3,4-THQ intermediate (4), which was easily obtained in good yield (79%)
as a white solid in only 3 h of reaction. It is noteworthy that the isolated THQ product is
a diastereoisomer with all three equatorial C-2-Ar,C-3-Me,C-4-Ar substituents (2e,3e,4e-
form), where the Ar groups are in the cis-configuration with respect to each other [9,33]. Its
N-furoylation reaction under mild conditions using 2-furoyl chloride (5) and triethylamine
as a base in dichloromethane allowed us to obtain the desired target N-(2-furoyl)-THQ
molecule (6) in excellent yield (92%) as a white crystalline solid (Scheme 1).

The structural elucidation of the compound (6) was achieved based on spectroscopic
data, and the results are presented in the experimental section and in the electronic sup-
porting information (ESI). In its infrared spectra, the different absorption bands associated
with the functional groups present in its structure are recorded (ESI, Figure S5). CAr-H and
C=C-H vibrations could be observed at 3015 cm−1. Methoxy substituents of the aromatic
rings could be appreciated due to the symmetric and asymmetric strain vibration bands in
the region between 2979–2831 cm−1. C=O and C=C strain vibrations appeared in 1638 and
1578 cm−1, respectively. Asymmetric and symmetric tension vibrations of the C-O bond
were shown in 1251 and 1029 cm−1, respectively.

The structure of (6) was verified by 1H, 13C, and 13C-APT NMR spectra (ESI,
Figures S6–S8). First, the analysis of the 1H-NMR spectra indicated the presence of the
signals generated by the methyl hydrogens of the 3,6-dimethyl (0.97 and 2.21 ppm) and
the methoxy (3.87–3.95 ppm) groups in the 2,4-diAr-3-Me-THQ skeleton. Secondly, the
three different signals from THQ aliphatic hydrogens, 2-H, 3-H, and 4-H, were observed:
the doublet at 5.13 ppm (3J = 8.7 Hz), doublet of doublets of doublets (ddd) at 2.21 ppm
(3J = 11.6, 8.6, 6.5 Hz), and a doublet at 3.63 ppm (3J = 11.6 Hz), respectively (ESI, Figure S6).
Comparing the vicinal coupling constants 3J between hydrogens 3-H and 4-H (11.6 Hz), and
2-H and 3-H (8.6–8.7 Hz) confirmed the stereochemistry given by the trans arrangement of
these in the THQ ring, and thus, the stereochemistry of the THQ fragment. In the aromatic
region of the spectrum, the following signals are observed in their order: at 6.29 ppm, there
is a doublet of doublets corresponding to hydrogen 4” in the furan ring, and it has coupling
constants of 3.5 and 1.7 Hz. At 6.39, a doublet corresponding to the hydrogen 3” with a
coupling constant of 3.5 Hz is found. The signals of the hydrogens 7-H, 8-H, 5′-H, 6′-H,
5”-H, m-H, m′-H, o-H, o′-H, 5-H, and 2′-H are in the region of 6.60 to 7.32 ppm.

To complete the characterization, the 13C-NMR and 13C-APT spectra, shown in
Figures S7 and S8, were analyzed. The signals located at 159.39, 149.30, 148.11, 147.71,
143.73, 138.60, 135.90, 135.60, and 131.47 ppm in the positive phase of the 13C-APT NMR
spectrum belong to the nine signals from the quaternary carbons of the molecule. Whereas
the signals at 128.43, 127.69, 127.22, 127.18, 126.78, 125.31, 116.31, 111.46, and 111.02 corre-
sponded to the CAr-H, the signals at 65.73, 56.10, 55.98, 49.52, 47.48, 21.46, and 18.21 ppm
were appropriate to methoxy carbons and C-H from the aliphatic core of the THQ (6). In
total, 26 signals were observed, which was in line with our expectations due to the structure
of the N-furoyl-THQ molecule (6).

All the proton resonance data mentioned above indicated that the final product has the
THQ half-chair conformation, where the Ar substituents are in the cis-configuration with
each other, occupying the equatorial arrangement. The 3-Me group is also in the equatorial
disposition; therefore, this group is in the trans-configuration with respect to both Ar groups,
and therefore it follows that the N-furoyl-THQ possesses all three equatorial substituents
and is a trans-2,4-diaryl-r-3-methyl-diastereoisomer, like the NH-THQ precursor (4).

