Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,583)

Search Parameters:
Keywords = Phenolic compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6020 KB  
Article
Comprehensive Morpho-Functional Profiling of Peruvian Andean Capsicum pubescens Germplasm Reveals Promising Accessions with High Agronomic and Nutraceutical Value
by Erick Leao Salas-Zeta, Katherine Lisbeth Bernal-Canales, Andrea Delgado-Lazo, Gonzalo Pacheco-Lizárraga, Marián Hermoza-Gutiérrez, Hector Cántaro-Segura, Elizabeth Fernandez-Huaytalla, Dina L. Gutiérrez-Reynoso, Fredy Quispe-Jacobo and Karina Ccapa-Ramirez
Plants 2026, 15(2), 288; https://doi.org/10.3390/plants15020288 (registering DOI) - 17 Jan 2026
Abstract
Capsicum pubescens (rocoto) is an Andean domesticate with notable agronomic and nutraceutical potential, yet it remains underrepresented in chili pepper breeding programs. In this study, 78 accessions from the Peruvian Andes were evaluated in a single field environment during the 2024 growing season [...] Read more.
Capsicum pubescens (rocoto) is an Andean domesticate with notable agronomic and nutraceutical potential, yet it remains underrepresented in chili pepper breeding programs. In this study, 78 accessions from the Peruvian Andes were evaluated in a single field environment during the 2024 growing season for 28 variables spanning plant architecture, phenology and yield, color (CIELAB), weight, fruit morphology, physicochemical variables, and functional phytochemicals, including total phenolics, carotenoids, ascorbic acid, capsaicinoids, and antioxidant activity (FRAP, DPPH, ABTS). Descriptive analyses revealed broad phenotypic diversity in key variables such as yield and bioactive compounds. Spearman correlations uncovered a clear modular structure, with strong within-domain associations across morphological, chromatic, and biochemical variables, and statistically significant but low-magnitude cross-domain associations (e.g., fruit length with pungency, redness with total phenolics). Principal component analysis and hierarchical clustering resolved three differentiated phenotypic profiles: (i) low-pungency accessions with high soluble solids and varied fruit colors; (ii) highly pungent materials with elevated antioxidant capacity; and (iii) large, red-fruited accessions with considerable carotenoid content and high moisture. This multivariate architecture revealed weak cross-block correlations among agronomic, color, and functional traits, enabling selection of promising accessions combining desirable agronomic attributes and favorable bioactive profiles in specific accessions. These results provide a quantitative foundation for future breeding strategies in C. pubescens, opening concrete opportunities to develop improved cultivars that simultaneously meet productivity and functional quality criteria. Full article
Show Figures

Figure 1

13 pages, 667 KB  
Article
Quantitative Assessment of Total Aerobic Viable Counts in Apitoxin-, Royal-Jelly-, Propolis-, Honey-, and Bee-Pollen-Based Products Through an Automated Growth-Based System
by Harold A. Prada-Ramírez, Raquel Gómez-Pliego, Humberto Zardo, Willy-Fernando Cely-Veloza, Ericsson Coy-Barrera, Rodrigo Palacio-Beltrán, Romel Peña-Romero, Sandra Gonzalez-Alarcon, Juan Camilo Fonseca-Acevedo, Juan Pablo Montes-Tamara, Lina Nieto-Celis, Ruth Dallos-Acosta, Tatiana Gonzalez, David Díaz-Báez and Gloria Inés Lafaurie
Microorganisms 2026, 14(1), 218; https://doi.org/10.3390/microorganisms14010218 (registering DOI) - 17 Jan 2026
Abstract
Bee-derived products such as apitoxin, royal jelly, propolis, bee pollen, and honey are increasingly being used as part of cosmetic products because all of them contain a large number of bioactive compounds with antioxidant, anti-inflammatory, antimicrobial, and regenerative properties, which enable them to [...] Read more.
Bee-derived products such as apitoxin, royal jelly, propolis, bee pollen, and honey are increasingly being used as part of cosmetic products because all of them contain a large number of bioactive compounds with antioxidant, anti-inflammatory, antimicrobial, and regenerative properties, which enable them to be used for therapeutic purposes. The aim of this investigation was to assess the performance of an automated growth-based system in order to make a quantitative examination of the total aerobic viable counts in bee-derived personal care products using NF-TVC vials that contained a nutrient-based medium with dextrose as the carbon source. According to USP general chapter <1223>, pivotal validation criteria such as linearity, equivalence of results, operative range, precision, accuracy, ruggedness, limit of quantification, and limit of detection have demonstrated that the automated system can be used for a reliable total aerobic viable count. Moreover, the actual research demonstrated that polysorbates efficiently block the antimicrobiological potential of bioactive compounds, such as phenols, flavonoids, enzymes, peptides, and fatty acids, which naturally occur in apitoxin, royal jelly, propolis, bee pollen, and honey, allowing for efficient microorganism recovery from the bee-made products tested. Therefore, this AGBS could be applied efficiently within the cosmetic industry to assess the total aerobic viable count in bee-derived products such as capillary treatments, toothpaste, and anti-aging cream, affording several benefits associated with faster product release into the market. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

