Next Article in Journal
Bulb-Priming Followed by Foliar Magnetite Nanoparticle Applications Improve Growth, Bulb Yield, Antioxidant Activities, and Iron Fortification in Shallot in Semi-Arid Regions
Previous Article in Journal
Cadmium Stress Disrupts Auxin Signaling and Growth in Ilex verticillata: Insights from Physiological and Transcriptomic Analyses
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Phytochemical Diversity and Antimicrobial Potential of Fabaceae Species Occurring in Tamaulipas, Mexico: A Systematic Review

by
Paulina Rachel Gutiérrez-Durán
1,2,
Jorge Víctor Horta-Vega
1,*,
Fabián Eliseo Olazarán-Santibáñez
2,
Juan Flores-Gracia
1 and
Hugo Brígido Barrios-García
2,*
1
Instituto Tecnológico de Ciudad Victoria, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Victoria, Avenida Tecnológico No. 1301, C.P., Ciudad Victoria 87010, Mexico
2
Departamento de Bacteriología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Carretera Victoria-Mante km. 5 A.P. N° 263, C.P., Ciudad Victoria 87000, Mexico
*
Authors to whom correspondence should be addressed.
Plants 2026, 15(2), 278; https://doi.org/10.3390/plants15020278
Submission received: 9 December 2025 / Revised: 13 January 2026 / Accepted: 14 January 2026 / Published: 16 January 2026
(This article belongs to the Section Phytochemistry)

Abstract

Antimicrobial resistance represents a critical challenge to global public health, driving the search for bioactive compounds in medicinal plants. The Fabaceae family stands out for its chemical richness and pharmacological properties; however, in the state of Tamaulipas, Mexico—an area of high diversity due to its location between the Nearctic and Neotropical regions—this flora remains largely unexplored. The objective of this review was to analyze the global scientific literature on the Fabaceae of Tamaulipas, integrating floristic records, phytochemistry, and antimicrobial activity. Of the 347 species recorded in the state, only 60 have phytochemical studies, and 43 have documented medicinal uses. The results show that extraction methods predominantly use polar solvents to isolate phenolic compounds, flavonoids, and alkaloids, which show efficacy against pathogens such as Staphylococcus aureus, Escherichia coli, and Candida albicans. Despite limited local ethnobotanical documentation, the potential demonstrated by these species in other regions positions Tamaulipas as a strategic reservoir. This review identifies research gaps and emphasizes the need for systematic studies that validate traditional uses and prioritize bioprospecting of the flora of northeastern Mexico for the development of new therapeutic alternatives.

1. Introduction

Since ancient times, plants have been used for a wide variety of purposes, including the treatment of diseases due to the presence of bioactive compounds with therapeutic properties, including the control of infectious diseases in animals and humans [1,2]. Both the World Health Organization (WHO) and the World Organization for Animal Health (WOAH) have declared antimicrobial resistance to be one of the greatest threats to public health and animal health worldwide [3,4]. For this reason, there is an urgent need for new alternatives to treat resistant infections, such as natural compounds derived from plants. These organisms produce secondary metabolites, which are potentially promising candidates for drug discovery due to their defense mechanisms against pathogens [5,6,7,8].
The Fabaceae family, comprising 770 genera and approximately 19,500 species worldwide, is recognized for its chemical diversity and medicinal applications. Their high adaptive capacity defines them as a cosmopolitan family. In Mexico, Fabaceae is the second richest family in terms of species, including trees, shrubs, and perennial or annual herbs [9,10,11].
Located in northeastern Mexico, the state of Tamaulipas represents a convergence point between the Nearctic and Neotropical biogeographic regions, giving rise to a complex mosaic of ecosystems. This biodiversity ranges from cloud forests and cold climates to tropical rainforests, arid zones, and scrublands. This ecological transition zone not only fosters a remarkable richness of species and endemism but also harbors unique ecosystems such as coastal dunes and mangroves [9,12].
However, despite this biological value, research efforts in Mexico have historically concentrated in the central and southern parts of the country, resulting in uneven documentation of the flora of the northeast. A critical example is the Altas Cumbres Protected Natural Area in central Tamaulipas, which remains insufficiently studied; in particular, detailed records on the richness and distribution of legumes were lacking, even though they are one of the most representative plant families in the area [9,12,13].
Consequently, the relatively limited documentation of medicinal Fabaceae species in Tamaulipas should not be interpreted as evidence of low biological or pharmacological potential. Rather, it reflects a gap in academic knowledge rather than a lack of biological potential. In contrast, Fabaceae species in states such as Morelos, Hidalgo, and Oaxaca have been studied in relation to their traditional medicinal applications and bioactive compounds [14,15,16,17,18,19]. The medicinal uses of this family traditionally include the treatment of gastrointestinal infections [15,18,20,21,22,23,24,25,26,27,28]; respiratory disorders [24,25,27,29,30,31,32,33]; and skin lesions [14,24,31,32,34,35,36,37,38,39,40]. These therapeutic effects are supported by studies showing significant inhibitory activity against clinically relevant pathogens, including Gram-positive bacteria such as Staphylococcus aureus [21,22,24,26,27,32,34,38,41,42,43,44,45]. Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Salmonella Typhi [21,22,32,44,46,47,48], as well as opportunistic fungi such as Candida albicans [18,25,27,32,38].
In Tamaulipas, some ethnomedicinal knowledge related to Fabaceae species is limited to local and rural communities, with limited integration regarding their phytochemical and pharmacological composition. Therefore, linking the regional flora with global phytochemical and antimicrobial research is essential to validate traditional knowledge and identify previously untapped therapeutic resources [49].
The objective of this study is to systematically review the Fabaceae species recorded in Tamaulipas, compiling available information on their phytochemical profiles and antimicrobial properties reported both in Mexico and worldwide. This is achieved by integrating local ethnobotanical information with international scientific evidence. This work evaluates the biomedical potential of the Fabaceae species recorded in Tamaulipas, focusing on their antimicrobial activity. By integrating current knowledge about their bioactive compounds, this study serves as a starting point for new research focused on the biotechnological development of the regional flora.

2. Materials and Methods

2.1. Floristic Dataset and Taxonomic Validation

An assessment of the species richness of the Fabaceae family in the state of Tamaulipas was conducted based on previously documented floristic records. Data on species occurrence were obtained from the article Plantas vasculares de México [13], which reports 347 Fabaceae species in the state. This dataset served as a taxonomic and geographic reference for the review. To ensure the accuracy of the nomenclature, all scientific names were verified using World Flora Online (formerly The Plant List) and compared with the Catalogue of Life [50]. This procedure eliminated synonyms and ensured that all taxa were accepted and recognized in the botanical literature.

2.2. Systematic Review Design (PRISMA Declaration)

The systematic review was conducted in accordance with the PRISMA 2020 guidelines [51] (Figure 1). The search was performed on platforms such as Google Scholar, Web of Science, PubMed, and SciELO, and the records from 16 countries were included, with no restrictions on language or year of publication. To assess the pharmacological and phytochemical status of the 347 species, each scientific name was used as the main descriptor in combination with the following related keywords: (a) ‘plant extract’, (b) ‘antimicrobial activity’, (c) ‘antibacterial’, (d) ‘bioactive compounds’, and (e) ‘ethnomedicine’ or ‘traditional medicine’. These terms were selected to standardise the search, eliminating non-standardised descriptors such as “phytochemical extracts”. This ensured the use of controlled terminology under international standards, thereby facilitating information retrieval.

2.3. Inclusion and Exclusion Criteria

Articles providing specific data on the following were included (1) phytochemical characterization, (2) biological activity against human or animal pathogens, or (3) documented traditional medicinal use. Strict exclusion criteria were applied; articles that did not specify the plant organ used, the solvent used for extraction, or the specific microorganisms analyzed were discarded in order to ensure the integrity of the database. Cases where part of the information was missing were classified as “not reported” (NR) only when the remaining data (e.g., a specific bioactive compound) had high scientific value.

2.4. Summary of Data and Regional Context

A total of 107 publications were included, of which 53.27% were published between 2015 and 2025. The data were summarized in tables that included chemical composition, solvents (e.g., methanol, ethanol, water), extraction methods (maceration, Soxhlet), and target microorganisms. The study is focused on species present in Tamaulipas, a strategic state due to its location at the transition between the Nearctic and Neotropical biogeographic regions, covering a topography ranging from sea level to 3100 masl [52] (Figure 2).