Finally, crystals of compound (6) obtained from slow chloroform evaporation as
prepared were directly suitable for X-ray diffraction, and the resulting molecular structure
is shown in Figure 2A. The X-ray diffraction analysis evidenced the stereochemistry of the
tetrahydroquinoline ring formed through the high stereospecificity of the Povarov reaction
in this implemented methodology, for which the substituents at positions C-2, C-3, and C-4
of the aliphatic part of the THQ skeleton are found in pseudo-equatorial arrangements.
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Figure 2. (A) ORTEP view of the molecular structure of compound (6) showing the stereochemistry
of the THQ ring with the two aromatic rings in pseudo-equatorial conformation (thermal ellipsoids
at 25% level). (B) Planes between aromatic rings that are part of its structure. CCDC 2184176
deposition number.

The arrangement of the aromatic ring substituents that make up the molecular carcass
of compound (6) can be seen by adding a plane to each of them. Figure 2B displays the
planes that go through each of these aromatic rings, i.e., the ring from the isoeugenyl
fragment, and the benzene ring in position C-2 of the THQ skeleton.

3. Materials and Methods
3.1. Chemical Analysis

The reagents and solvents used in the synthesis of the intermediate and final com-
pounds were of purity grade for synthesis. The composition and monitoring of the reactions,
as well as the preliminary analysis of the purity of the synthesized compounds, were carried
out by thin-layer chromatography (TLC) on Silufol UV254 plates of 0.25 mm thickness,
revealed in a UV light chamber of 254 nm or in an ethanolic solution of phosphomolybdic-
sulfuric acids. The melting points of the products were determined in a Fisher–Jöns melting
point apparatus and the values were not corrected, reporting the average of three measure-
ments. Infrared spectra (FT–IR) were obtained on a Thermo Scientific Nicolet iS50 FT–IR
spectrophotometer with Fourier transform, with attenuated total reflectance (ATR) module,
acquisition range: 4000–400 cm−1 (256 scans, resolution of 2 cm−1). The acquisition of
nuclear magnetic resonance spectra 1H, 13C–APT, and 2D variants was performed in a
Bruker Avance–400 spectrometer (400 MHz for 1H and 100 MHz for 13C) using deuterated
chloroform (CDCl3, 99.8% Merck®) as the solvent. Chemical shift values (δ) are expressed
in ppm. In 1H-NMR spectra, the scale was adjusted from the residual chloroform signal
(7.26 ppm). Similarly, the 13C-APT spectra were scaled from the signal characteristic for
the solvent (CDCl3), and the phase of the signals was assigned as a (+) positive phase and
(-) negative phase. The coupling constants (nJ) are described at n bonds and are given in
Hz; the multiplicity of signals is expressed by the following abbreviations: (s) singlet, (d)
doublet, (dd) doublet of doublets, (ddd) doublet of doublet of doublets, (t) triplet, and
(m) multiplet.
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The crystal data collection of compound (6) was done as follows: a colorless lath crystal
(Et2O) was used to record 3417 (CuKα radiation, θmax =74.61 ◦) reflections with I > 2σ(I) on
a Rigaku AF11 diffractometer. Accurate unit cell parameters were determined by the least-
squares techniques from the θ values of 13,769 reflections, with a θ range of 3.96–74.61◦. The
final refinement converged with R1 = 0.188, Rω2 = 0.011 on F2 for all data. The structure
was solved by direct methods and refined by full-matrix least-squares against F2 (SHELXL,
Version 2014/7) [34,35]. The software used to prepare the material for publication was
PLATON [36] and MERCURY. The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures (accessed on 4
July 2022) with the CCDC 2184176 deposition number.

3.2. Synthesis of [4-(3,4-Dimethoxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-
yl)](furan-2-yl)methanone (6)

Step 1. Three-component Povarov reaction: In a clean, dry, 10 mL vial, choline chloride
(ChCl, 8 mmol) and zinc chloride (ZnCl2, 16 mmol) were added as a eutectic mixture.
The mixture was heated at 110 ◦C to obtain a liquid media. Then, p-toluidine 1 (1 mmol),
trans-methyl-isoeugenol 2 (1.5 mmol), and benzaldehyde 3 (1.5 mmol) were combined.
Before 3 h of reaction time, the formation of 2,4-diaryl-tetrahydroquinoline 4 was confirmed
by TLC. The reaction mixture was diluted with ethyl acetate and was washed with distilled
water (50 mL). The reaction crude was placed in an Erlenmeyer flask over anhydrous
sodium sulfate. Finally, the solvent was removed by distillation, and the organic residue
that remained was purified by column chromatography on silica gel, using an isocratic
mixture of ethyl acetate–petroleum ether at 20% as eluent. Yield = 79%. The spectral data
of compound 4 is available in ESI.