24 pages, 1826 KB  
Article
Phytochemical Composition and Bioactivity of Different Fruit Parts of Opuntia robusta and Opuntia ficus-indica: Conventional Versus NADES-Based Extraction
by Ouafaa Hamdoun, Sandra Gonçalves, Inês Mansinhos, Raquel Rodríguez-Solana, Gema Pereira-Caro, José Manuel Moreno-Rojas, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach and Anabela Romano
Horticulturae 2026, 12(1), 98; https://doi.org/10.3390/horticulturae12010098 (registering DOI) - 17 Jan 2026
Abstract
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in [...] Read more.
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in comparison with 50% methanol. Phytochemical profiling was performed using ultra-high-performance liquid chromatography–high-resolution mass spectrometry, alongside antioxidant and enzyme inhibition assessments (acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-glucosidase, and α-amylase). Glycerol–urea performed similarly to methanol in extracting phenolic compounds with notable antioxidant properties. Peel extracts contained the highest levels of bioactive compounds, particularly phenolic acids (525.49 in O. robusta and 362.96 µg/gDW in O. ficus indica). Enzyme inhibition varied across species and fruit parts, with extracts from both species inhibiting all targeted enzymes. Notably, this study provides the first evidence of tyrosinase inhibitory activity in O. robusta, which exhibited the strongest inhibition. Overall, these results emphasize the potential of cactus fruit extracts, particularly from O. robusta, for valorization, and support the use of NADESs as a sustainable and medium for extracting antioxidant compounds. Furthermore, the potential of fruit peel as waste with nutraceutical applications was demonstrated. Full article
23 pages, 2333 KB  
Article
Evaluation of the Winemaking Characteristics of High Anthocyanin Teinturier Grape Varieties (Lines)
by Hongyan Zhang, Xiaoqian Zhang, Yu Deng, Yaoyuan Zhai, Yuanpeng Du, Yulin Fang, Kekun Zhang and Keqin Chen
Foods 2026, 15(2), 340; https://doi.org/10.3390/foods15020340 (registering DOI) - 17 Jan 2026
Abstract
Teinturier grapes are an important germplasm resource for addressing the insufficient accumulation of anthocyanins in grapes under adverse climatic conditions. To enrich the variety diversity, eight newly bred teinturier grape varieties were used for comparison with the traditional teinturier grape variety “Yan 73”. [...] Read more.
Teinturier grapes are an important germplasm resource for addressing the insufficient accumulation of anthocyanins in grapes under adverse climatic conditions. To enrich the variety diversity, eight newly bred teinturier grape varieties were used for comparison with the traditional teinturier grape variety “Yan 73”. The results showed that A1 wine exhibits high levels of citric and tartaric acids, while the B2 wine showed elevated levels of malic and succinic acids. The C1, B2, and G1 wines showed higher total phenol, anthocyanin, flavonoid, flavan-3-ol, and tannin content. In the free volatile components of C1 wine, α-phellandrene, methyl salicylate, α-Terpineol, β-Myrcene, isoamylol and ethyl acetate were the primary aroma compounds. Meanwhile, the glycosidically bound aroma components of B2 wine were predominantly dominated by nonanal, benzaldehyde, α-terpineol, hexanal, α-phellandrene, and D-limonene. Compared with Y73, B2 and A1 wines have better phenols, while B2, C1 and B5 wines have better flavors, which provides support for the promotion of new varieties. Full article
Show Figures

