Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Poiseuille micro-flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 398 KB  
Article
Exact Solutions for the Non-Isothermal Poiseuille Flow of a FENE-P Fluid
by Evgenii S. Baranovskii
Polymers 2025, 17(17), 2343; https://doi.org/10.3390/polym17172343 - 29 Aug 2025
Viewed by 711
Abstract
In the present article, we study a nonlinear mathematical model for the steady-state non-isothermal flow of a dilute solution of flexible polymer chains between two infinite horizontal plates. Both plates are assumed to be at rest and impermeable, while the flow is driven [...] Read more.
In the present article, we study a nonlinear mathematical model for the steady-state non-isothermal flow of a dilute solution of flexible polymer chains between two infinite horizontal plates. Both plates are assumed to be at rest and impermeable, while the flow is driven by a constant pressure gradient. The fluid rheology model used is FENE-P type. The flow energy dissipation (mechanical-to-thermal energy conversion) is taken into account by using the Rayleigh function in the heat transfer equation. On the channel walls, we use one-parameter Navier’s conditions, which include a wide class of flow regimes at solid boundaries: from no-slip to perfect slip. Moreover, we consider the case of threshold-type slip boundary conditions, which state the slipping occurs only when the magnitude of the shear stresses overcomes a certain threshold value. Closed-form exact solutions to the corresponding boundary value problems are obtained. These solutions represent explicit formulas for the calculation of the velocity field, the temperature distribution, the pressure, the extra stresses, and the configuration tensor. The results of the work favor better understanding and more accurate description of complex dynamics and energy transfer processes in FENE-P fluid flows. Full article
Show Figures

Figure 1

13 pages, 2538 KB  
Article
Knots in Polymer Molecules Under Poiseuille Flow
by Maurice P. Schmitt and Andrey Milchev
Foundations 2025, 5(3), 28; https://doi.org/10.3390/foundations5030028 - 13 Aug 2025
Viewed by 521
Abstract
Knots are ubiquitous in polymers and biological macromolecules such as DNA and proteins, yet their behavior and functionality are still not sufficiently explored. Here we investigate the impact of Poiseuille flow on simple knots in flexible polymers placed in a quasi-rectangular micro-channel by [...] Read more.
Knots are ubiquitous in polymers and biological macromolecules such as DNA and proteins, yet their behavior and functionality are still not sufficiently explored. Here we investigate the impact of Poiseuille flow on simple knots in flexible polymers placed in a quasi-rectangular micro-channel by systematically varying the flow strength for different chain lengths. Hydrodynamic interactions are accounted for by means of Multi-Particle Collision Dynamics (MPCD). We find that initially loosely localized knots in polymer coils typically tighten under shear to several segments beyond a certain body force threshold. At higher shear rates, intermittent transition from chain stretching to tumbling is observed which correlates with strong fluctuations in the knot size. Somewhat unexpectedly, our results indicate that the influence of channel width on tightening steadily increases with growing width even at equal mean shear rate γ˙¯. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Graphical abstract

31 pages, 10887 KB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 387
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 3755 KB  
Article
Effect of Pore-Scale Anisotropic and Heterogeneous Structure on Rarefied Gas Flow in Three-Dimensional Porous Media
by Wenqiang Guo, Jinshan Zhao, Gang Wang, Ming Fang and Ke Zhu
Fluids 2025, 10(7), 175; https://doi.org/10.3390/fluids10070175 - 3 Jul 2025
Viewed by 780
Abstract
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of [...] Read more.
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of the conventional Darcy’s law. To address these issues, the Quartet Structure Generation Set (QSGS) method is improved to construct anisotropic and heterogeneous three-dimensional porous media, and the lattice Boltzmann method (LBM) with the multiple relaxation time (MRT) collision operator is adopted. Using MRT-LBM, the pressure boundary conditions at the inlet and outlet are firstly dealt with using the moment-based boundary conditions, demonstrating good agreement with the analytical solutions in two benchmark tests of three-dimensional Poiseuille flow and flow through a body-centered cubic array of spheres. Combined with the Bosanquet-type effective viscosity model and Maxwellian diffuse reflection boundary condition, the gas flow at high Knudsen (Kn) numbers in three-dimensional porous media is simulated to study the relationship between pore-scale anisotropy, heterogeneity and Kn, and permeability and micro-scale slip effects in porous media. The slip factor is positively correlated with the anisotropic factor, which means that the high Kn effect is stronger in anisotropic structures. There is no obvious correlation between the slip factor and heterogeneity factor. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