3. Results and Discussion

3.1. Applications in Traditional Medicine

A total of 347 species of the Fabaceae family have been recorded for the state of Tamaulipas, distributed across 81 genera. The family is recognized worldwide for its economic importance, especially in the areas of food production and human and animal health [11,13,53]. This global literature review revealed that only 60 of the 347 species recorded for the state of Tamaulipas have been investigated for phytochemical extraction, and only 43 species have been documented to have traditional medicinal uses worldwide (Table 1). It is important to note that these uses are not necessarily reported for the state of Tamaulipas itself, highlighting the need for research in the region, since Tamaulipas represents a biogeographic transition zone where numerous species are found, where the geographical and climatic conditions of northeastern Mexico allow for the existence of abundant and heterogeneous vegetation, where legumes stand out both for their natural abundance and their socioeconomic relevance, but remain poorly documented ethnobotanically [52,54].
Ethnobotanical studies conducted in local communities have reported on the medicinal use of this family. Hernández-Sandoval and González-Medrano [55] in their work, they reported a list of 58 Fabaceae species, of which 34 had some medicinal use, whether in the bark, root, leaves, seeds, flowers, or exudates. However, they do not emphasize what types of diseases they treat. On the other hand, studies such as those by Jasso-Gandara [56]. also compiled a list of ethnobotanical knowledge in the municipality of Güemez, which includes only one species of Fabaceae. Medellín-Morales and Mora-Ravelo [49] compiled a list of 156 useful plants in the El Cielo Biosphere Reserve, where Fabaceae represent only 4–5% of the usefulness, but they do not mention how many of them have any traditional medicinal use, suggesting that many species remain unexplored locally despite their known pharmacological relevance elsewhere. This discrepancy supports the focus of the present review on Tamaulipas as a region of high biological potential but with limited ethnopharmacological research.
Among the species with medicinal applications listed in Table 1, digestive disorders constitute the most frequent category of use (32%). These species are commonly used to treat symptoms such as diarrhea, vomiting, and stomach pain [53,57]. Diarrhea is the most common ailment. Some of the species studied were Acaciella angustissima, Dalea aurea, Gliricidia sepium, Grona triflora, and Tephrosia cinerea, from which phenols and flavonoids were extracted, and from Aeschynomene indica and Zornia diphylla, from which essential oils were extracted [20,43,44,45,46,58,59], followed by general gastrointestinal disorders [42,44].
The second most common category includes dermatological problems (28%), including wound healing, skin infections, and inflammatory disorders. Species of the genus Neltulma spp. (formerly Prosopis spp.) and species of the genus Senna spp. are most commonly used for these conditions. This is attributed to the presence of tannins in the genus Senna spp., which have astringent properties, and in the genus Neltulma spp. with alkaloids and phenols, which have antimicrobial properties [15,25,26,33,38,40,47,60].
Table 1. Species of the Fabaceae family recorded in the state of Tamaulipas, including common names and traditional uses.
Table 1. Species of the Fabaceae family recorded in the state of Tamaulipas, including common names and traditional uses.
Botanical NameSynonymsCommon Name in MéxicoTraditional UseReferences
(Study Location)
Acaciella angustissima (Mill.) Britton & Rose-GuajilloNo data recorded [44]
(Queretaro, Mexico)
Aeschynomene indica L.-Not reportedUrticaria, furuncle, nyctalopia, hepatitis, enteritis, and diarrhea.[20]
(Quzhou, China)
Calliandra tergemina (L.) Benth.-Not reportedNo data recorded[61]
(Klang, Malaysia)
Canavalia rosea (Sw.) DC.-Frijol de playaNo data recorded[41]
(Crato, Brazil)
Canavalia villosa Benth.-GallinitasNo data recorded[62]
(Brazil)
Chamaecrista nictitans (L.) Moench-GuajitoFever and antiviral[42]
(Morelos, Mexico)
Dalea aurea Nutt. ex Pursh-Not reportedDiarrhea, stomach pain, and cramps[21]
(Oklahoma, USA)
Dalea bicolor Humb. & Bonpl. ex Willd.-EscobillaGastrointestinal problems, vomiting, and diarrhea[16]
(Hidalgo, Mexico)
Dalea foliolosa (Aiton) Barneby-AlmaraduzAnti-inflammatory and hypoglycemic[17]
(Oaxaca, Mexico)
Dalea nana Torr. ex A.Gray-Trébol enano de praderaNo data recorded[29]
(Arizona, USA)
Dalea versicolor Zucc.-Not reportedNo data recorded[58]
(Arizona, USA)
Desmodium incanum (Sw.) DC.-Amor secoBack pain, colds, and kidney Problems[30]
(Manchester, Jamaica)
Desmodium scorpiurus (Sw.) Poir.-Not reportedConstipation, cough, convulsions, venereal infections, tinea[63]
(Kaduna, Niger)
Desmodium tortuosum (Sw.) DC.-CadilloCardiovascular events[64]
(Ucayali, Peru)
Ebenopsis ebano (Berland.) Barneby & J.W.Grimes-ÉbanoNo data recorded[65]
(Nuevo Leon, Mexico)
Enterolobium cyclocarpum (Jacq.) Griseb.-GuanacasteNo data recorded[66]
(Oyo, Niger)
Erythrina herbacea L.-Hierba de colorínNo data recorded[67]
(Texas, USA)
Eysenhardtia platycarpa Pennell & Saff.-Not reportedKidney and gallbladder diseases[68]
(Nuevo Leon, Mexico)
Gleditsia aquatica Marshall-Not reportedNo data recorded[31]
(Giza, Egypt)
Gleditsia triacanthos L.-Acacia de tres espinasPain, whooping cough, measles, smallpox, skin diseases, asthma[34]
(South Africa)
Gliricidia sepium (Jacq.) Kunth-CacahuanancheWounds, diarrhea, repelling mosquitoes, fumigating[43]
(Kerala, India)
Grona adscendens (Sw.) H.Ohashi & K.OhashiDesmodium adscendens (Sw.) DC.Amor secoOral-dental and urogenital problems, and opportunistic infections[22]
(Ibadan, Niger)
Grona triflora (L.) H.Ohashi & K.OhashiDesmodium triflorum (L.) DC.Hierba cuartilloDiarrhea, convulsions, tonic, diuretic, and biliary conditions.[46]
(Lucknow, India)
Haematoxylum brasiletto H.Karst.-Madera de BrasilOral and kidney infections, hypertension, gastrointestinal disorders, and diabetes.[69]
(Sonora, Mexico)
Indigofera suffruticosa Mill.-AnileiraHealing[70]
(Pernambuco, Brazil)
Inga vera Willd.-Not reportedTreatment of diseases[23]
(Santo Domingo, Dominican Republic)
Leucaena leucocephala (Lam.) de Wit-Not reportedGastrointestinal[71]
(Ibadan, Niger)
Lonchocarpus punctatus Kunth-BalchéParasitic[32]
(Yucatan, Mexico)
Lysiloma acapulcense (Kunth) Benth.-Not reportedRespiratory, gastrointestinal, urinary, and skin infections[72]
(Baja California, Mexico)
Macroptilium lathyroides (L.) Urb.-Not reportedNo data recorded[73]
(Chennai, India)
Mimosa malacophylla A.Gray-Not reportedDiuretic and kidney stones[74]
(Nuevo Leon, Mexico)
Mucuna pruriens (L.) DC.-MucunaPurgative and diuretic[24]
(Osun, Niger)
Neltuma glandulosa (Torr.) Britton & RoseProsopis glandulosa Torr.Mesquite dulceGastrointestinal, rashes, eye infections, hernias, skin conditions, sore throat[33]
(Nevada, USA)
Neltuma juliflora (Sw.) Raf.Prosopis juliflora (Sw.) DC.MesquiteColds, diarrhea, flu, hoarseness, inflammation, measles, sore throat, liver and eye problems[25]
(Bushehr, Iran)
Neltuma laevigata (Humb. & Bonpl. ex Willd.) Britton & RoseProsopis laevigata (Humb. & Bonpl. ex Willd.) M.C.Johnst.MesquiteSkin, gastrointestinal, and respiratory diseases[60]
(Zapotitlan Salinas, Mexico)
Neptunia oleracea Lour.-Mimosa de aguaDiabetes mellitus, inflammation, and fever[35]
(Selangor, Malaysia)
Pachyrhizus erosus (L.) Urb.-JícamaSkin rashes[14]
(Morelos, Mexico)
Parkinsonia aculeata L.-EscobaSkin and urinary tract infections[75]
(Maharashtra, India)
Parkinsonia florida (Benth. ex A.Gray) S.Watson-Palito azul verdosoNo data recorded[18]
(Sonora, Mexico)
Parkinsonia praecox (Ruiz & Pav.) Hawkins-Palo breaGastrointestinal, antitussive, wound healing, headaches, earaches, and scorpion stings[19]
(Oaxaca, Mexico)
Phaseolus coccineus L.-AyocoteNo data recorded[76]
(Dali, China)
Phaseolus lunatus L.-HabasFood[77]
(Machala, Ecuador)
Phaseolus vulgaris L.-FrijolesFood[36]
(Giza, Egypt)
Pithecellobium dulce (Roxb.) Benth.-Jungli JalebiEarache, leprosy, peptic ulcer, and toothache[37]
(Haryana, India)
Rhynchosia minima (L.) DC.-FrijolilloSkin conditions and to relieve boils.[78]
(Harare, Zimbabwe)
Senegalia berlandieri (Benth.) Britton & Rose-EspinoNo data recorded[79]
(Texas, USA)
Senegalia greggii (A.Gray) Britton & Rose-TesotaNo data recorded[79]
(Texas, USA)
Senna crotalarioides (Kunth) H.S.Irwin & Barneby-Not reportedInflammation[80]
(San Luis Potosi, Mexico)
Senna hirsuta (L.) H.S.Irwin & Barneby-CuajilloHypertension, dropsy, diabetes, fevers, bile, rheumatism, tinea, and eczema[48]
(Uyo, Niger)
Senna obtusifolia (L.) H.S.Irwin & Barneby-TasbaEye infection and laxative[47]
(Yola, Niger)
Senna occidentalis (L.) Link-Candelilla pequeñaMalaria and trypanosomiasis[40]
(Minna, Niger)
Senna septemtrionalis (Viv.) H.S.Irwin & Barneby-CafecilloDiuretic, anti-inflammatory, laxative, expectorant, and fungicide, fever, burns, cholera, hemorrhoids, pain, gastroenteritis.[38]
(Guanajuato, Mexico)
Senna wislizeni (A.Gray) H.S.Irwin & Barneby-CarrozoLaxative properties, skin and parasitic diseases[15]
(Morelos, Mexico)
Sophora tomentosa L.-Not reportedCholera, diarrhea, gastrointestinal antidote[27]
(Giza, Egypt)
Tephrosia cinerea (L.) Pers.-Bardana medicinalDiarrhea, diuretic, bronchitis, asthma, inflammation[59]
(Chamrajanagar, India)
Vachellia farnesiana (L.) Wight & Arn.-HuizacheNo data recorded[79]
(Texas, USA)
Vachellia rigidula (Benth.) Seigler & Ebinger-Chaparro prietoNo data recorded[79]
(Texas, USA)
Vigna luteola (Jacq.) Benth.-PorotilloNo data recorded[81]
(Nantou, Taiwan)
Vigna vexillata (L.) A.Rich.-Bejuco patoNo data recorded[39]
(Nantou, Taiwan)
Zapoteca portoricensis (Jacq.) H.M.Hern.-Palo blancoConvulsions, constipation, skin infections[28]
(Abakaliki, Niger)
Zornia diphylla (L.) Pers.-Raíz de víboraDiarrhea and venereal diseases[45] (Kerala, India)
In relation to Table 1, it is important to clarify that species lacking common names or documented traditional uses do not necessarily lack medicinal value on a global scale. Rather, these absences reflect a lack of specific ethnobotanical records, highlighting gaps in regional scientific documentation.
Overall, these findings demonstrate that Fabaceae species found in Tamaulipas have documented medicinal relevance in other regions, reinforcing the importance of this state as a priority area for future ethnobotanical, phytochemical, and pharmacological studies.

3.2. Phytochemical Extraction Methods and Target Compounds

This section analyzes extraction strategies in relation to the physicochemical properties of secondary metabolites. In the studies reviewed, extraction methods were selected based on the chemical nature and stability of the metabolites to be extracted [82], as each extraction method has different principles, strengths, and specific limitations that affect the yield and composition of the extract [83].
Maceration was the most widely used technique (62%) due to its simple methodological flexibility and, above all, its ability to protect heat-sensitive compounds such as flavonoids [83]. It was associated with the recovery of flavonoids, tannins, and other polyphenols mainly from leaves, which accumulate these metabolites as a method of defense and protection, as they are exposed to UV radiation, herbivores, pathogens, and environmental stress [84]. On the other hand, Soxhlet extraction (10.8%) and reflux extraction (7.7%) were preferred in studies focusing on thermostable or less polar compounds, including certain alkaloids and terpenoids. Although these methods enable higher extraction yields under controlled conditions, their use is limited by the thermal sensitivity of many metabolites [83,85,86]. Studies focusing on volatile components, particularly essential oils, employed hydrodistillation (4.6%), which remains the standard method for terpene-rich fractions. The genera Senna, Dalea, Rhynchosia, and Zornia are reliable sources of essential oils when appropriate methods are used.
The extraction methods summarized in Table 2 are reported as methodological tools selected to achieve specific phytochemical objectives. The reported variability highlights the adaptability of extraction protocols to the specific objectives of each compound.

3.2.1. Solvents

The choice of solvent for phytochemical extraction is essential and depends both on the chemical characteristics of the target compounds and on the specific plant material used. The type of metabolite being sought helps determine the most suitable solvent, as each compound dissolves more effectively in solvents of different polarity [85]. Polar compounds are best extracted with solvents such as methanol or ethanol, which were mainly used for the extraction of phenols and flavonoids (28%). Methanol was the most commonly used solvent due to its intermediate polarity and broad extraction capacity [87]. However, several studies increasingly prioritized ethanol and aqueous extracts, especially in bioactivity assays, due to their lower toxicity and greater relevance for pharmacological and ethnomedical applications [86,87,88]. Nonpolar metabolites are commonly extracted with solvents such as hexane and ethyl acetate to isolate essential oils, flavonols, and isoflavones (4.5%). The use of ethyl acetate reflects a methodological shift toward solvents with lower environmental and health risks compared to petroleum-based alternatives [89].