Figure 1

23 pages, 1473 KB  
Article
Natural Dyes and Antioxidant Compounds from Safflower (Carthamus tinctorius L.) Florets: The Effects of Genotype and Sowing Time
by Clarissa Clemente, Silvia Tavarini, Shaula Antoni, Silvia Zublena, Luciana G. Angelini and Ilaria Degano
Plants 2026, 15(2), 282; https://doi.org/10.3390/plants15020282 (registering DOI) - 17 Jan 2026
Abstract
Safflower (Carthamus tinctorius L.) is increasingly attracting the attention of Mediterranean farmers due to its broad environmental adaptability and low input requirements. Although still relatively underexplored, this species holds remarkable potential as a source of natural dyes and bioactive phytochemicals with recognized [...] Read more.
Safflower (Carthamus tinctorius L.) is increasingly attracting the attention of Mediterranean farmers due to its broad environmental adaptability and low input requirements. Although still relatively underexplored, this species holds remarkable potential as a source of natural dyes and bioactive phytochemicals with recognized health-promoting and phytotherapeutic properties. In this study, the effects of genotype and sowing time on safflower’s productive and qualitative traits were investigated by testing six genotypes and two sowing times (autumn and spring) in an open-field trial conducted in central Tuscany. The Pieve genotype achieved the highest floret dry yield per head, number of heads per plant, and total floret yield per plant, whereas the Montola 2000 genotype was distinguished by its elevated polyphenol concentration and pronounced antioxidant activity. Autumn sowing resulted in higher yields of bioactive pigments, including carthamin and yellow quinochalcones, alongside greater total phenolic content and antioxidant capacity. Conversely, spring sowing appeared to limit pigment biosynthesis, likely due to environmental stressors such as elevated temperature and excessive light exposure. Overall, these findings highlight the strong influence of genotype and sowing time on the accumulation of health-beneficial compounds in safflower. By optimizing these factors, safflower can be strategically valorized as a multipurpose crop in the Mediterranean region, combining economic and environmental sustainability with the production of natural compounds of high nutraceutical and phytotherapeutic value. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

14 pages, 2317 KB  
Article
Shrimp-Derived Chitosan for the Formulation of Active Films with Mexican Propolis: Physicochemical and Functional Evaluation of the Biomaterial
by Alejandra Delgado-Lozano, Pedro Alberto Ledesma-Prado, César Leyva-Porras, Lydia Paulina Loya-Hernández, César Iván Romo-Sáenz, Carlos Arzate-Quintana, Manuel Román-Aguirre, María Alejandra Favila-Pérez, Alva Rocío Castillo-González and Celia María Quiñonez-Flores
Coatings 2026, 16(1), 124; https://doi.org/10.3390/coatings16010124 (registering DOI) - 17 Jan 2026
Abstract
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films [...] Read more.
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films enriched with Mexican propolis, aiming to evaluate the influence of the extract on the physicochemical and functional properties of the resulting biomaterial. Propolis was incorporated into the chitosan film-forming solution at a final concentration of 1.0% (v/v). The propolis employed met the requirements of the Mexican Official Standard NOM-003-SAG/GAN-2017 regarding flavonoid content, total phenolic compounds, and antimicrobial activity; additionally, it was evaluated through antioxidant activity, hemolysis, and acute toxicity (LD50) assays to provide a broader biological and safety assessment. The extracted chitosan exhibited a degree of deacetylation of 74% and characteristic FTIR spectral features comparable to those of commercial chitosan, confirming the quality of the obtained polymer. Chitosan–propolis films exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, whereas pure chitosan films showed no inhibitory effect. Thermal analyses (TGA/DSC) revealed a slight reduction in thermal stability due to the incorporation of thermolabile polyphenolic compounds, along with increased thermal complexity of the system. SEM observations demonstrated reduced microbial adhesion and marked morphological damage in microorganisms exposed to the functionalized films. Overall, the incorporation of Mexican propolis enabled the development of a hybrid biomaterial with enhanced antimicrobial performance and potential application in wound dressings and bioactive coatings. Full article
(This article belongs to the Special Issue Coatings with Natural Products)
Show Figures