29 pages, 4031 KB  
Article
Productivity Model Study of Water-Bearing Tight Gas Reservoirs Considering Micro- to Nano-Scale Effects
by Feifei Chen, Yonggang Duan and Kun Wang
Processes 2024, 12(7), 1499; https://doi.org/10.3390/pr12071499 - 17 Jul 2024
Cited by 4 | Viewed by 1038
Abstract
Tight sandstone is rich in micron- and nano-scale pores, making the two-phase flow of gas and water complex. Establishing reliable relative permeability and productivity models is an urgent issue. In this study, we first used a slip model to correct the gas phase’s [...] Read more.
Tight sandstone is rich in micron- and nano-scale pores, making the two-phase flow of gas and water complex. Establishing reliable relative permeability and productivity models is an urgent issue. In this study, we first used a slip model to correct the gas phase’s no-slip Hagen–Poiseuille equation for nano- and micropores. Then, combined with the fractal theory of porous media and the tortuous capillary bundle model, we established two-phase relative permeability models for nanopores and micropores. These relative permeability models comprehensively consider the gas slippage effect, the initiation pressure gradient, the pores’ fractal characteristics, and water film mechanisms. Based on these models, we developed a three-region coupling productivity model for water-bearing tight gas reservoirs with multi-stage fractured horizontal wells. This productivity model considered the micro- and nano-scale effects and the heterogeneity of fracture networks. Then, the model was solved and validated with a field case. The results indicated that the three-region composite unsteady productivity model for water-bearing tight gas reservoirs, which incorporated micro- and nano-scale effects (with consideration of micro-scale and nano-scale phenomena in the fluid flow), could accurately predict a gas well’s productivity. An analysis of the factors influencing productivity showed that ignoring the micro- and nano-scale effects in water-bearing tight gas reservoirs will underestimate the reservoir’s productivity. The initial water saturation, the two-phase flow’s initiation pressure gradient, and capillary force are all negatively correlated with the productivity of gas wells, while the conductivity of the fractures is positively correlated with gas well productivity. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

22 pages, 17828 KB  
Article
Hybrid Fiber Influence on the Crack Permeability of Cracked Concrete Exposed to Freeze–Thaw Cycles
by Wei Zeng, Weiqi Wang, Qiannan Wang, Mengya Li, Lining Zhang and Yunyun Tong
Materials 2024, 17(8), 1819; https://doi.org/10.3390/ma17081819 - 16 Apr 2024
Cited by 2 | Viewed by 1339
Abstract
This paper describes hybrid fiber’s influence on the crack permeability of cracked concrete exposed to freeze–thaw cycles. A permeability setup and a laser-scanning setup have been designed to measure the crack permeability and the fractured surface roughness of cracked hybrid fiber-reinforced concrete, containing [...] Read more.
This paper describes hybrid fiber’s influence on the crack permeability of cracked concrete exposed to freeze–thaw cycles. A permeability setup and a laser-scanning setup have been designed to measure the crack permeability and the fractured surface roughness of cracked hybrid fiber-reinforced concrete, containing polypropylene fiber and steel fiber, under a splitting tensile load. The results show that, when the effective crack width of the specimens is less than 25 μm, the rough crack surface significantly reduces the concrete’s crack permeability. As the crack width increases, the effect of the concrete crack surface on crack permeability gradually decreases, and the crack permeability of the concrete is closer to the Poiseuille flow model. The permeability parameter α derived from the Poiseuille flow model is effective for assessing the crack permeability of concrete. Compared to the modified factor ξ of crack permeability, the permeability parameter α can effectively evaluate and quantify the development trend of crack permeability within a certain range of crack widths. The permeability parameter α of SF20PP2.3, subjected to the same freeze–thaw cycles, decreases by 16.3–94.8% compared to PP4.6 and SF40, and SF20PP2.3 demonstrates a positive synergistic effect on the crack impermeability of cracked concrete. The crack impermeability of SF40PP2.3, subjected to the same freeze–thaw cycles, lies between that of PP6.9 and SF60. The roughness of crack surface (X) and the crack permeability (Y) are highly correlated and follow an exponential curve (Y = 1.0415 × 107·e−6.025·X) in concrete. This demonstrates that hybrid fibers enhance crack impermeability by increasing the crack surface roughness. Furthermore, the combination of polypropylene fiber and steel fiber effectively promotes the formation of micro-cracks and facilitates the propagation of multiple cracks in the concrete matrix. This combination increases the head loss of water flow through the concrete and decreases the crack permeability. Full article
Show Figures