3.2.2. Plant Organs and Biological Forms

The predominance of leaves as the extracted organ (53%) is consistent with their high biosynthetic activity; leaves accumulate the highest concentration of alkaloids and polyphenols, which act as a defense mechanism against local herbivores, a characteristic that humans exploit for therapeutic antimicrobial purposes [84]. Multiple studies included in Table 2 report higher antioxidant and antimicrobial activity in leaf extracts compared to other organs, supporting their frequent selection [90,91,92]. The seeds, although less studied (13.8%), are mainly studied for their oil content and antioxidant properties [93].
The biological form categories of the plant species included shrubs, trees, herbs, and climbers. Herbaceous and tree species were the most frequently studied, accounting for 36% and 31% of the records, respectively. These categories are most commonly collected and analyzed in ethnobotanical studies due to their abundance, availability, and ease of collection in the field, making them more accessible for research. Shrub species followed in lower proportion, and climbers were the least represented [90,94].

3.3. Isolated Compounds

Table 3 summarises the bioactive compounds isolated from the Fabaceae species included in this review, highlighting both their chemical diversity and the biological activities described. The most frequently identified metabolites are phenolic compounds and flavonoids (56%). These compounds were recovered from 36 Fabaceae species and have been associated with antioxidant, antibacterial, and antifungal activities, particularly against Staphylococcus aureus, Escherichia coli, and Candida albicans [95,96]. The most representative species in terms of phenol/flavonoid isolation and antioxidant activity were: Acacia angustissima, Desmodium tortuosum, Vigna luteola, and Senna pendula.
Several studies also reported the isolation of alkaloids and showed a strong association with antimicrobial (65.4%) and cytotoxic (30.8%) activity. The species related to these activities were: Gleditsia triacanthos, Inga vera, Neltuma glandulosa, and Senna occidentalis in terms of alkaloid and tannin isolation; while the species Lonchocarpus punctatus, Macroptilium lathyroides, Parkinsonia praecox, and Sophora tomentosa showed anticancer activities. Essential oils, although less frequent (10%), also showed antimicrobial activity.
Tannins were identified in 34.4% of the species analyzed, mainly associated with antimicrobial activity, followed by anti-inflammatory and antiparasitic effects. These results reinforce the role of tannins as key metabolites in the chemical defense of plants and their pharmacological relevance [84,97]. In addition, 26.6% of the species analyzed contained saponins and 32.8% contained terpenoids. Of these, approximately 30% were associated with anti-inflammatory activity and 14–24% with antiparasitic effects, supporting the role of these metabolites in modulating inflammatory processes and defending against parasites. Isoflavones and lectins, especially those from seed extracts, were associated with antioxidant and immunomodulatory activities.
Overall, the compounds summarized in Table 3 demonstrate that Fabaceae species harbor a broad spectrum of structurally diverse metabolites whose biological activities support both their traditional uses and their potential for drug development.
It is important to note that not all studies included in this section evaluated antimicrobial activity. Several investigations focused on the anticancer and cytotoxic potential of the isolated compounds, given their clinical relevance. In this context, alkaloids, isoflavones, and triterpenoids have been reported to exhibit cytotoxic effects against various cancer cell lines [5,32,39,80,81].

Biological Properties and Mechanisms of Action of the Main Isolated Compounds

The medicinal potential of Fabaceae species depends on their chemical diversity. This review demonstrates that antimicrobial action is determined by specific groups of metabolites that act precisely on different microorganisms (Table 3).
Phenols and flavonoids were the most common compounds isolated from Fabaceae species and showed a wide range of biological activities on different microorganisms. The antibacterial mechanisms of flavonoids include inhibition of nucleic acid synthesis, disruption and damage of the bacterial cytoplasmic membrane, and inhibition of biofilm formation [98]. For example, phenols and flavonoids such as protocatechuic acid and catechin isolated from Acaciella angustissima at a dose of 200 mg/mL showed inhibitory effects against Rhizoctonia solani, Fusarium oxysporum, and Phytophthora capsici [44]. Similarly, flavonols such as kaempferol and quercetin isolated from Calliandra tergemina showed antibacterial effects against Staphylococcus aureus at concentrations of 1 mg/100 µL [63]. Flavonoids from Dalea nana and Dalea versicolor showed antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Candida albicans, and Cryptococcus neoformans [29].
Alkaloids act mainly on the bacterial cell membrane, causing structural leaks and death. They are particularly effective against Gram-positive strains, but have a broad spectrum of activity [99]. They have been isolated in several genera, including Desmodium, Erythrina, Neltuma, and Lonchocarpus. Alkaloids from Desmodium scorpiurus showed antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes [63], while alkaloids isolated from Neltuma glandulosa demonstrated antiparasitic and antifungal activity against Leishmania donovani, Plasmodium falciparum, and Cryptococcus neoformans [33]. On the other hand, alkaloids and related compounds isolated from Lonchocarpus punctatus were evaluated mainly for their anticancer activity, without microbial assays, highlighting their clinical relevance despite the absence of antimicrobial data [32].
Tannins and saponins showed remarkable antimicrobial and cytotoxic effects. Tannins exert antimicrobial effects by forming complexes with bacterial proteins and enzymes, while saponins act as detergents that alter the membrane or induce cytotoxicity [46,100]. Tannins isolated from Lysiloma acapulcense inhibited the growth of bacteria such as E. coli, P. aeruginosa, S. aureus, and the fungus Candida albicans at concentrations of 2.5 µg/mL to 5.0 µg/mL [72]. Saponins from Gleditsia aquatica showed cytotoxic activity, supporting their potential anticancer relevance, although no microbial assays were performed [31]. In Senna obtusifolia, the presence of tannins and saponins contributes to a broad spectrum against the bacteria Neisseria gonorrhoeae, S. aureus, and S. aerugenosa [47].
Lectins inhibit growth by recognizing specific carbohydrates on microbial surfaces, often agglutinating cells or triggering immune responses [101]. The Canavalia and Phaseolus species showed antifungal and antibacterial activity. Lectins from Canavalia rosea inhibited the growth of Candida albicans [41], while those isolated from Phaseolus vulgaris and Phaseolus coccineus demonstrated antibacterial and antifungal activity against various pathogenic bacteria and fungi [36,76].
Terpenoids and essential oils, due to their lipophilic nature, easily penetrate the lipid bilayer of membranes and exhibit strong antimicrobial activity [102]. They were mentioned less frequently but showed strong antimicrobial potential. The essential oils of Aeschynomene indica and Leucaena leucocephala showed antibacterial and antifungal activities against Staphylococcus aureus, Escherichia coli, and Candida albicans [20,71]. Terpenoids isolated from Parkinsonia praecox showed both antibacterial activity against Listeria monocytogenes and anticancer potential [19].

3.4. Microorganisms Evaluated and Antimicrobial Assessment

The studies reviewed evaluated a broad range of microorganisms, including Gram-positive and Gram-negative bacteria, yeasts, filamentous and phytopathogenic fungi, as well as clinically relevant parasites (Table 3). This range indicates that the biological activity of Fabaceae secondary metabolites extends beyond antibacterial effects. Among Gram-positive bacteria, Staphylococcus aureus was the most frequently tested species.
Several studies reported inhibitory activity associated with phenols, flavonoids, alkaloids, lectins, and essential oils [103,104]. Essential oils from Aeschynomene indica inhibited S. aureus at concentrations of 0.312–0.625 mg/mL [20] while metabolites from Parkinsonia florida and Dalea spp. showed activity between 10 and 2000 µg/mL [18,61]. Alkaloids isolated from Erythrina herbacea exhibited dosages of 6.25–50 µg/mL [67].
Gram-negative bacteria, particularly Escherichia coli and Pseudomonas aeruginosa, were also commonly evaluated but generally required higher inhibitory concentrations. Extracts containing phenols and alkaloids from Desmodium scorpiurus inhibited E. coli at concentrations up to 200 mg/mL [63]. In contrast, tannin-rich extracts from Lysiloma acapulcense showed activity against E. coli, P. aeruginosa, and S. aureus at doses of 2.5–5.0 µg/mL [72]. The lower susceptibility of Gram-negative bacteria is consistent with the presence of an outer membrane that restricts the penetration of polar and high-molecular-weight compounds [105,106]. Terpenoids such as carvacrol, limonene, and linalool were active against both bacterial groups, although Pseudomonas spp. and Streptococcus spp. showed greater resistance [104].
Fungal microorganisms accounted for a considerable proportion of the studies evaluated. Yeasts such as Candida albicans and Cryptococcus neoformans were inhibited by lectins, flavonoids, and essential oils. Lectins from Canavalia rosea inhibited the growth of C. albicans [41], while flavonoids isolated from Dalea nana showed activity against C. albicans and C. neoformans [29]. Filamentous and phytopathogenic fungi, including Fusarium oxysporum, Rhizoctonia solani, Colletotrichum gloeosporioides, and Phytophthora capsici, were sensitive to extracts rich in phenols and flavonoids. Extracts from Acaciella angustissima inhibited R. solani and F. oxysporum [44], while isoflavones from Pachyrhizus erosus showed antifungal activity against F. oxysporum and R. stolonifer [14].
In addition to bacteria and fungi, some studies have examined antiparasitic activity, highlighting the clinical value of the isolated compounds. Isoflavones from Dalea aurea exhibited antiamebic effects against Naegleria fowleri [21] and alkaloids from Neltuma glandulosa showed efficacy against Leishmania donovani and Plasmodium falciparum [33]. These results emphasize antiparasitic action beyond antimicrobial screening.
The techniques used to evaluate plant extracts are fundamental, as they not only demonstrate the antimicrobial activity of species in the Fabaceae family. Ten different antimicrobial evaluation techniques were identified in the literature reviewed, and approximately 70% of the studies focused on bacterial assays. Disc diffusion and well diffusion methods were the most widely used, accounting for 47.17% of the studies, followed by broth microdilution and its variants (19.81%).
This methodological trend highlights the exploratory nature of various phytochemical studies, where diffusion techniques are used as an initial strategic screening method to detect antimicrobial activity in crude extracts or complex fractions. However, diffusion methods have limitations that affect the interpretation of antimicrobial activity. These assays only provide qualitative or semi-quantitative data, without accurately determining minimum inhibitory concentrations [107].
The clinical potential of Fabaceae lies in their multifunctional action against bacterial, fungal, and parasitic pathogens. To rigorously assess this bioactivity, it is essential to integrate the analysis of microbial models with the testing techniques used; only through this joint approach is it possible to contextualize the efficacy of their metabolites and guarantee the scientific validity of the findings. Thus, considering the diversity of pathogens evaluated allows us to gauge the true therapeutic scope of their compounds, avoiding underestimating the biological richness documented in the literature.

4. Conclusions

This global bibliographic review integrates floristic records, phytochemical evidence, ethnobotanical information, and antimicrobial data for Fabaceae species occurring in the state of Tamaulipas, Mexico, to identify knowledge gaps and research opportunities relevant to the discovery of plant-derived therapeutic agents. The analysis reveals a marked imbalance between phytochemical evaluation and documented traditional use: although approximately 19% of Fabaceae species in the region have been investigated phytochemically, only 13.3% have recorded ethnomedical applications. This disparity indicates that several native species containing confirmed bioactive metabolites remain largely unexplored from an ethnopharmacological perspective.
The main contribution of this review is the systematic integration of floristic records and phytochemical evidence, aiming for a more comprehensive assessment of the pharmacological potential of Fabaceae species present in Tamaulipas. While the state has a total of 347 species in this family, only 60 species have available information on their chemical extracts, highlighting a significant knowledge gap. The inclusion of species without traditional records or prior studies of antimicrobial activity is relevant, as the presence of secondary metabolites extracted from these species suggests an as-yet-unexplored bioactive potential.
Furthermore, the more than 280 unstudied species represent considerable value with potential therapeutic applications, and their lack of study should not be interpreted as an absence of pharmacological value. This review, therefore, not only synthesizes the available information but also underscores the need to expand phytochemical and pharmacological studies within this family, providing a starting point for prioritizing future research and strengthening knowledge about the medicinal potential of Fabaceae in the region.