Graphical abstract

27 pages, 2235 KB  
Review
Phytochemical Diversity and Antimicrobial Potential of Fabaceae Species Occurring in Tamaulipas, Mexico: A Systematic Review
by Paulina Rachel Gutiérrez-Durán, Jorge Víctor Horta-Vega, Fabián Eliseo Olazarán-Santibáñez, Juan Flores-Gracia and Hugo Brígido Barrios-García
Plants 2026, 15(2), 278; https://doi.org/10.3390/plants15020278 - 16 Jan 2026
Abstract
Antimicrobial resistance represents a critical challenge to global public health, driving the search for bioactive compounds in medicinal plants. The Fabaceae family stands out for its chemical richness and pharmacological properties; however, in the state of Tamaulipas, Mexico—an area of high diversity due [...] Read more.
Antimicrobial resistance represents a critical challenge to global public health, driving the search for bioactive compounds in medicinal plants. The Fabaceae family stands out for its chemical richness and pharmacological properties; however, in the state of Tamaulipas, Mexico—an area of high diversity due to its location between the Nearctic and Neotropical regions—this flora remains largely unexplored. The objective of this review was to analyze the global scientific literature on the Fabaceae of Tamaulipas, integrating floristic records, phytochemistry, and antimicrobial activity. Of the 347 species recorded in the state, only 60 have phytochemical studies, and 43 have documented medicinal uses. The results show that extraction methods predominantly use polar solvents to isolate phenolic compounds, flavonoids, and alkaloids, which show efficacy against pathogens such as Staphylococcus aureus, Escherichia coli, and Candida albicans. Despite limited local ethnobotanical documentation, the potential demonstrated by these species in other regions positions Tamaulipas as a strategic reservoir. This review identifies research gaps and emphasizes the need for systematic studies that validate traditional uses and prioritize bioprospecting of the flora of northeastern Mexico for the development of new therapeutic alternatives. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

13 pages, 1048 KB  
Article
Supplemented Feed for Broiler Chickens: The Influence of Red Grape Pomace and Grape Seed Flours on Meat Characteristics
by Manuela Mauro, Alessandro Attanzio, Carla Buzzanca, Marialetizia Ponte, Vita Di Stefano, Ignazio Restivo, Giuseppe Maniaci, Angela D’Amico, Antonino Di Grigoli, Emiliano Gurrieri, Antonio Fabbrizio, Sabrina Sallemi, Luisa Tesoriere, Francesco Longo, Rosario Badalamenti, Aiti Vizzini, Maria Grazia Cappai, Mirella Vazzana and Vincenzo Arizza
Animals 2026, 16(2), 280; https://doi.org/10.3390/ani16020280 - 16 Jan 2026
Abstract
Intensive broiler chicken farming is one of the most important livestock sectors globally. However, intensive production systems raise concerns about farm sustainability, as well as ensuring animal welfare and product quality. For this reason, identifying novel, high-value-added feed ingredients is crucial. Winery by-products [...] Read more.
Intensive broiler chicken farming is one of the most important livestock sectors globally. However, intensive production systems raise concerns about farm sustainability, as well as ensuring animal welfare and product quality. For this reason, identifying novel, high-value-added feed ingredients is crucial. Winery by-products (WBPs) are a valuable source of bioactive compounds and can be utilized as functional feed ingredients. This study evaluated the effects of dietary supplementation with grape seed meal and grape pomace meal in diets for broilers up to 42 days of age. Three dietary treatments were formulated—grape seed meal (3% and 6%), grape pomace meal (3% and 6%), and a combination (3% seed meal + 3% pomace meal)—along with a standard diet (control). The proximal composition (moisture, protein, fatty acid profile, fats, ash), antioxidant parameters (ROS, GSH, NO, POV), free radical scavenging activity (DPPH and ABTS•+), and total phenolic content of the meat and physical characteristics (color) were assessed. While proximal composition of meat was not significantly influenced by the dietary treatment, some parameters, such as total phenolic content, PUFA levels, and antioxidant and free radical scavenging activity, were improved. These results demonstrate enhanced favorable traits improving chicken meat quality and confirm the potential of WBPs as functional feed ingredients, promoting a more sustainable production model aligned with the principles of the circular economy. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