Figure 1

18 pages, 4215 KB  
Article
A Multiscale Simulation of Polymer Melt Injection Molding Filling Flow Using SPH Method with Slip-Link Model
by Mengke Ren, Junfeng Gu, Zheng Li, Shilun Ruan and Changyu Shen
Polymers 2022, 14(20), 4334; https://doi.org/10.3390/polym14204334 - 14 Oct 2022
Cited by 5 | Viewed by 2650
Abstract
In this article, a multiscale simulation method of polymer melt injection molding filling flow is established by combining an improved smoothed particle hydrodynamics method and clustered fixed slip-link model. The proposed method is first applied to the simulation of HDPE melt in a [...] Read more.
In this article, a multiscale simulation method of polymer melt injection molding filling flow is established by combining an improved smoothed particle hydrodynamics method and clustered fixed slip-link model. The proposed method is first applied to the simulation of HDPE melt in a classic Poiseuille flow case, and then two high-speed and high-viscosity injection molding flow cases in two simple long 2D rectangular cavities with and without a circular obstacle, respectively, are analyzed. For each case, the macro velocity results, and the micro average number of entanglements Zave and orientation degree S results are demonstrated and discussed, and the changing trends of Zave and S are analyzed. The results of the two injection molding cases are compared, and the influence of the obstacle on the injection flow at both the macro and micro levels is analyzed. Furthermore, based on the multiscale results, reason of some structural features and defects in injection molded products are analyzed. Full article
(This article belongs to the Special Issue Advances in Polymer Processing and Molding)
Show Figures

Figure 1

20 pages, 4396 KB  
Article
Molecular Insights into the Wall Slip Behavior of Pseudoplastic Polymer Melt in Nanochannels during Micro Injection Molding
by Wangqing Wu, Fengnan Duan, Baishun Zhao, Yuanbao Qiang, Mingyong Zhou and Bingyan Jiang
Polymers 2022, 14(15), 3218; https://doi.org/10.3390/polym14153218 - 8 Aug 2022
Cited by 5 | Viewed by 2750
Abstract
Wall slip directly affects the molding quality of plastic parts by influencing the stability of the filling flow field during micro injection molding. The accurate modeling of wall slip in nanochannels has been a great challenge for pseudoplastic polymer melts. Here, an effective [...] Read more.
Wall slip directly affects the molding quality of plastic parts by influencing the stability of the filling flow field during micro injection molding. The accurate modeling of wall slip in nanochannels has been a great challenge for pseudoplastic polymer melts. Here, an effective modeling method for polymer melt flow in nanochannels based on united-atom molecular dynamics simulations is presented. The effects of driving forces and wall–fluid interactions on the behavior of polyethylene melt under Poiseuille flow conditions were investigated by characterizing the slip velocity, dynamics information of the flow process, and spatial configuration parameters of molecular chains. The results indicated that the united-atom molecular dynamics model could better describe the pseudoplastic behavior in nanochannels than the commonly used finitely extensible nonlinear elastic (FENE) model. It was found that the slip velocity could be increased with increasing driving force and show completely opposite variation trends under different orders of magnitude of the wall–fluid interactions. The influence mechanism was interpreted by the density distribution and molecular chain structure parameters, including disentanglement and orientation, which also coincides with the change in the radius of gyration. Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling of Polymers)
Show Figures