Author Contributions

P.R.G.-D.: conceptualization. P.R.G.-D., H.B.B.-G.: investigation. H.B.B.-G.: antimicrobial activity. J.V.H.-V.: validation. F.E.O.-S. and J.F.-G.: review and editing. P.R.G.-D.; writing—original. H.B.B.-G.: formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data presented in this study are available within the article.

Acknowledgments

The authors thank the Secretaría de Ciencia y Tecnología (SECIHTI); Universidad Autónoma de Tamaulipas (UAT) and Consejo Tamaulipeco de Ciencia y Tecnología (COTACYT) for their support, which was essential for the completion of this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef]
  2. Rodríguez-Flores, O.R.; Centeno, E.A.; Betanco, R.A. Plantas Utilizadas Para el Tratamiento de Enfermedades en los Animales Domésticos; Reserva Natural El Tisey: Estelí, Nicaragua, 2005. [Google Scholar]
  3. Organización Mundial de la Salud. Cuidados Innovadores Para las Condiciones Crónicas; Organización Mundial de la Salud: Washington, DC, USA, 2025. [Google Scholar]
  4. Organización Mundial de Sanidad Animal. Riesgos Sanitarios Mundiales y Desafíos del Mañana; Organización Mundial de Sanidad Animal: Paris, France, 2025. [Google Scholar]
  5. Rodríguez-Garza, N.E.; Quintanilla-Licea, R.; Romo-Sáenz, C.I.; Elizondo-Luevano, J.H.; Tamez-Guerra, P.; Rodríguez-Padilla, C.; Gomez-Flores, R. In Vitro Biological Activity and Lymphoma Cell Growth Inhibition by Selected Mexican Medicinal Plants. Life 2023, 13, 958. [Google Scholar] [CrossRef]
  6. Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Kumar-Maurya, P.; Charifi-Rad, M.; Kumar, P.; Charifi-Rad, J. Antioxidants: Positive or negative actors? Biomolecules 2018, 8, 124. [Google Scholar] [CrossRef]
  7. El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Taha, M.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef]
  8. Camacho-Escobar, M.A.; Ramos-Ramos, D.A.; Ávila-Serrano, N.Y.; Sánchez-Bernal, E.I.; López-Garrido, S.J. Las defensas físico-químicas de las plantas y su efecto en la alimentación de los rumiantes. Terra Latinoam. 2020, 8, 443–453. [Google Scholar] [CrossRef]
  9. Rubio-Pequeño, L.G.; Mora-Olivo, A.; Estrada-Castillón, E.; Torres-Castillo, J.A. Riqueza y distribución de leguminosas en un gradiente ambiental dentro del Área Natural Protegida Altas Cumbres, Tamaulipas, México. Bot. Sci. 2024, 102, 1284–1299. [Google Scholar] [CrossRef]
  10. Sabir, A.; Safdar, N.; Akhtar, W.; Fatima, I. article Therapeutic Potential of Fabaceae Species: A Phytochemical and Bioactivity Investigation. Pharmaceuticals 2025, 66, 301–313. [Google Scholar]
  11. Molares, S.; Ladio, A. The usefulness of edible and medicinal Fabaceae in Argentine and Chilean Patagonia: Environmental availability and other sources of supply. Evid.-Based Complement. Altern. Med. 2012, 2012, 901918. [Google Scholar] [CrossRef]
  12. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, C.; Comisión de Parques y Biodiversidad de Tamaulipas, C. La biodiversidad en Tamaulipas; Estudio de Estado: Conabio, México, 2024. [Google Scholar]
  13. Villaseñor, J.L. Checklist of the native vascular plants of Mexico. Rev. Mex. Biodivers. 2016, 87, 559–902. [Google Scholar] [CrossRef]
  14. Necha, L.L.B.; Baños, S.B.; Luna, L.B.; Suárez, F.J.L.G.; Solano, D.A.; Chilpa, R.R. Antifungal activity of seed powders, extracts, and secondary metabolites of Pachyrhizus erosus (L.) urban (Fabaceae) against three postharvest fungi. Rev. Mex. Fitopatol. 2004, 22, 356–361. [Google Scholar]
  15. Arrieta-Baez, D.; Zepeda-Vallejo, L.G.; Jimenez-Estrada, M. Phytochemical studies on Senna skinneri and Senna wislizeni. Nat. Prod. Lett. 1999, 13, 223–228. [Google Scholar] [CrossRef]
  16. Morales-Ubaldo, Y.A.; Rivero-Perez, N.; Morales-Ubaldo, A.L.; Valladares-Carranza, B.; López-Rodríguez, G.M.; Zaragoza-Bastida, A. Dalea bicolor: An alternative for the treatment of bacteria of public health importance. Rev. Inv. Vet. Perú 2022, 33, e22863. [Google Scholar] [CrossRef]
  17. Villa-Ruano, N.; Pacheco-Hernández, Y.; Rubio-Rosas, E.; Zarate-Reyes, J.A.; Lozoya-Gloria, E.; Cruz-Duran, R. Chemical profile, nutraceutical and anti-phytobacterial properties of the essential oil from Dalea foliolosa (Fabaceae). Emir. J. Food Agric. 2017, 29, 724–728. [Google Scholar] [CrossRef]
  18. López-Millán, A.; Del Toro-Sánchez, C.L.; Ramos-Enríquez, J.R.; Carrillo-Torres, R.C.; Zavala-Rivera, P.; Esquivel, R.; Álvarez-Ramos, E.; Moreno-Corral, R.; Guzmán-Zamudio, R.; Lucero-Acuña, A. Biosynthesis of gold and silver nanoparticles using Parkinsonia florida leaf extract and antimicrobial activity of silver nanoparticles. Mater. Res. Express 2019, 6, 095025. [Google Scholar] [CrossRef]
  19. Ordaz-Hernández, A.; Hernández-Carlos, B.; González, H.M.A.; Hernández-Ramiro, L.; Ramírez, M.C.; Herrera-Martínez, M. Parkinsonia praecox bark as a new source of antibacterial and anticancer compounds. Eur. J. Integr. Med. 2024, 71, 102401. [Google Scholar] [CrossRef]
  20. Feng, L.; Xu, F.; Qiu, S.; Sun, C.; Lai, P. Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules 2024, 29, 3552. [Google Scholar] [CrossRef]
  21. Belofsky, G.; Carreno, R.; Goswick, S.M.; John, D.T. Activity of isoflavans of Dalea aurea (Fabaceae) against the opportunistic ameba Naegleria fowleri. Planta Medica 2006, 72, 383–386. [Google Scholar] [CrossRef]
  22. Adeniyi, B.A.; Izuka, K.C.; Odumosu, B.; Aiyelaagbe, O.O. Antibacterial and antifungal activities of methanol extracts of Desmodium adscendens root and Bombax buonopozense leaves. Int. J. Biol. Chem. Sci. 2013, 7, 185–194. [Google Scholar] [CrossRef]
  23. Lozano, C.M.; Vasquez-Tineo, M.A.; Ramirez, M.; Jimenez, F. In vitro antimicrobial activity screening of tropical medicinal plants used in Santo Domingo, Dominican Republic. Part I. Pharmacogn. Commun. 2013, 3, 64. [Google Scholar] [CrossRef]
  24. Salau, A.O.; Odeleye, O.M. Antimicrobial activity of Mucuna pruriens on selected bacteria. Afr. J. Biotechnol. 2007, 6, 18. [Google Scholar] [CrossRef]
  25. Tajbakhsh, S.; Barmak, A.; Vakhshiteh, F.; Gharibi, M. Invitro antibacterial activity of the Prosopis juliflora seed pods on some common pathogens. J. Clin. 2015, 9, DC13. [Google Scholar] [CrossRef]
  26. Monteiro, J.A.; Ferreira Júnior, J.M.; Oliveira, I.R.; Batista, F.L.A.; Pinto, C.C.C.; Silva, A.A.S.; Morais, S.M.; Silva, M.G.V. Bioactivity and toxicity of Senna cana and Senna pendula extracts. Biochem. Res. Int. 2018, 2018, 8074306. [Google Scholar] [CrossRef]
  27. Hussiny, S.; Elissawy, A.; Eldahshan, O.; Elshanawany, M.; Singab, A.N. Phytochemical investigation using GC/MS analysis and evaluation of antimicrobial and cytotoxic activities of the lipoidal matter of leaves of Sophora secundiflora and Sophora tomentosa. Arch. Pharm. Sci. Ain Shams Univ. 2020, 4, 207–214. [Google Scholar] [CrossRef]
  28. Agbafor, K.N.; Akubugwo, E.I.; Ogbashi, M.E.; Ajah, P.M.; Ukwandu, C.C. Chemical and antimicrobial properties of leaf extracts of Zapoteca portoricensis. Med. Plant 2011, 5, 605–612. [Google Scholar]
  29. Belofsky, G.; Cruz, C.; Schultz, T.; Zapata, M.; Wilcox, D.; Wasmund, B.; Salomon, C.E.; Clint-Spiegel, P. Antimicrobial isoflavans and other metabolites of Dalea nana. Phytochemistry 2024, 226, 114224. [Google Scholar] [CrossRef]
  30. Pitkin, F.; Black, J.; Stedford, K.; Valentine, O.; Knott, J.; Laverdure, E. A comparative study of the antimicrobial effects of the Desmodium incanum and the Moringa oleifera extracts on select microbes. Int. J. Public Health Health Syst. 2019, 4, 27–35. [Google Scholar]
  31. Ragab, E.A.; Hosny, M.; Kadry, H.A.; Ammar, H.A. Acylated triterpenoidal saponins and cytokinins from Gleditsia aquatica. Pharmacog Phytother 2010, 2, 24–33. [Google Scholar]
  32. Borges-Argáez, R.; Cáceres-Farfán, M.; De Pedro, N.; Cautain, B.; Pérez- del Palacio, J.; Vicente, F.; Genilloud, O.; Melguizo, A.; Díaz, C.; Reyes, F.; et al. Estudios citotóxicos y efectos in vitro de trans-3, 4, 4’, 5-tetrametoxiestilbeno, compuesto bioactivo aislado de Lonchocarpus punctatus Kunth. Polibotánica 2017, 43, 165–175. [Google Scholar]
  33. Rahman, A.A.; Samoylenko, V.; Jacob, M.R.; Sahu, R.; Jain, S.K.; Khan SITekwani, B.L.; Muhammad, I. Antiparasitic and antimicrobial indolizidines from the leaves of Prosopis glandulosa var. glandulosa. Planta Medica 2011, 77, 1639–1643. [Google Scholar] [PubMed]
  34. Matela, K.S.; Mekbib, S.B.; Pillai, M.K. Antimicrobial activities of extracts from Gleditsia triacanthos L. and Schinus molle L. Pharmacol. Online 2018, 2, 85–92. [Google Scholar]
  35. Zainuddin, I.D.; Zulkifli, M.F.; Ismail, R.; Kamal, N.; Mahadi, M. Metabolites Profiling and Antimicrobial Activities in Roots and Leaves of Neptunia Oleracea. Int. J. Pharm. Res. 2020, 12, 9. [Google Scholar] [CrossRef]
  36. Hamed, E.-S.; Ibrahim, E.A.M.M.; Mounir, S.M. Antimicrobial activities of lectins extracted from some cultivars of phaseolus vulgaris seeds. J. Microb. Biochem. Technol. 2017, 9, 109–116. [Google Scholar] [CrossRef]