23 pages, 359 KB  
Article
Effect of Freeze Drying, Hot Air Drying, and Hot Air Drying Preceded by Freezing on Phytochemical Composition, Antioxidant Capacity, and Technological Properties of Mango Peels
by Sara Marçal, Ana A. Vilas-Boas, Débora A. Campos and Manuela Pintado
Foods 2026, 15(2), 333; https://doi.org/10.3390/foods15020333 - 16 Jan 2026
Abstract
Mango peels have great potential for upcycling in the food industry. This study addressed important knowledge gaps regarding mango peel drying, namely, the effect of drying on mango peels’ bound phenolics, and the impact of prior freezing on the composition of hot air-dried [...] Read more.
Mango peels have great potential for upcycling in the food industry. This study addressed important knowledge gaps regarding mango peel drying, namely, the effect of drying on mango peels’ bound phenolics, and the impact of prior freezing on the composition of hot air-dried mango peels. Hence, the effect of freeze drying (FD) (0.10 mbar; −63 °C (condenser temperature); 25 °C (shelf temperature); 96 h), hot air drying (HAD) (65 °C; 48 h), and HAD preceded by freezing (FZ + HAD) (−20 °C; 30 days) on mango peels’ composition, antioxidant capacity, and technological properties was evaluated. Drying did not affect fiber content; however, it caused slight modifications in carbohydrate composition of fiber. Regarding antioxidant compounds, FD, HAD, and FZ + HAD reduced vitamin C by 9%, 53%, and 71%, respectively. FD preserved all free phenolics, while HAD and FZ + HAD decreased most of them, with reductions ranging from 20 to 42% and 17 to 71%, respectively. However, FD, HAD, and FZ + HAD reduced 9, 2, and 6 of the 10 bound phenolics identified, respectively, and decreased their antioxidant capacity. Finally, all identified carotenoids were reduced by FZ + HAD, whereas FD and HAD decreased only violaxanthin. Regarding technological properties, FD showed the highest and lowest oil and water absorption capacities. In conclusion, these findings demonstrated that prior freezing exacerbated the loss of antioxidants during HAD. Full article
19 pages, 1940 KB  
Article
Protective Effect of Multifloral Honey on Stem Cell Aging in a Dynamic Cell Culture Model
by Fikriye Fulya Kavak, Sara Cruciani, Giuseppe Garroni, Diletta Serra, Rosanna Satta, Ibrahim Pirim, Melek Pehlivan and Margherita Maioli
Antioxidants 2026, 15(1), 115; https://doi.org/10.3390/antiox15010115 - 16 Jan 2026
Abstract
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on [...] Read more.
Natural compounds, as honey-derived flavonoids and phenolic compounds, are increasingly investigated for their potential to mitigate skin aging and prevent oxidative stress-induced cellular damages. In this context, a dynamic cell culture model was employed to assess the protective influence of honey pre-treatment on stem cell–associated genes and the Wingless-related integration site (Wnt) signaling pathway following ultraviolet (UV)-induced aging. Using a bioreactor, skin stem cells (SSCs) derived from healthy skin biopsies and human skin fibroblasts (HFF1) were pre-treated with 1% honey for 48 h and then exposed to UV. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses were performed on Wnt signaling and anti-aging molecular responses. Honey pre-treatment enhanced the expression of pluripotency markers (Octamer-binding transcription factor 4 (Oct4); SRY-box transcription factor 2 (Sox2)) and reduced senescence-related cell cycle regulators (cyclin-dependent kinase inhibitor 2A (p16); cyclin-dependent kinase inhibitor 1A (p21); tumor protein 53 (p53)) in SSCs. In UV-damaged SSCs, honey also significantly increased Wnt3a expression. In fibroblasts, honey pre-treatment upregulated Heat shock protein 70 (Hsp70) and Hyaluronan synthase 2 (HAS2) expression, while downregulating caspase-8 (CASP8), indicating a protective role against UV-mediated cellular stress. We also analyzed nitric oxide release and the total antioxidant capacity of cells after treatment. Collectively, these findings suggest that honey may safeguard skin stem cells from UV-induced aging by modulating pluripotency and senescence-associated genes and regulating differentiation through alterations in Wnt signaling. Furthermore, Hsp70 upregulation in fibroblasts appears to strengthen cellular stress responses and support homeostatic stability. Full article
(This article belongs to the Special Issue Oxidative Stress in Cell Senescence)
Show Figures