Figure 1

14 pages, 4346 KB  
Article
Analysis of Damping Characteristics of Magnetorheological Damper under Impact Load
by Min Sun, Xiangdong Li, Zhou Zhou, Qibin Zhu, Bing Liu, Xu Chen, Jiong Wang, Guang Zhang and Shibo Cai
Materials 2022, 15(12), 4161; https://doi.org/10.3390/ma15124161 - 12 Jun 2022
Cited by 15 | Viewed by 2472
Abstract
Compared to magnetorheological fluid, magnetorheological gel has better anti-settling performance and stability. Therefore, magnetorheological gel is suitable for devices that can meet operational requirements in all aspects after long-term storage, such as the anti-recoil application of weapons. To study this in-depth, the mechanism [...] Read more.
Compared to magnetorheological fluid, magnetorheological gel has better anti-settling performance and stability. Therefore, magnetorheological gel is suitable for devices that can meet operational requirements in all aspects after long-term storage, such as the anti-recoil application of weapons. To study this in-depth, the mechanism of the influence of magnetorheological gel micro-magnetic-mechanical properties on the macro-output damping mechanics of the damper, a parallel plate model of the mixed flow mode composed of Couette shear flow and Poiseuille pressure flow was established. The theoretical analysis was of the output damping of the damper. Finally, the controllability of the damper under impact load employed magnetorheological gel was preliminarily analyzed. The results indicate that the damping coefficient of the damper increases with the increase of dynamic viscosity ηB of the magnetorheological gel, piston effective cross-sectional area AP, magnetic pole L, and Bingham coefficient Bi. Magnetorheological damper has controllability under impact load and can reach a wide controllable range under the condition under small magnetic field ranging from 0 mT to 131 mT. Full article
Show Figures

Figure 1

17 pages, 33572 KB  
Article
A Fractal Permeability Model of Tight Oil Reservoirs Considering the Effects of Multiple Factors
by Zhongwei Wu, Chuanzhi Cui, Yong Yang, Chuanbao Zhang, Jian Wang and Xin Cai
Fractal Fract. 2022, 6(3), 153; https://doi.org/10.3390/fractalfract6030153 - 11 Mar 2022
Cited by 7 | Viewed by 2895
Abstract
The prediction of permeability and the evaluation of tight oil reservoirs are very important to extract tight oil resources. Tight oil reservoirs contain enormous micro/nanopores, in which the fluid flow exhibits micro/nanoscale flow and has a slip length. Furthermore, the porous size distribution [...] Read more.
The prediction of permeability and the evaluation of tight oil reservoirs are very important to extract tight oil resources. Tight oil reservoirs contain enormous micro/nanopores, in which the fluid flow exhibits micro/nanoscale flow and has a slip length. Furthermore, the porous size distribution (PSD), stress sensitivity, irreducible water, and pore wall effect must also be taken into consideration when conducting the prediction and evaluation of tight oil permeability. Currently, few studies on the permeability model of tight oil reservoirs have simultaneously taken the above factors into consideration, resulting in low reliability of the published models. To fill this gap, a fractal permeability model of tight oil reservoirs based on fractal geometry theory, the Hagen–Poiseuille equation (H–P equation), and Darcy’s formula is proposed. Many factors, including the slip length, PSD, stress sensitivity, irreducible water, and pore wall effect, were coupled into the proposed model, which was verified through comparison with published experiments and models, and a sensitivity analysis is presented. From the work, it can be concluded that a decrease in the porous fractal dimension indicates an increase in the number of small pores, thus decreasing the permeability. Similarly, a large tortuous fractal dimension represents a complex flow channel, which results in a decrease in permeability. A decrease in irreducible water or an increase in slip length results in an increase in flow space, which increases permeability. The permeability decreases with an increase in effective stress; moreover, when the mechanical properties of rock (elastic modulus and Poisson’s ratio) increase, the decreasing rate of permeability with effective stress is reduced. Full article
(This article belongs to the Special Issue Applications of Fractal Geometry Theory in Porous Media)
Show Figures

Figure 1

15 pages, 6803 KB  
Article
Flow Mechanism Characterization of Porous Oil-Containing Material Base on Micro-Scale Pore Modeling
by Ke Yan, Tingting Yin, Jiannan Sun, Jun Hong and Yongsheng Zhu
Materials 2021, 14(14), 3896; https://doi.org/10.3390/ma14143896 - 13 Jul 2021
Cited by 6 | Viewed by 2302
Abstract
The self-lubricating effect of the porous oil-containing cage is realized by storing and releasing lubricants through its internal micro-scale pore structure. The internal flow and heat transfer process in the micron-submicron pore structure is crucial to the self-lubricating mechanism of the porous oil-containing [...] Read more.
The self-lubricating effect of the porous oil-containing cage is realized by storing and releasing lubricants through its internal micro-scale pore structure. The internal flow and heat transfer process in the micron-submicron pore structure is crucial to the self-lubricating mechanism of the porous oil-containing cage. To this end, a new modeling method of porous cage was proposed based on random seeds theory, and the local two-dimensional models of porous cage with different micro-scale pore structure were established. The multiphysics coupling simulation analysis of lubricating oil inside the porous cage with the effect of centrifugal force and thermal expansion was carried out based on the COMSOL Multiphysics platform. In order to characterize the micro-scale pore structure, new structural parameter indicators, such as relative surface perimeter, effective porosity, tortuosity and fluid properties related to the internal flow process, were all extracted from the above models. Combing with the Hagen–Poiseuille equation, a flow resistance model of oil flow inside the porous oil-containing cage was obtained. Finally, comparison of simulation results and analytical solutions of the micro-scale resistance model was carried out to verify the correctness of the micro-scale resistance model. The work provides a new direction for the study of the lubrication mechanism of the porous oil-containing cage. Full article
Show Figures