  37. Kumar, M.; Nehra, K.; Duhan, J.S. Phytochemical analysis and antimicrobial efficacy of leaf extracts of Pithecellobium dulce. Asian J. Pharm. Clin. Res. 2013, 6, 70–76. [Google Scholar]
  38. Alonso-Castro, A.J.; Alba-Betancourt, C.; Yáñez-Barrientos, E.; Luna-Rocha, C.; Páramo-Castillo, A.S.; Aragón-Martínez OHZapata-Morales, J.R.; Cruz-Jiménez, G.; Gasca-Martínez, D.; González-Ibarra, A.A. Diuretic activity and neuropharmacological effects of an ethanol extract from Senna septemtrionalis (Viv.) HS Irwin & Barneby (Fabaceae). J. Ethnopharmacol. 2019, 239, 111923. [Google Scholar] [CrossRef] [PubMed]
  39. Leu, Y.; Hwang, T.; Kuo, P.; Liou, K.; Huang, B.; Chen, G. Constituents from Vigna vexillata and their anti-inflammatory activity. Int. J. Mol. Sci. 2012, 13, 9754–9768. [Google Scholar] [CrossRef]
  40. Tsado, N.A.; Lawal, B.; Kontagora, G.N.; Muhammad, B.M.; Yahaya, M.A.; Gboke, J.A.; Muhammad, U.A.; Hassan, M.K. Antioxidants and antimicrobial-activities of methanol leaf extract of senna occidentalis. J. Adv. Med. Pharm. Sci. 2016, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
  41. Alencar-Fonseca, V.J.; Lays-Braga, A.; Silva- de Almeida, R.; Gusmão-da Silva, T.; Pereira-da Silva, J.C.; Ferreira-de Lima, L.; Cruz-Dos Santos, M.H.; dos Santos-Silva, R.R.; Souza-Teixeira, C.; Melo-Coutinho, H.D.; et al. Lectins ConA and ConM extracted from Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC inhibit planktonic Candida albicans and Candida tropicalis. Arch. Microbiol. 2022, 204, 346. [Google Scholar] [CrossRef]
  42. Cortes-Morales, J.A.; Salinas-Sánchez, D.O.; de Jesús Perea-Flores, M.; González-Cortazar, M.; Tapia-Maruri, D.; López-Arellano, M.E.; Rivas-González, J.M.; Zamilpa, A.; Olmedo-Juárez, A. In vitro anthelmintic activity and colocalization analysis of hydroxycinnamic acids obtained from Chamaecrista nictitans against two Haemonchus contortus isolates. Vet. Parasitol. 2024, 331, 10282. [Google Scholar] [CrossRef]
  43. Kumar, N.S.; Simon, N. In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. J. Pharmacogn. Phytochem. 2016, 5, 131–133. [Google Scholar]
  44. Vargas-Hernández, M.; Munguía-Fragozo, P.V.; Cruz-Hernández, A.; Guerrero, B.Z.; Gonzalez-Chavira, M.M.; Feregrino-Pérez, A.A.; Mendoza-Díaz, S.O.; Laorca-Pina, G.; Torres-Pacheco, I.; Hernandez-Salazar, M.; et al. Bioactivity and gene expression studies of an arbustive Mexican specie Acaciella angustissima (Timbe). Ind. Crops Prod. 2014, 52, 649–655. [Google Scholar] [CrossRef]
  45. Arunkumar, R.; Nair, S.A.; Rameshkumar, K.B.; Subramoniam, A. The essential oil constituents of Zornia diphylla (L.) Pers, and anti-inflammatory and antimicrobial activities of the oil. J. Rec. Nat. Prod. 2014, 8, 385. [Google Scholar]
  46. Sharma, R.; Parashar, B.; Kabra, A. Efficacy of aqueous and methanolic extracts of plant Desmodium triflorum for potential antibacterial activity. Int. J. Pharm. Sci. Res. 2013, 4, 1975. [Google Scholar]
  47. Doughari, J.; El-Mahmood, A.M.; Tyoyina, I.J. Antimicrobial activity of leaf extracts of Senna obtusifolia (L). Afr. J. Pharm. Pharmacol. 2008, 2, 7–13. [Google Scholar]
  48. Essien, E.E.; Thomas, P.S.; Ascrizzi, R.; Setzer, W.N.; Flamini, G. Senna occidentalis (L.) Link and Senna hirsuta (L.) HS Irwin & Barneby: Constituents of fruit essential oils and antimicrobial activity. Nat. Prod. Res. 2019, 33, 1637–1640. [Google Scholar] [PubMed]
  49. Medellín-Morales, S.G.; Barrientos-Lozano, L.; Mora-Olivo, A.; Almaguer-Sierra, P.; Mora-Ravelo, S.G. Traditional knowledge and valuation of useful plants in el cielo biosphere reserve, tamaulipas, Mexico. Agric. Soc. Desarro. 2018, 15, 354–377. [Google Scholar]
  50. Bánki, O.; Roskov, Y.; Döring, M.; Ower, G.; Hernández Robles, D.R.; Plata Corredor, C.A. Catalogue of Life Checklist. 2024. Available online: https://www.checklistbank.org/dataset/9910/about (accessed on 28 June 2023).
  51. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar]
  52. José Luis, V.; Ortiz, E.; Delgadillo-Moya, C.; Juárez, D. The breadth of the Mexican Transition Zone as defined by its flowering plant generic flora. PLoS ONE 2020, 15, e0235267. [Google Scholar] [CrossRef]
  53. Villacrés-Vallejo, J. Conservación de la familia Fabácea en el Jardín Botánico del Instituto de Medicina Tradicional-EsSalud. Rev. Peru. Med. Integr. 2021, 6, 48–52. [Google Scholar] [CrossRef]
  54. Estrada-Castillón, E.; Villarreal-Quintanilla, J.A.; Cuéllar-Rodríguez, G.; Encina-Domínguez, J.A.; Martínez-Ávalos, J.G.; Mora-Olivo, A.; Sánchez-Salas, J. The Fabaceae in Northeastern Mexico (Subfamily Caesalpinioideae, Mimosoideae Clade, Tribes Mimoseae, Acacieae, and Ingeae). Plants 2024, 13, 403. [Google Scholar] [CrossRef]
  55. Hernández-Sandoval, L.; González-Romo, C.; González-Medrano, F. Plantas útiles de Tamaulipas. An. Inst. Biol. Ser. Bot. 1991, 62, 1–38. [Google Scholar]
  56. Jasso-Gandara, S.N. Etnobotánica de Plantas Medicinales del Municipio de Güémez, Tamaulipas, México; Universidad Autónoma de Nuevo León: San Nicolas de los Garza, Mexico, 2015. [Google Scholar]
  57. Castañeda, R.; Gutiérrez, H.; Carrillo, É.; Sotelo, A. Leguminosas (Fabaceae) silvestres de uso medicinal del distrito de Lircay, provincia de Angaraes (Huancavelica, Perú). Bol. Latinoam. Caribe Plantas Med. Aromát. 2017, 16, 136–149. [Google Scholar]
  58. Belofsky, G.; Percivill, D.; Lewis, K.; Tegos, G.P.; Ekart, J. Phenolic metabolites of dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J. Nat. Prod. 2004, 67, 481–484. [Google Scholar] [CrossRef]
  59. Panduranga Murthy, G.; Mokshith, M.C.; Ravishankar, H.G. Isolation, partial purification of protein and detection of Antibacterial acivity in leaf extracts of Tephrosia cinerea (L.) Pers.-An Ethno-medicinal plant practiced by Tribal activity at Biligirirangana Hills of Karnataka, India. Int. J. Pharma Biosci. 2011, 2, 513–519. [Google Scholar]
  60. Nava-Solis, U.; Rodriguez-Canales, M.; Hernandez-Hernandez, A.B.; Velasco-Melgoza, D.A.; Moreno-Guzman, B.P.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Antimicrobial activity of the methanolic leaf extract of Prosopis laevigata. Sci. Rep. 2022, 12, 20807. [Google Scholar] [CrossRef]
  61. Ling-Chan, E.W.; Gray, A.I.; Igoli, J.O.; Lee, S.M.; Goh, J.K. Galloylated flavonol rhamnosides from the leaves of Calliandra tergemina with antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Phytochemistry 2014, 107, 148–154. [Google Scholar] [CrossRef] [PubMed]
  62. Lossio, C.F.; Moreira, C.G.; Amorim, R.M.F.; Nobre, C.S.; Silva, M.T.L.; Neto, C.C.; Pinto-Junior, V.R.; Silva, I.B.; Campos, J.; Assreuy, A.M.S. Lectin from Canavalia villosa seeds: A glucose/mannose-specific protein and a new tool for inflammation studies. Int. J. Biol. Macromol. 2017, 105, 272–280. [Google Scholar] [CrossRef] [PubMed]
  63. Ndukwe, I.G.; Habila, J.D.; Bello, I.A.; Okoh, J.I. Phytochemical and antimicrobial studies on the leaves and stem ofDesmodium scorpiurus Der (sw). Afr. J. Biotechnol. 2006, 5, 19. [Google Scholar]
  64. Rodríguez, J.L.; Berrios, P.; Clavo, Z.M.; Marin-Bravo, M.; Inostroza-Ruiz, L.; Ramos-Gonzalez, M.; Quispe-Solano, M.; Fernández-Alfonso, M.S.; Palomino, O.; Goya, L. Chemical Characterization, Antioxidant Capacity and Anti-Oxidative Stress Potential of South American Fabaceae Desmodium tortuosum. Nutrients 2023, 15, 746. [Google Scholar] [CrossRef]
  65. Bernabé-Antonio, A.; Sánchez-Sánchez, A.; Romero-Estrada, A.; Meza-Contreras, J.C.; Silva-Guzmán, J.C.; Fuentes-Talavera, F.J.; Hurtado-Díaz IAlvarez, L.; Cruz-Sosa, F. Establishment of a cell suspension culture of Eysenhardtia platycarpa: Phytochemical screening of extracts and evaluation of antifungal activity. Plants 2021, 10, 414. [Google Scholar] [CrossRef]
  66. Cagri-Mehmetoglu, A.; Sowemimo, A.; van de Venter, M. Evaluation of antibacterial activity and phenolic contents of four nigerian medicinal plants. Int. J. Food Process. Technol. 2017, 4, 13. [Google Scholar] [CrossRef]
  67. Tanaka, H.; Sudo, M.; Kawamura, T.; Sato, M.; Yamaguchi, R.; Fukai, T.; Sakai, E.; Tanaka, N. Antibacterial constituents from the roots of Erythrina herbacea against methicillin-resistant Staphylococcus aureus. Planta Medica 2010, 76, 916–919. [Google Scholar]
  68. Gomez-Flores, R.; Gracia-Vásquez, Y.; Alanís-Guzmán, M.G.; Tamez-Guerra, P.; Tamez-Guerra, R.; García-Díaz, C.; Monreal-Cuevas, E.; Rodríguez-Padilla, C. In vitro antimicrobial activity and polyphenolics content of tender and mature Ebenopsis ebano seeds. Med. Plants Int. J. Phytomed. Relat. Ind. 2009, 1, 11–19. [Google Scholar] [CrossRef]
  69. Rivero-Cruz, J.F. Antimicrobial compounds isolated from Haematoxylon brasiletto. J. Ethnopharmacol. 2008, 119, 99–103. [Google Scholar] [CrossRef]
  70. Bezerra-dos Santos, A.T.; da Silva- Araújo, T.F.; Nascimento-da Silva, L.C.; Bezerra-da Silva, C.; Morais-de Oliveira AFAraújo, J.M.; dos Santos-Correia, M.T.; de Menezes-Lima, V.L. Organic extracts from Indigofera suffruticosa leaves have antimicrobial and synergic actions with erythromycin against Staphylococcus aureus. Front. Microbiol. 2015, 6, 13. [Google Scholar] [CrossRef]