Figure 1

22 pages, 2580 KB  
Article
Variation in Soil Microbial Carbon Utilization Patterns Along a Forest Successional Series in a Degraded Wetland of the Sanjiang Plain
by Zhaorui Liu, Wenmiao Pu, Kaiquan Zhang, Rongze Luo, Xin Sui and Mai-He Li
Diversity 2026, 18(1), 48; https://doi.org/10.3390/d18010048 - 16 Jan 2026
Abstract
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and [...] Read more.
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and forest vegetation with a lower ground water level. This degradation has altered soil microbial structure and functions, reducing ecological and socio-economic benefits. Along this successional gradient, we used Biolog-ECO plates combined with soil enzyme assays (catalase, urease, sucrase, and acid phosphatase) to assess the dynamics of microbial carbon metabolic activity, measured by average well color development (AWCD). The results showed a systematic decline in AWCD values with advancing succession, revealing a pronounced reduction in overall microbial metabolic activity during wetland degradation. This trend correlated with loss of soil moisture, organic carbon, and nitrogen nutrients. Microbial communities in early successional wetland stages (i.e., original natural wetland and wetland edge) preferred labile carbon sources (e.g., carbohydrates, amino acids), while forested stages favored relatively more structural (e.g., polymers, phenolic compounds). These findings indicate that vegetation succession regulates microbial carbon metabolism by modifying soil physicochemical properties, providing insights for wetland restoration. Full article
(This article belongs to the Special Issue Microbial Diversity in Different Environments)
Show Figures

Figure 1

19 pages, 1444 KB  
Article
Rosa x hybrida: A New Tool for Functional Food Development with Triple-Negative Breast Antitumoral Implications
by Lorenzo Rivas-Garcia, Tamara Y. Forbes-Hernández, Pablo Cristóbal-Cueto, David Tébar-García, Alfonso Salinas-Castillo, Ana Cristina Abreu, Ignacio Fernández, Pilar Aranda, Juan Llopis, Elena Nebot-Valenzuela, Eva M. Galan-Moya and Cristina Sánchez-González
Int. J. Mol. Sci. 2026, 27(2), 907; https://doi.org/10.3390/ijms27020907 - 16 Jan 2026
Abstract
Edible flowers have garnered increasing attention due to their high content of bioactive compounds, making them promising candidates for biomedical and functional food applications. This work evaluated the metabolomic data of fresh Rosa x hybrida petals, revealing seven types of metabolites, including amino [...] Read more.
Edible flowers have garnered increasing attention due to their high content of bioactive compounds, making them promising candidates for biomedical and functional food applications. This work evaluated the metabolomic data of fresh Rosa x hybrida petals, revealing seven types of metabolites, including amino acids, organic acids, vitamins, sugars, phenolic acids, and flavonoids. Notably, quercetin, kaempferol and their derivatives were the main flavonoids determined. Furthermore, in vitro studies were conducted to evaluate the potential antiproliferative effects against triple-negative breast cancer (TNBC). Thus, the methanolic extract derived from Rosa x hybrida petals demonstrated significant antitumoral activity against both sensitive and resistant TNBC cells, as evidenced by reduced MTT metabolization, colony formation, and wound healing activity. Furthermore, the cell death mechanism associated with the petal extract was studied. The antiproliferative activity was mediated by reactive oxygen species generation, triggering cell death mechanisms such as apoptosis and autophagy. In conclusion, these results propose Rosa x hybrida could be a new tool for nutraceuticals and functional food production. Full article
Show Figures

Figure 1

40 pages, 2989 KB  
Systematic Review
The Genus Leccinum: Global Advances in Taxonomy, Ecology, Nutritional Value, and Environmental Significance
by Ruben Budau, Simona Ioana Vicas, Mariana Florica Bei, Danut Aurel Dejeu, Lucian Dinca and Danut Chira
J. Fungi 2026, 12(1), 70; https://doi.org/10.3390/jof12010070 - 16 Jan 2026
Abstract
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides [...] Read more.
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides the first integrative assessment of Leccinum research, combining a bibliometric analysis of 293 peer-reviewed publications with an in-depth qualitative synthesis of ecological, biochemical, and environmental findings. Bibliometric results show increasing scientific attention since the mid-20th century, with major contributions from Europe, Asia, and North America, and dominant research themes spanning taxonomy, ecology, chemistry, and environmental sciences. The literature review highlights substantial advances in phylogenetic understanding, species diversity, and host specificity. Leccinum forms ectomycorrhizal associations with over 60 woody host genera, underscoring its functional importance in forest ecosystems. Nutritionally, Leccinum species are rich in proteins, carbohydrates, minerals, bioactive polysaccharides, phenolic compounds, and umami-related peptides, with demonstrated antioxidant, immunomodulatory, and antitumor activities. At the same time, the genus exhibits notable bioaccumulation capacity for heavy metals (particularly Hg, Cd, and Pb) and radionuclides, making it both a valuable food source and a sensitive environmental bioindicator. Applications in biotechnology, environmental remediation, forest restoration, and functional food development are emerging but remain insufficiently explored. Identified research gaps include the need for global-scale phylogenomic frameworks, expanded geographic sampling, standardized biochemical analyses, and deeper investigation into physiological mechanisms and applied uses. This review provides the first holistic synthesis of Leccinum, offering an integrated perspective on its taxonomy, ecology, nutritional composition, environmental significance, and practical applications. The findings serve as a foundation for future mycological, ecological, and biotechnological research on this diverse and understudied fungal genus. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