Figure 1

15 pages, 15893 KB  
Article
Pressure-Driven Nitrogen Flow in Divergent Microchannels with Isothermal Walls
by Amin Ebrahimi, Vahid Shahabi and Ehsan Roohi
Appl. Sci. 2021, 11(8), 3602; https://doi.org/10.3390/app11083602 - 16 Apr 2021
Cited by 24 | Viewed by 4560
Abstract
Gas flow and heat transfer in confined geometries at micro-and nanoscales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. Nonequilibrium effects increase with a decrease in the characteristic length-scale of the fluid flow [...] Read more.
Gas flow and heat transfer in confined geometries at micro-and nanoscales differ considerably from those at macro-scales, mainly due to nonequilibrium effects such as velocity slip and temperature jump. Nonequilibrium effects increase with a decrease in the characteristic length-scale of the fluid flow or the gas density, leading to the failure of the standard Navier–Stokes–Fourier (NSF) equations in predicting thermal and fluid flow fields. The direct simulation Monte Carlo (DSMC) method is employed in the present work to investigate pressure-driven nitrogen flow in divergent microchannels with various divergence angles and isothermal walls. The thermal fields obtained from numerical simulations are analysed for different inlet-to-outlet pressure ratios (1.5Π2.5), tangential momentum accommodation coefficients, and Knudsen numbers (0.05Kn12.5), covering slip to free-molecular rarefaction regimes. The thermal field in the microchannel is predicted, heat-lines are visualised, and the physics of heat transfer in the microchannel is discussed. Due to the rarefaction effects, the direction of heat flow is largely opposite to that of the mass flow. However, the interplay between thermal and pressure gradients, which are affected by geometrical configurations of the microchannel and the applied boundary conditions, determines the net heat flow direction. Additionally, the occurrence of thermal separation and cold-to-hot heat transfer (also known as anti-Fourier heat transfer) in divergent microchannels is explained. Full article
(This article belongs to the Special Issue Fluid Flows Modelling in Microfluidic Systems)
Show Figures

Figure 1

21 pages, 3488 KB  
Article
Numerical Investigation of Thermally Developing and Fully Developed Electro-Osmotic Flow in Channels with Rounded Corners
by Nicola Suzzi and Marco Lorenzini
Fluids 2021, 6(1), 22; https://doi.org/10.3390/fluids6010022 - 4 Jan 2021
Cited by 4 | Viewed by 3307
Abstract
Electro-osmotic flow, that is, the motion of a polar fluid in microducts induced by an external electric field, is one micro-effect which allows fluid circulation without the use of mechanical pumping. This is of interest in the thermal management of electronic devices, as [...] Read more.
Electro-osmotic flow, that is, the motion of a polar fluid in microducts induced by an external electric field, is one micro-effect which allows fluid circulation without the use of mechanical pumping. This is of interest in the thermal management of electronic devices, as microchannels with cross sections of almost arbitrary shape can easily be integrated on the chips. It is therefore important to assess how the geometry of the channel influences the heat transfer performance. In this paper, the thermal entry region and the fully developed electro-osmotic flow in a microchannel of rectangular cross section with smoothed corners is investigated for uniform wall temperature. For the fully developed region, correlations for the Poiseuille and Nusselt numbers considering the aspect ratio and nondimensional smoothing radius are given, which can be used for practical design purposes. For thermally developing flow, it is highlighted how smoothing the corners increases the value of the local Nusselt number, with increases up to 18% over sharp corners, but that it also shortens the thermal entry length. It is also found that Joule heating in the fluid may cause a reversal of the heat flux, and that the thermal entry length has a linear dependence on the Reynolds number and the hydraulic diameter and on the logarithm of the nondimensional Joule heating. Full article
(This article belongs to the Special Issue Recent Advances in Single and Multiphase Flows in Microchannels)
Show Figures