Step 2. N-Furoylation reaction: In a clean, dry, 20 mL vial, THQ 4 (1 mmol), 2-
furoylchloride 5 (2 mmol), triethylamine (2 mmol), and 5 mL of dichloromethane were
added. The reaction was carried out at room temperature for 1 h. The solvent was removed
by distillation, and crude was purified by column chromatography on silica gel using an
isocratic mixture of ethyl acetate–petroleum ether at 30% as eluent. Compound 6 was
obtained in a yield of 92% as a white solid, Mp = 194–195 ◦C, Rf = 0.19 (30% ethyl acetate–
petroleum ether). IR [ATR, ν (cm−1)] = 3105, 2979, 2944, 2926, 2896, 2831, 1638, 1578,
1515, 1493, 1348, 1251, 1165, 1029, 751, 707. 1H-NMR (400 MHz, CDCl3) δ ppm = 7.32–
7.25 (m, 6H, p-H, 7-H, 8-H, 5′-H, 6′-H, 5”-H), 6.93 (t, J = 8.3 Hz, 2H, m-H, m′-H), 6.82 (t,
J = 7.0 Hz, 2H, o-H, o′-H), 6.74 (s, 1H, 5-H), 6.60 (s, 1H, 2′-H), 6.39 (d, 3J = 3.5 Hz, 1H,
3”-H), 6.29 (dd, 3J = 3.5, 1.7 Hz, 1H, 4”-H), 5.13 (d, 3J = 8.7 Hz, 1H, 2-H), 3.95 (s, 3H,
3′-OCH3), 3.87 (s, 3H, 4′-OCH3), 3.63 (d, 3J = 11.6 Hz, 1H, 4-H), 2.27 (s, 3H, 6-CH3), 2.21
(ddd, 3J = 11.6, 8.6, 6.5 Hz, 1H, 3-H), 0.97 (d, 3J = 6.5 Hz, 3H, 3-CH3). 13C-APT (100 MHz,
CDCl3) δ ppm = 159.39 (+), 149.30 (+), 148.11 (+), 147.71 (+), 143.91 (−), 143.73 (+), 138.60
(+), 135.90 (+), 135.60 (+), 131.47 (+), 128.43 (−), 127.69 (−), 127.22 (−), 127.18 (−), 126.78
(−), 125.31 (−), 116.31 (−), 111.46 (−), 111.02 (−), 65.73 (−), 56.10 (−), 55.98 (−), 49.52
(−), 47.48 (−), 21.46 (−), 18.21 (−). Anal. Calcd. (%) for [C30H29NO4]: C, 77.07; H, 6.25;
N, 3.00; found (%): C, 77.25; H, 6.12; N, 3.11. X-ray diffraction analysis data of furan-2-
carboxamide (6) with the (2S,3S,4R)-configuration: Colorless crystal obtained from a slow
chloroform evaporation, C30H29NO4 (MW = 467.57 g/mol), triclinic space group P–1, unit
cell dimensions: a = 9,9318(3), b = 12,1531(5), c = 12,3695(7) Å, α = 64,515(5)◦, β = 79,358(4)◦,
γ = 70,990(3)◦, V = 272,51(11) Å3, Z = 2, T = 293 K.

4. Conclusions

We have successfully synthesized a new N-(tetrahydroquinolin-1-yl) furancarbox-
amide, [4-(3,4-dimethoxyphenyl)-3,6-dimethyl-2-phenyl-3,4-dihydroquinolin-1(2H)-yl)]
(furan-2-yl)methanone, as a 2e,3e,4e THQ diastereoisomer with an overall yield of 73%,
using a two-step strategy of Povarov cycloaddition and N-furoylation process sequence
through the reaction between p-toluidine, trans-methyl-isoeugenol, and benzaldehyde to
achieve a tetrahydroquinoline core. The synthesized N-furoyl-THQ derivative is an inter-

http://www.ccdc.cam.ac.uk/getstructures
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esting biological model for pharmacological agent research, especially regarding anticancer
and antibacterial or antifungal drug design.

Supplementary Materials: The following are available online, FT-IR, 1H- and 13C-NMR, and X-ray
data (.CIF) for compounds (4) and (6).
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