15 pages, 1564 KB  
Article
Regioselective Glycosylation of Demethylbellidifolin by Glycosyltransferase AbCGT Yields Potent Anti-Renal Fibrosis Compound
by Limin Zeng, Shichao Cui, Xingyu Ji, Yuhong Liu, Guozhang Long, Yulan Xia, Gang Cheng, Jingya Li and Youhong Hu
Molecules 2026, 31(2), 309; https://doi.org/10.3390/molecules31020309 - 15 Jan 2026
Viewed by 20
Abstract
Glycosylation serves as an effective strategy to enhance the solubility, bioavailability, and pharmacological activity of polyhydroxyphenols. In this study, we explored the glycosylation of natural and natural-inspired phenolic compounds using the glycosyltransferase AbCGT and evaluated the anti-renal fibrotic potential of the resulting glycosides. [...] Read more.
Glycosylation serves as an effective strategy to enhance the solubility, bioavailability, and pharmacological activity of polyhydroxyphenols. In this study, we explored the glycosylation of natural and natural-inspired phenolic compounds using the glycosyltransferase AbCGT and evaluated the anti-renal fibrotic potential of the resulting glycosides. Among them, 1,3,5,8-tetrahydroxyxanthone 5-O-β-D-glucopyranoside (2-1a), synthesized via the regioselective 5-O-glycosylation of demethylbellidifolin, demonstrated significant anti-renal fibrotic activity. In contrast, its homologous glycosyltransferase, UGT73AE1, predominantly glycosylated demethylbellidifolin at the 3-OH position. Molecular docking studies revealed the structural basis for this regioselectivity difference. To enhance the production of 2-1a, we established a UDP-glucose (UDPG) recycling system by coupling AbCGT with Glycine max sucrose synthase (GmSuSy) and subsequently optimized the reaction conditions. Furthermore, targeted mutagenesis of AbCGT informed by molecular docking analysis identified a F138A mutant that enhanced glycosylation yield by 2.3-fold. This work develops a novel glycosyltransferase-based catalytic system and identifies a new compound with potential anti-renal fibrotic activity. Full article
(This article belongs to the Special Issue Application of Organic Synthesis to Bioactive Compounds, 3rd Edition)
Show Figures

Figure 1

29 pages, 2565 KB  
Article
Characterization of Low-Alcohol Wines Obtained by Post-Fermentative Reverse Osmosis and Vacuum Concentration
by Răzvan Vasile Filimon, Florin Dumitru Bora, Constantin Bogdan Nechita, Marius Niculaua, Cătălin Ioan Zamfir, Roxana Mihaela Filimon, Ancuţa Nechita and Valeriu V. Cotea
Foods 2026, 15(2), 321; https://doi.org/10.3390/foods15020321 - 15 Jan 2026
Viewed by 132
Abstract
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis [...] Read more.
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis followed by vacuum concentration of the hydroalcoholic permeate (ROVC) or to two-step vacuum concentration (TSVC), with the recovery of aromas as the first alcoholic fraction (F1). Beverages with alcoholic concentrations of 3.50, 5.50, and 8.50% vol. were obtained, with compositional characteristics and sensory properties varying significantly with alcoholic strength and dealcoholization technique applied. ROVC produced wines with organic acids, volatile constituents, extract, and color intensity decreasing progressively with the reduction in alcohol concentration. At similar alcohol concentration, TSVC LAW showed a significantly higher phenolic content, antioxidant activity, volatile compounds (including esters and terpenes), and overall structural balance, maintaining better the typicity of wines. In both processes, reducing alcohol below 5.50% vol. significantly affected the quality and acceptability of the final product. Hierarchical cluster analysis indicated that TSVC LAWs were statistically closer to the conventional wine (control). These findings improve the understanding of how dealcoholization technologies affect the composition of wine, improving product quality, sustainability, and operational efficiency. Full article
Show Figures

Figure 1

Back to TopTop