Figure 1

13 pages, 835 KB  
Article
The Knudsen Paradox in Micro-Channel Poiseuille Flows with a Symmetric Particle
by Ananda Subramani Kannan, Tejas Sharma Bangalore Narahari, Yashas Bharadhwaj, Andreas Mark, Gaetano Sardina, Dario Maggiolo, Srdjan Sasic and Henrik Ström
Appl. Sci. 2021, 11(1), 351; https://doi.org/10.3390/app11010351 - 31 Dec 2020
Cited by 5 | Viewed by 4886
Abstract
The Knudsen paradox—the non-monotonous variation of mass-flow rate with the Knudsen number—is a unique and well-established signature of micro-channel rarefied flows. A particle which is not of insignificant size in relation to the duct geometry can significantly alter the flow behavior when introduced [...] Read more.
The Knudsen paradox—the non-monotonous variation of mass-flow rate with the Knudsen number—is a unique and well-established signature of micro-channel rarefied flows. A particle which is not of insignificant size in relation to the duct geometry can significantly alter the flow behavior when introduced in such a system. In this work, we investigate the effects of a stationary particle on a micro-channel Poiseuille flow, from continuum to free-molecular conditions, using the direct simulation Monte-Carlo (DSMC) method. We establish a hydrodynamic basis for such an investigation by evaluating the flow around the particle and study the blockage effect on the Knudsen paradox. Our results show that with the presence of a particle this paradoxical behavior is altered. The effect is more significant as the particle becomes large and results from a shift towards relatively more ballistic molecular motion at shorter geometrical distances. The need to account for combinations of local and non-local transport effects in modeling reactive gas–solid flows in confined geometries at the nano-scale and in nanofabrication of model pore systems is discussed in relation to these results. Full article
(This article belongs to the Special Issue Fluid Flows Modelling in Microfluidic Systems)
Show Figures

Figure 1

14 pages, 4409 KB  
Article
Wall Slip Behaviour of Polymers Based on Molecular Dynamics at the Micro/Nanoscale and Its Effect on Interface Thermal Resistance
by Yan Lou, Gang Wu and Yanfeng Feng
Polymers 2020, 12(10), 2182; https://doi.org/10.3390/polym12102182 - 24 Sep 2020
Cited by 14 | Viewed by 3354
Abstract
Taking the Poiseuille flow of a molten polymer in parallel plates as the research object and polymethyl methacrylate (PMMA) as the research material, an all-atom analysis model of the molecular dynamic flow of polymer macromolecules is established according to the Navier slip law. [...] Read more.
Taking the Poiseuille flow of a molten polymer in parallel plates as the research object and polymethyl methacrylate (PMMA) as the research material, an all-atom analysis model of the molecular dynamic flow of polymer macromolecules is established according to the Navier slip law. The effects of wall wettability and external pressure on the wall slip behaviour of polymer macromolecules, as well as the spatial evolution process of the entanglement–unentanglement process of polymer chains near the wall under different shearing effects, were studied. The interface thermal resistance rule was explored, and an interface thermal resistance model considering the wall slip behaviour was established. Finally, a micro-injection experiment was used to verify the validity and accuracy of the model. The results show that when the wall is hydrophobic, the polymer melt exhibits significant wall slip. As the external pressure increases, the wall slip speed and the slip length increase. However, after a certain pressure is exceeded, the growth rate of the slip length is basically zero. As the external pressure increases, the PMMA molecular chains gradually start to separate, the single molecular chain becomes untangled from the entangled grid, and the chain detaches from the wall after exceeding a certain threshold. Wall slip reduces the interface thermal resistance between the solid–liquid interface and enhances the interface heat transfer performance. The interface thermal resistance value calculated by molecular dynamics can more accurately reflect the heat conduction rule of the solid–liquid interface at the micro/nanoscale than that measured by the thermal resistance experiment, indicating that the micro/nano interface thermal resistance obtained by molecular dynamics simulation is reliable. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

Back to TopTop