  71. Aderibigbe, S.A.; Adetunji, O.A.; Odeniyi, M.A. Antimicrobial and Pharmaceutical Properties of The Seed Oil of Leucaena leucocephala (Lam.) De Wit (Leguminosae). Afr. J. Biomed. Res. 2011, 14, 63–68. [Google Scholar]
  72. Garibo, D.; Borbón-Nuñez, H.A.; Díaz-de León, J.N.; García-Mendoza, E.; Estrada IToledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020, 10, 12805. [Google Scholar] [CrossRef] [PubMed]
  73. Prabu, P.; Losetty, V. Green synthesis of copper oxide nanoparticles using Macroptilium Lathyroides (L) leaf extract and their spectroscopic characterization, biological activity and photocatalytic dye degradation study. J. Mol. Struct. 2024, 1301, 137404. [Google Scholar] [CrossRef]
  74. Bernabé-Antonio, A.; Sánchez-Sánchez, A.; Romero-Estrada, A.; Meza-Contreras, J.C.; Silva-Guzmán, J.A.; Fuentes-Talavera, F.J.; Hurtado-Diaz, I.; Alvarez, L.; Cruz-Sosa, F. Actividad antimicrobiana y antioxidante de extractos etanólicos de hoja de Arbutus xalapensis Kunt, Mimosa malacophylla Gray y Teucrium cubense Jacquin. Rev. Tend. Docencia Investig. Quím. 2019, 5, 739–747. [Google Scholar]
  75. Parveen-Qureshi, S. Antibacterial activity and phytochemical screening of crude leaves extract of Parkinsonia aculeata Linn. Int. J. Res. Biosci. Agric. Technol. 2017, 2, 667–670. [Google Scholar]
  76. Chen, J.; Liu, B.; Ji, N.; Zhou, J.; Bian, H.J.; Li, C.L.; Chen, F.; Bao, J. A novel sialic acid-specific lectin from Phaseolus coccineus seeds with potent antineoplastic and antifungal activities. Phytomedicine 2009, 16, 352–360. [Google Scholar] [CrossRef]
  77. Tamayo, J.; Poveda, T.; Paredes, M.; Vásquez, G.; Calero-Caceres, W. Antimicrobial, Antioxidant and Anti-Inflammatory Activities of Proteins of Phaseoulus lunatus (Fabaceae) Baby Lima Beans Produced in Ecuador. bioRxiv 2018, 401323. [Google Scholar] [CrossRef]
  78. Gweru, N.; Gundidza, M.; Magwa, M.L.; Ramalivhana, N.J.; Humphrey, G.; Samie, A.; Mmbengwa, V. Phytochemical composition and biological activities of essential oil of Rhynchosia minima (L)(DC)(Fabaceae). Afr. J. Biotechnol. 2009, 8, 5. [Google Scholar]
  79. Lozano, H.B. Investigation of the Antimicrobial Activity and Secondary Metabolites of Leaf Extracts from Vachellia Rigidula, Vachellia Farnesiana, Senegalia Berlandiery, and Senegalia Gregii; Texas A&M International University: Laredo, TX, USA, 2021. [Google Scholar]
  80. Serrano-Vega, R.; Pérez-Gutiérrez, S.; Alarcón-Aguilar, F.; Almanza-Pérez, J.; Pérez-González, C.; González-Chávez, M.M. Phytochemical composition, anti-inflammatory and cytotoxic activities of chloroform extract of Senna crotalarioides Kunth. Am. J. Plant Sci. 2021, 12, 887–900. [Google Scholar] [CrossRef]
  81. Lam, S.; Li, Y.; Kuo, P.; Hwang, T.; Yang, M.; Wang, C.; Tzen, J.T.C. Chemical constituents of Vigna luteola and their anti-inflammatory bioactivity. Molecules 2019, 24, 1371. [Google Scholar] [CrossRef] [PubMed]
  82. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
  83. Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 2167-0412. [Google Scholar]
  84. Dehghanian, Z.; Habibi, K.; Dehghanian, M.; Aliyar, S.; Lajayer, B.A.; Astatkie, T.; Minkina, T.; Keswani, C. Reinforcing the bulwark: Unravelling the efficient applications of plant phenolics and tannins against environmental stresses. Heliyon 2022, 8, e09094. [Google Scholar] [CrossRef]
  85. Altemimi, A.L.; NBaharlouei AWatson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
  86. Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
  87. Sauerschnig, C.; Doppler, M.; Bueschl, C.; Schuhmacher, R. Methanol Generates Numerous Artifacts during Sample Extraction and Storage of Extracts in Metabolomics Research. Metabolites 2017, 8, 1. [Google Scholar] [CrossRef]
  88. Maticorena-Quevedo, J.; Patiño-Valderrama, L.; Vences, M.A.; Mendoza, W. Neuropatía óptica y necrosis putaminal bilateral: Reporte de un caso de intoxicación por metanol. Neurol. Argent. 2022, 14, 61–66. [Google Scholar] [CrossRef]
  89. Zapata-Boada, S.; Gonzalez-Miquel, M.; Jobson, M.; Cuellar-Franca, R.M. Life cycle environmental evaluation of alternative solvents used in lipid Extraction─ the case of algae biodiesel. ACS Sustain. Chem. Eng. 2023, 11, 11934–11946. [Google Scholar] [CrossRef]
  90. Armas-Bardales, J.J.; Vigo-Teco, R.M. Estudio Etnobotánico de Plantas Medicinales en las Comunidades El Chino y Buena Vista, Tahuayo-Perú. Biologist Thesis, Universidad Nacional De La Amazonía Peruana, Loreto, Peru, 2011. [Google Scholar]
  91. Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
  92. Cao, H.; Ji, Y.; Li, S.; Lu, L.; Tian, M.; Yang, W.; Li, H. Extensive metabolic profiles of leaves and stems from the medicinal plant Dendrobium officinale Kimura et Migo. Metabolites 2019, 9, 215. [Google Scholar] [CrossRef]
  93. Sławińska, N.; Olas, B. Selected seeds as sources of bioactive compounds with diverse biological activities. Nutrients 2022, 15, 187. [Google Scholar] [CrossRef] [PubMed]
  94. Martínez-López, G.; Palacios-Rangel MIGuízar-Nolazco, E.; Villanueva-Morales, A. Local uses and tradition: Ethnobotanical study of usefel plants in San Pablo Cuatro Venados (Valles Centrales, Oaxaca). Polibotánica 2021, 52, 193–212. [Google Scholar]
  95. Boy-Mendo, F.R. Compuestos Bioactivos en Extractos de Plantas Aromáticas y Medicinales de la Dehesa Extremeña; Universidad de Extremadura: Badajoz, Spain, 2023. [Google Scholar]
  96. Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.S.; Awis, S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef] [PubMed]
  97. 97; Rezvani, L. Detailed Study about Tannins in Plant Chemistry. J. Plant Biochem. Physiol. 2023, 11, 289. [Google Scholar]
  98. Rodríguez Pérez, B.; Canales Martínez, M.M.; Penieres Carrillo, J.G.; Cruz Sánchez, T.A. Composición química, propiedades antioxidantes y actividad antimicrobiana de propóleos mexicanos. Acta Univ. 2020, 30, 1–30. [Google Scholar] [CrossRef]
  99. Soto Vásquez, M.R. Actividad antinociceptiva y antibacteriana de los alcaloides totales de dos especies de la familia Solanaceae. Rev. Cuba. Plantas Med. 2014, 19, 361–373. [Google Scholar]
  100. Santa Cruz-López, C.Y.; Chapoñan-Vidaurre, M.; Limo-Arrasco, J.A.; Mantilla, M.C.M. Susceptibilidad in vitro de bacterias patógenas a los extractos de Rosmarinus officinalis y Caesalpinia spinosa. Rev. Cuba. Med. Mil. 2023, 52, e02302933. [Google Scholar]
  101. Cáceres-Huambo, A. Determination of the Primary Structure of a Lectin V-2 from pea (Pisum sativum L.) Seeds and His Antibacterial Effect on Staphylococcus aureus and Escherichia coli; CABI: Oxfordshire, UK, 2017. [Google Scholar]
  102. Bermúdez-Vásquez, M.J.; Granados-Chinchilla, F.; Molina, A. Composición química y actividad antimicrobiana del aceite esencial de Psidium guajava y Cymbopogon citratus. Agron. Mesoam 2019, 30, 147–163. [Google Scholar] [CrossRef]
  103. Domingo, D.; López-Brea, M. Plantas con acción antimicrobiana. Rev. Esp. Quimioter. 2003, 16, 385–393. [Google Scholar]
  104. Gallegos Flores, P.I.; Bañuelos-Valenzuela, R.; Delgadillo-Ruiz, L.; Meza-López, C.; Echavarría-Cháirez, F. Antibacterial activity of five terpenoid compounds: Carvacrol, limonene, linalool, α-terpinene and thymol. Trop. Subtrop. Agroecosystems 2019, 22, 241–248. [Google Scholar] [CrossRef]
  105. Villanueva, X.; Zhen, L.; Ares, J.N.; Vackier, T.; Lange, H.; Crestini, C.; Steenackers, H.P. Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front. Microbiol. 2023, 13, 987164. [Google Scholar] [CrossRef] [PubMed]
  106. Kaczmarek, B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef] [PubMed]
  107. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
Figure 1. PRISMA diagram of the bibliographic selection process for Fabaceae species in Tamaulipas.
Figure 1. PRISMA diagram of the bibliographic selection process for Fabaceae species in Tamaulipas.
Plants 15 00278 g001
Figure 2. Location of the state of Tamaulipas and types of vegetation.
Figure 2. Location of the state of Tamaulipas and types of vegetation.
Plants 15 00278 g002
Table 2. Register of solvents and extraction methods applied to species of the Fabaceae family in Tamaulipas.
Table 2. Register of solvents and extraction methods applied to species of the Fabaceae family in Tamaulipas.
Botanical NameBiological FormOrgan UsedExtraction TechniqueSolventReferences
Acaciella angustissima (Mill.) Britton & RoseShrubbySeedsMaceration and Soxhlet methodMethanol[44]
Aeschynomene indica L.ShrubbyLeaves and stemsHydro-distillation methodDistilled water[20]
Calliandra tergemina (L.) Benth.ShrubbyLeavesMaceration methodHexane, dichloromethane, ethyl acetate, methanol, and distilled water[61]
Canavalia rosea (Sw.) DC.HerbaceousSeedsPurificationDistilled water[41]
Chamaecrista nictitans (L.) MoenchHerbaceousAerial partsMaceration methodEthyl acetate[42]
Dalea aurea Nutt. ex PurshHerbaceousWhole plantMaceration methodMethanol[21]
Dalea bicolor Humb. & Bonpl. ex Willd.ShrubbyWhole plantMaceration methodDistilled water and methanol[16]
Dalea foliolosa (Aiton) BarnebyHerbaceousLeavesHydro-distillation methodDistilled water[17]
Dalea nana Torr. ex A.GrayHerbaceousRoots and aerial partsMaceration methodMethanol[29]
Dalea versicolor Zucc.HerbaceousWhole plantMaceration methodEthanol and methanol[29]
Desmodium incanum (Sw.) DC.HerbaceousLeaves and flowersMaceration methodMethane and distilled water[30]
Desmodium scorpiurus (Sw.) Poir.HerbaceousAerial partsSoxhlet methodPetroleum alcohol (60–80 °C), chloroform, and methanol.[63]
Desmodium tortuosum (Sw.) DC.ShrubbyStems and leavesReflux methodDistilled water[64]
Ebenopsis ebano (Berland.) Barneby & J.W.GrimesArborealSeedsMaceration methodDistilled water and methanol[65]
Enterolobium cyclocarpum (Jacq.) Griseb.ArborealLeavesReflux methodEthanol[66]
Erythrina herbacea L.ShrubbyRootsMaceration methodEthyl acetate, n-hexane, acetone[67]
Eysenhardtia platycarpa Pennell & Saff.ArborealBranches and leavesMaceration methodDistilled water, ethanol, and methanol[68]
Gleditsia aquatica MarshallArborealFruitMaceration methodEthanol[31]
Gleditsia triacanthos L.ArborealLeaf, seeds, and stemsMaceration methodMethanol[34]
Gliricidia sepium (Jacq.) KunthArborealLeafMaceration methodEthanol[43]
Grona adscendens (Sw.) H.Ohashi & K.OhashiHerbaceousRootMaceration methodMethanol[22]
Grona triflora (L.) H.Ohashi & K.OhashiHerbaceousWhole plantMaceration methodDistilled water and methanol[46]
Haematoxylum brasiletto H.Karst.ArborealStemsMaceration methodMethanol[69]
Indigofera suffruticosa Mill.ArborealLeafMaceration methodAcetone, ether, and chloroform[70]
Inga vera Willd.ArborealBarkMaceration methodEthanol[23]
Leucaena leucocephala (Lam.) de WitArborealSeedsMaceration methodHexane[71]
Lonchocarpus punctatus KunthArborealInflorescenceMaceration methodEthanol[32]
Lysiloma acapulcense (Kunth) Benth.ArborealStems and rootMaceration methodDistilled water[72]
Macroptilium lathyroides (L.) Urb.HerbaceousLeafMaceration methodDistilled water[73]
Mimosa malacophylla A.GrayShrubbyLeafMaceration methodEthanol[74]
Mucuna pruriens (L.) DC.ClimbingLeafMaceration methodMethanol[24]
Neltuma glandulosa (Torr.) Britton & RoseArborealLeafPercolation methodEthanol[33]
Neltuma juliflora (Sw.) Raf.ArborealSeedsMaceration methodDistilled water, methanol, and ethyl acetate[25]
Neltuma laevigata (Humb. & Bonpl. ex Willd.) Britton & RoseArborealLeafMaceration methodMethanol[60]
Neptunia oleracea Lour.HerbaceousLeaf and stemSoxhlet methodMethanol[35]
Pachyrhizus erosus (L.) Urb.HerbaceousSeedsMaceration methodHexane, dichloromethane, and acetone[14]
Parkinsonia aculeata L.ShrubbyLeafSoxhlet methodEthanol, methanol[75]
Parkinsonia florida (Benth. ex A.Gray) S.WatsonArborealLeafReflux methodDistilled water[18]
Parkinsonia praecox (Ruiz & Pav.) HawkinsArborealBarkMaceration methodMethanol[19]
Phaseolus coccineus L.HerbaceousSeedsPurificationDistilled water[76]
Phaseolus lunatus L.HerbaceousSeedsPurificationDistilled water[77]
Phaseolus vulgaris L.HerbaceousSeedsPurificationAmmonium sulfate[36]
Pithecellobium dulce (Roxb.) Benth.ArborealLeafMaceration methodBenzene, chloroform, acetone, methanol, and distilled water[37]
Rhynchosia minima (L.) DC.ClimbingLeafHydro-distillation methodDistilled water[78]
Senegalia berlandieri (Benth.) Britton & RoseShrubbyLeafSoxhlet methodEthanol, chloroform, ethyl acetate[79]
Senegalia greggii (A.Gray) Britton & RoseShrubbyLeafSoxhlet methodEthanol, chloroform, ethyl acetate[79]
Senna crotalarioides (Kunth) H.S.Irwin & BarnebyShrubbyNo data recordedReflux methodChloroform[80]
Senna hirsuta (L.) H.S.Irwin & BarnebyShrubbyFruitHydro-distillation methodDistilled water[48]
Senna obtusifolia (L.) H.S.Irwin & BarnebyHerbaceousLeafReflux methodAcetone, hexane, dichloromethane, methanol[47]
Senna occidentalis (L.) LinkHerbaceousLeafMaceration methodMethanol[40]
Senna septemtrionalis (Viv.) H.S.Irwin & BarnebyShrubbyAerial partsMaceration methodEthanol[38]
Senna wislizeni (A.Gray) H.S.Irwin & BarnebyShrubbyWhole plantMaceration methodMethanol and hexane[15]
Sophora tomentosa L.ShrubbyLeafMaceration methodPetroleum ether[27]
Tephrosia cinerea (L.) Pers.HerbaceousLeafMaceration methodEthyl acetate, acetone, petroleum ether[59]
Vachellia farnesiana (L.) Wight & Arn.ArborealLeafSoxhlet methodEthanol, chloroform, ethyl acetate[79]
Vachellia rigidula (Benth.) Seigler & EbingerShrubbyLeafSoxhlet methodEthanol, chloroform, ethyl acetate[79]
Vigna luteola (Jacq.) Benth.HerbaceousWhole plantMaceration methodMethanol[81]
Vigna vexillata (L.) A.Rich.HerbaceousWhole plantMaceration methodMethanol, chloroform, and distilled water[39]
Zapoteca portoricensis (Jacq.) H.M.Hern.ShrubbyLeafMaceration methodWater, methanol, ethyl acetate, diethyl ether[28]
Zornia diphylla (L.) Pers.HerbaceousWhole plantHydro-distillation methodDistilled water[45]
Table 3. Isolated compounds, bioactive properties, and effects on microorganisms of species of the Fabaceae family.
Table 3. Isolated compounds, bioactive properties, and effects on microorganisms of species of the Fabaceae family.
Botanical NameIsolated CompoundsBioactive PropertiesEffect on MicroorganismsStudy/Dose UsedReferences
Acaciella angustissima (Mill.) Britton & RosePhenols and flavonoidsAntioxidants, antimutagenic, antidiabetic, anticancer, and anti-inflammatory.Rhizoctonia solani, Fusarium oxysporum and Phytophtora capsiciDextrose potato agar culture (200 mg/mL)[44]
Aeschynomene indica L.Essential oilsAntibacterial, antioxidant, and cytotoxicStaphylococcus aureus and Bacillus subtilisBroth dilution
(0.312–0.625 mg/mL)
[20]
Calliandra tergemina (L.) Benth.FlavonolAntioxidantStaphylococcus aureusDisc diffusion
(1.00 mg/100 µL)
[61]
Canavalia rosea (Sw.) DC.LectinsNot reportedCandida albicansMicrodilution
(512 to 0.5 µg/mL)
[41]
Chamaecrista nictitans (L.) MoenchFlavonoids, ellagic acid, and proanthocyanidin oligomersAnthelmintic, antioxidant, and prebioticHaemonchus contortusOvicidal activity
(2134 and 601 µg/mL)
[42]
Dalea aurea Nutt. ex PurshIsoflavonesAnti-amebicNaegleria fowleriIn vitro assay (10 µg/mL)[21]
Dalea bicolor Humb. & Bonpl. ex Willd.Crude extractsNot reportedSalmonella choleraesuis, Escherichia coli, Staphylococcus aureus
Bacillus subtilis
Pseudomonas aeruginosa Salmonella typhi
Broth dilution
(50 and 100 mg/mL)
[16]
Dalea foliolosa (Aiton) BarnebyMonoterpenes, sesquiterpenes, and aliphatic hydrocarbonsAntioxidant, anti-a-glucosidasePseudomonas syringaeMicrodilution (35–155 μg mL−1)[17]
Dalea nana Torr. ex A.GrayFlavonoidsAntimicrobialCryptococcus neoformans, Staphylococcus aureus, Candida albicans.Microdilution (6.7–37.0 μM)[29]
Dalea versicolor Zucc.FlavonoidsAntimicrobialStaphylococcus aureus and Bacillus cereusMicrodilution (10–30 µg/mL)[29]
Desmodium incanum (Sw.) DC.Flavonoids, alkaloids, and tanninsAntimicrobialStaphylococcus aureus, Streptococcus and Klebsiella PneumoniaeWell diffusion
(5–100 mg/dL)
[30]
Desmodium scorpiurus (Sw.) Poir.Alkaloids, saponins, glycosides, steroids, and flavonoidsAntibacterialPseudomonas aeruginosa, Escherichia coli and Streptococcus pyrogenesBroth dilution
(200 mg/mL)
[63]
Desmodium tortuosum (Sw.) DC.Phenols, flavonoids, carotenoidsAntioxidantCell modelMicrodilution
(200 µg/mL)
[64]
Ebenopsis ebano (Berland.) Barneby & J.W.GrimesPhenolsAntimicrobialEscherichia coli, Salmonella enterica and Candida albicansColorimetric assay
(125–500 mg/mL)
[68]
Enterolobium cyclocarpum (Jacq.) Griseb.PhenolsAntimicrobialSerratia liquefaciens and Staphylococcus warneriDisc diffusion
(10 μL)
[66]
Erythrina herbacea L.AlkaloidsNot reportedStaphylococcus aureusMicrodilution
(6.25–50 μg/mL)
[67]
Eysenhardtia platycarpa Pennell & Saff.Flavonoids, phenols, and coumarinsAnti-inflammatory, antifungalCell modelNo data recorded[68]
Gleditsia aquatica MarshallSaponinsCytotoxicCell modelNo data recorded[31]
Gleditsia triacanthos L.Phenols, flavonoids, tannins, saponins, alkaloids, terpenoids, steroids, cardiac glycosidesAnalgesic, anti-inflammatory, hepatoprotective, and antimicrobial activityProteus spp., Streptococcus spp., Escherichia coli and Enterobacter spp. C. albicans.Well diffusion
(1000, 500, 250, 125, 62.5 and 31. 25 μg/mL)
[34]
Gliricidia sepium (Jacq.) KunthGlycosides, phytosterols, alkaloids, oils, saponins, phenols, and flavonoidsAntibacterial, antifungal, antiviral, and antioxidantEscherichia coli and Pseudomonas aeroginosaDisc diffusion
(0.1 g/1 mL)
[43]
Grona adscendens (Sw.) H.Ohashi & K.OhashiTannins, saponins, alkaloids, and flavonoidsAntimicrobialStaphylococcus aureus, Candida albicansNo data recorded
(0.25–0.50 mg/mL)
[22]
Grona triflora (L.) H.Ohashi & K.OhashiAlkaloids, steroids, tannins, saponins, and flavonoidsAntispasmodic, sympathomimetic, central nervous system stimulant, and diureticStaphylococcus aureus, Micrococcus luteus, Bacillus pumilus, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coliDisc diffusion
(50 and 100 μg/mL)
[46]
Haematoxylum brasiletto H.Karst.FlavonoidsAntimicrobialCandida albicansDisc diffusion
(8.7 to 128 μg/mL)
[69]
Indigofera suffruticosa Mill.Alkaloids, flavonoids, phenylpropanoids, triterpenoids, volatile oilsAnti-inflammatory and anticonvulsantStaphylococcus aureusDisc diffusion
(0.78–6.25 mg/mL)
[70]
Inga vera Willd.Phenols, flavonoids, tannins, saponins, anthraquinones, alkaloids, terpenesAntimicrobialEscherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomona aeruginosa, and Candida albicansDisc diffusion
(35 μg/mL)
[23]
Leucaena leucocephala (Lam.) de WitEssential oilsCentral nervous system depressant, anthelmintic, and antidiabeticStaphylococcus aureus, Esherichia coli, Bacillus subtilis and Pseudomonas aeruginosa, Aspergillus niger, Rhizopus stolon, Penicillium notatum and Candida albicansMicrodilution
(100 μg/mL, 50 μg/mL, 25 μg/mL, 12.5 μg/mL)
[71]
Lonchocarpus punctatus KunthAlkaloids, camptothecins, epipodophyllotoxins, and taxanesAnticancerCell modelColorimetric assay[32]
Lysiloma acapulcense (Kunth) Benth.TanninsAntimicrobialE. coli, P. aeruginosa, S. aureus and C. albicansWell diffusion
(2.5 µg/mL to 5.0 µg/mL)
[72]
Macroptilium lathyroides (L.) Urb.Flavonoids, polyphenols, terpenoids, saponins, and alkaloidsAntioxidant, antibacterial, cytotoxic, anticancer, and antifungal.Staphylococcus aureus and Escherichia coliDisc diffusion
(1000 µg/mL, 750 µg/mL, and 500 µg/mL)
[73]
Mimosa malacophylla A.GrayPhenols, tannins, flavonoidsNot reportedStenotrophomonas maltophiliaWell diffusion
(2.9 ± 0.5 mg/mL−1)
[74]
Mucuna pruriens (L.) DC.Phenols, tanninsAstringent, laxative, anthelmintic, alexipharmic, and tonicStaphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosaWell diffusion
(240 mg/mL)
[24]
Neltuma glandulosa (Torr.) Britton & Rose AlkaloidsAntibacterial, antifungal, anti-infective, and antiparasitic activityLeishmania donovani, Plasmodium falciparum, Cryptococcus neoformans, Mycobacterium intracellulareMicrodilution
(0.66–20 μg/mL)
[33]
Neltuma juliflora (Sw.) Raf. AlkaloidsAntibacterialStaphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosaBroth dilution
(2.5 mg/mL)
[25]
Neltuma laevigata (Humb. & Bonpl. ex Willd.) Britton & RosePhenols and alkaloidsAntimicrobial and antioxidantStaphylococcus aureus, Escherichia coli, Candida tropicalis and Fusarium moniliformeBroth dilution
(0.08–4.62 mg/mL)
[60]
Neptunia oleracea Lour.Alkaloids, glycosides, flavonoids, proteins, terpenoids, phytosterols, and tanninsAntioxidants and anti-inflammatoryStaphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicansDisc diffusion
(10–100 mg/mL)
[35]
Pachyrhizus erosus (L.) Urb.IsoflavonesAntifungalColletotrichum gloeosporioides, Fusarium oxysporum, and Rhizopus stoloniferDisc diffusion
(0.5–250 µg/mL)
[14]
Parkinsonia aculeata L.Alkaloids, glycosides, flavonoids, terpenoids, and tanninsAntibacterialStaphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosaDisc diffusion
(12.5–50 mg/mL)
[75]
Parkinsonia florida (Benth. ex A.Gray) S.WatsonAlkaloids, carbohydrates, saponins, phenols, flavonoids, proteins, cardiac glycosidesAntibacterialStaphylococcus aureus and Escherichia coli.Disc diffusion
(125–2000 µg/mL)
[18]
Parkinsonia praecox (Ruiz & Pav.) HawkinsTriterpenesAnticancer, antibacterialListeria monocytogenesMicrodilution
(2000 µg/mL)
[19]
Phaseolus coccineus L.LectinsAntinoplastic and antifungal.Candida albicans, Penicillium italicum, Helminthosporium maydis, Sclerotinia sclerotiorum, Gibberalla sanbinetti and Rhizoctonia solaniDisc diffusion
(31.3–250 mg/mL)
[76]
Phaseolus lunatus L.Isolated and hydrolyzed proteinsAntibacterial, antioxidant, anti-inflammatoryStaphylococcus aureus, Escherichia coli, Bacillus cereus, Listeria monocytogenes and Pseudomonas aeruginosaWell diffusion
(500, 375, 250, 200, and 150 mg/mL)
[77]
Phaseolus vulgaris L.LectinsAntibacterial and antifungalStaphylococcus aureus, and Streptococcus mutants, Pseudomonas aeruginosa and Klebsiella pneumoniaMicrodilution
(0.24–1000 μg/mL)
[36]
Pithecellobium dulce (Roxb.) Benth.Alkaloids, anthraquinones, flavonoids, cardiac glycosides, proteins, tannins, sugars, and terpenoids.Anti-inflammatory, antivenom, protease inhibitor, spermicide, antimicrobial, and antituberculosis activityBacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis), Aeromonas hydrophila, Alcaligenes faecalis, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella typhimuriumMicrodilution
(200–1000 µg/mL)
[37]
Rhynchosia minima (L.) DC.Essential oilsAntimicrobianas and antioxidantesAcenotobacter calcoacetilus, Bacillus subtilis, Citrobacter freundii, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhii, Staphylococcus aureus and Yersinia enterocolitica.Well diffusion
(100 µg/mL)
[78]
Senegalia berlandieri (Benth.) Britton & RosePhenols, tannins, diterpenes, sterols, triterpenes, and saponinsAntibacterialCell modelDisc diffusion
(100 mg/mL)
[79]
Senegalia greggii (A.Gray) Britton & RosePhenols, tannins, diterpenes, sterols, triterpenes, and saponinsAntibacterialCell modelDisc diffusion
(100 mg/mL)
[79]
Senna crotalarioides (Kunth) H.S.Irwin & BarnebyTriterpenes, alcohols, and phytosterolsAnti-inflammatoryCell modelNo data recorded[80]
Senna hirsuta (L.) H.S.Irwin & BarnebyEssential oilsAntimicrobialEscherichia coli, Staphylococcus aureus, Bacillus subtilis and Aspergillus nigerMicrodilution
(78–625 μg/mL)
[48]
Senna obtusifolia (L.) H.S.Irwin & BarnebySaponins, tannins, alkaloids, and flavonoids.AntimicrobialNeisseria gonorrheae, Salmonella sp., Pseudomonas aeruginosa, Proteus vulgari, Staphylococcus aureus and Streptococcus aerugenosaDisc diffusion
(200–1000 μg/mL)
[47]
Senna occidentalis (L.) LinkTannins, alkaloids, glycosides, flavonoids, steroids, saponins, anthraquinones, and flobanoidsAntimalarial, antitrypanosomal, immunosuppressive, anti-inflammatory, larvicidal, antidiabetic, anticancer, antiulcer, and hepatoprotective.Escherichia coli, Klebsiella pneumoniae, Candida albicans, Staphylococcus aureus, Pseudimonas aeruginosa and Salmonella typhiWell diffusion
(80 and 120 mg/mL)
[40]
Senna septemtrionalis (Viv.) H.S.Irwin & BarnebyRaw extractsDiuretic activity and neuropharmacological effectsNeuropharmacological effectsNo data recorded[38]
Senna wislizeni (A.Gray) H.S.Irwin & BarnebyFlavonolsLaxative, antimicrobial, antiviral, antifungal, anti-inflammatory, antitumor, antioxidantEscherichia coli and Salmonella thyphimuriumAgar overlay bioautography[15]
Sophora tomentosa L.Hydrocarbons, sterols, terpenesAntioxidants, antimicrobials, anti-inflammatories, and anticancer agentsBacillus subtilis, S. aureus and E. coliWell diffusion
(50 mg/mL)
[27]
Tephrosia cinerea (L.) Pers.PhenolsAntimicrobialPseudomonas aeruginosa, E. coliBroth dilution
(10–90 mg/mL)
[59]
Vachellia farnesiana (L.) Wight & Arn.Phenols, tannins, diterpenes, sterols, triterpenes, and saponinsAntibacterialProvidencia alcalifaciens, Micrococcus roseusDisc diffusion
(100 mg/mL)
[79]
Vachellia rigidula (Benth.) Seigler & EbingerPhenols, tannins, diterpenes, sterols, triterpenes, and saponinsAntibacterialProvidencia alcalifaciens, Micrococcus roseusDisc diffusion
(100 mg/mL)
[79]
Vigna luteola (Jacq.) Benth.Flavonoids and isoflavonoidsAntioxidant, antifungal, antitumor, antiparasitic, hypoglycemic, hepatoprotective, renal protection, antibacterial, hypotensive, and hypolipidemicCell modelNo data recorded[81]
Vigna vexillata (L.) A.Rich.Sterols and isoflavonesHypoglycemia, antihypertensive, cholesterol-lowering, antioxidant, antibacterial, anticancerCell modelNo data recorded[39]
Zapoteca portoricensis (Jacq.) H.M.Hern.Alkaloids, saponins, tannins, terpenoids, flavonoidsAntimicrobial, antiviral, antioxidantS. aureus, Streptococcus pyogenes, E. coli, K. pneumoniae, P. aeruginosa, C. albicans, Microsporum audouiniiDisc diffusion
(5.0, 10.0, 20.0 mg/mL)
[28]
Zornia diphylla (L.) Pers.Essential oilsAntifungal, antimicrobialSalmonella typhMicrodilution (50 µg/mL)[45]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Gutiérrez-Durán, P.R.; Horta-Vega, J.V.; Olazarán-Santibáñez, F.E.; Flores-Gracia, J.; Barrios-García, H.B. Phytochemical Diversity and Antimicrobial Potential of Fabaceae Species Occurring in Tamaulipas, Mexico: A Systematic Review. Plants 2026, 15, 278. https://doi.org/10.3390/plants15020278

AMA Style

Gutiérrez-Durán PR, Horta-Vega JV, Olazarán-Santibáñez FE, Flores-Gracia J, Barrios-García HB. Phytochemical Diversity and Antimicrobial Potential of Fabaceae Species Occurring in Tamaulipas, Mexico: A Systematic Review. Plants. 2026; 15(2):278. https://doi.org/10.3390/plants15020278

Chicago/Turabian Style

Gutiérrez-Durán, Paulina Rachel, Jorge Víctor Horta-Vega, Fabián Eliseo Olazarán-Santibáñez, Juan Flores-Gracia, and Hugo Brígido Barrios-García. 2026. "Phytochemical Diversity and Antimicrobial Potential of Fabaceae Species Occurring in Tamaulipas, Mexico: A Systematic Review" Plants 15, no. 2: 278. https://doi.org/10.3390/plants15020278

APA Style

Gutiérrez-Durán, P. R., Horta-Vega, J. V., Olazarán-Santibáñez, F. E., Flores-Gracia, J., & Barrios-García, H. B. (2026). Phytochemical Diversity and Antimicrobial Potential of Fabaceae Species Occurring in Tamaulipas, Mexico: A Systematic Review. Plants, 15(2), 278. https://doi.org/10.3390/plants15020278

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop