Natural Dyes and Antioxidant Compounds from Safflower (Carthamus tinctorius L.) Florets: The Effects of Genotype and Sowing Time
Abstract
1. Introduction
2. Results
2.1. Weather Conditions
2.2. Surveyed Parameters at Harvest
2.3. Safflower Quality: Red and Yellow Components
2.4. Polyphenols and Antioxidant Activity
2.5. Principal Component and Hierarchical Cluster Analyses on Safflower Quality
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Site Description and Field Experiment
4.3. Plant Sampling and Measurements
4.4. Determination of Red and Yellow Components
4.5. Extraction Methodology
4.6. Determination of Total Phenolic Contents
4.7. Determination of Total Flavonoid Content
4.8. Ferric-Reducing Antioxidant Power (FRAP) Assay
4.9. DPPH Radical-Scavenging Assay
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| BHT | Butylated Hydroxytoluene |
| DAD | Diode Array Detector |
| DMF | Dimethylformamide |
| DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
| ESI | Electrospray Ionization |
| EtOH | Ethanol |
| FRAP | Ferric Reducing Antioxidant Power |
| GAE | Gallic Acid Equivalent |
| H2O | Water |
| HPLC | High-Performance Liquid Chromatography |
| HPLC-ESI-Q-ToF | High-Performance Liquid Chromatography–Electrospray Ionization–Quadrupole Time-of-Flight |
| IC50 | Half-Maximal Inhibitory Concentration |
| LC-MS | Liquid Chromatography–Mass Spectrometry |
| LOD | Limit of Detection |
| LOQ | Limit of Quantification |
| MeOH | Methanol |
| MS/MS | Tandem Mass Spectrometry |
| RE | Rutin Equivalent |
| TFA | Trifluoroacetic Acid |
| UV–Vis | Ultraviolet Visible |
References
- Hussain, M.I.; Lyra, D.-A.; Farooq, M.; Nikoloudakis, N.; Khalid, N. Salt and Drought Stresses in Safflower: A Review. Agron. Sustain. Dev. 2016, 36, 4. [Google Scholar] [CrossRef]
- Zanetti, F.; Angelini, L.G.; Berzuini, S.; Foschi, L.; Clemente, C.; Ferioli, F.; Vecchi, A.; Rossi, A.; Monti, A.; Tavarini, S. Safflower (Carthamus tinctorius L.) a Winter Multipurpose Oilseed Crop for the Mediterranean Region: Lesson Learnt from on-Farm Trials. Ind. Crops Prod. 2022, 184, 115042. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Mirmohamadsadeghi, S.; Karimi, K. Biorefinery Development Based on Whole Safflower Plant. Renew. Energy 2020, 152, 399–408. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Nazemi, F.; Khounani, Z.; Ghanavati, H.; Shafiei, M.; Karimi, K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Safflower-Based Biorefinery Producing a Broad Spectrum of Biofuels and Biochemicals: A Life Cycle Assessment Perspective. Sci. Total Environ. 2022, 802, 149842. [Google Scholar] [CrossRef]
- Cho, M.-H.; Paik, Y.-S.; Hahn, T.-R. Enzymatic Conversion of Precarthamin to Carthamin by a Purified Enzyme from the Yellow Petals of Safflower. J. Agric. Food Chem. 2000, 48, 3917–3921. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Papakosta, D.K. Seed Filling Patterns of Safflower: Genotypic and Seasonal Variations and Association with Other Agronomic Traits. Ind. Crops Prod. 2010, 31, 71–76. [Google Scholar] [CrossRef]
- Brunello, F. Art Of Dyeing In The History Of Mankind; Neri Pozza Editore: Vincenza, Italy, 1973. [Google Scholar]
- Koren, Z.C. A Successful Talmudic-Flavored High-Performance Liquid Chromatographic Analysis of Carthamin from Red Safflower Dyeings. In Dyes in History and Archaeology 16/17; Archetype Publications: London, UK, 2001; pp. 158–166. [Google Scholar]
- Han, J.; Wanrooij, J.; Van Bommel, M.; Quye, A. Characterisation of Chemical Components for Identifying Historical Chinese Textile Dyes by Ultra High Performance Liquid Chromatography—Photodiode Array—Electrospray Ionisation Mass Spectrometer. J. Chromatogr. A 2017, 1479, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Wouters, J.; Grzywacz, C.M.; Claro, A. Markers for Identification of Faded Safflower (Carthamus tinctorius L.) Colorants by HPLC-PDA-MS—Ancient Fibres, Pigments, Paints and Cosmetics Derived from Antique Recipes. Stud. Conserv. 2010, 55, 186–203. [Google Scholar] [CrossRef]
- Tamburini, D. Investigating Asian Colourants in Chinese Textiles from Dunhuang (7th-10th Century AD) by High Performance Liquid Chromatography Tandem Mass Spectrometry—Towards the Creation of a Mass Spectra Database. Dye. Pigment. 2019, 163, 454–474. [Google Scholar] [CrossRef]
- Degano, I.; Łucejko, J.J.; Colombini, M.P. The Unprecedented Identification of Safflower Dyestuff in a 16th Century Tapestry through the Application of a New Reliable Diagnostic Procedure. J. Cult. Herit. 2011, 12, 295–299. [Google Scholar] [CrossRef]
- Costantini, R.; Berghe, I.V.; Izzo, F.C. New Insights into the Fading Problems of Safflower Red Dyed Textiles through a HPLC-PDA and Colorimetric Study. J. Cult. Herit. 2019, 38, 37–45. [Google Scholar] [CrossRef]
- Chengaiah, B.; Rao, K.; Kumar, K.; Muthumanickam, A.; Madhusudhana, C. Medicinal Importance of Natural Dyes-a Review. Int. J. PharmTech Res. 2010, 2, 144–154. [Google Scholar]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents Providing Enhanced Stability of Natural Colorants from Safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef]
- Kazuma, K.; Takahashi, T.; Sato, K.; Takeuchi, H.; Matsumoto, T.; Okuno, T. Quinochalcones and Flavonoids from Fresh Florets in Different Cultivars of Carthamus tinctorius L. Biosci. Biotechnol. Biochem. 2000, 64, 1588–1599. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.-B.; He, Z.-S. A Novel Semi-Quinone Chalcone Sharing a Pyrrole Ring C-Glycoside from Carthamus tinctorius. Tetrahedron Lett. 2000, 41, 1955–1958. [Google Scholar] [CrossRef]
- Clementi, C.; Basconi, G.; Pellegrino, R.; Romani, A. Carthamus tinctorius L.: A Photophysical Study of the Main Coloured Species for Artwork Diagnostic Purposes. Dye. Pigment. 2014, 103, 127–137. [Google Scholar] [CrossRef]
- Mirzajani, F.; Bernard, F.; Zeinali, S.M.; Goodarzi, R. Identification of Hydroxy-Safflor Yellow A, Safflor Yellow B, and Precarthaminin Safflower Using LC/ESI–MSMS. Food Meas. 2015, 9, 332–336. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, C.; Ge, P.; Liu, Y.; Zafar, M.M.; Hu, B.; Zhang, T.; Luo, Z.; Lu, S.; Zhou, Q.; et al. Genetic Diversity, Clinical Uses, and Phytochemical and Pharmacological Properties of Safflower (Carthamus tinctorius L.): An Important Medicinal Plant. Front. Pharmacol. 2024, 15, 1374680. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Miyasaka, N.; Tasaka, S.; Miura, I.; Urano, S.; Ikura, M.; Hikichi, K.; Matsumoto, T.; Wada, M. Constitution of Two Coloring Matters in the Flower Petals of Carthamus tinctorius L. Tetrahedron Lett. 1982, 23, 5163–5166. [Google Scholar] [CrossRef]
- Wang, A.L.; Zeng, Y.M. Studies on the Carthamin from Safflower. Master’s Thesis, Chongqing University, Chongqing, China, 2006. [Google Scholar]
- Zhou, X.; Tang, L.; Xu, Y.; Zhou, G.; Wang, Z. Towards a Better Understanding of Medicinal Uses of Carthamus tinctorius L. in Traditional Chinese Medicine: A Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2014, 151, 27–43. [Google Scholar] [CrossRef]
- Wang, R.; Ren, C.; Dong, S.; Chen, C.; Xian, B.; Wu, Q.; Wang, J.; Pei, J.; Chen, J. Integrated Metabolomics and Transcriptome Analysis of Flavonoid Biosynthesis in Safflower (Carthamus tinctorius L.) With Different Colors. Front. Plant Sci. 2021, 12, 712038. [Google Scholar] [CrossRef]
- Ren, C.; Chen, C.; Dong, S.; Wang, R.; Xian, B.; Liu, T.; Xi, Z.; Pei, J.; Chen, J. Integrated Metabolomics and Transcriptome Analysis on Flavonoid Biosynthesis in Flowers of Safflower (Carthamus tinctorius L.) during Colour-Transition. PeerJ 2022, 10, e13591. [Google Scholar] [CrossRef]
- Wu, S.; Yue, Y.; Tian, H.; Li, Z.; Li, X.; He, W.; Ding, H. Carthamus Red from Carthamus tinctorius L. Exerts Antioxidant and Hepatoprotective Effect against CCl4-Induced Liver Damage in Rats via the Nrf2 Pathway. J. Ethnopharmacol. 2013, 148, 570–578. [Google Scholar] [CrossRef]
- Delshad, E.; Yousefi, M.; Sasannezhad, P.; Rakhshandeh, H.; Ayati, Z. Medical Uses of Carthamus tinctorius L. (Safflower): A Comprehensive Review from Traditional Medicine to Modern Medicine. Electron. Physician 2018, 10, 6672–6681. [Google Scholar] [CrossRef] [PubMed]
- Albaiz, A.S. The Use of Safflower (Carthamus Tinctorius) in Treating Depression and Anxiety. Cureus 2022, 14, e22278. [Google Scholar] [CrossRef]
- Girija, A.; Muthu Mareeswaran, P. Toxicity Analysis of Dyes. In Advances in Dye Degradation; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; Volume 1, pp. 33–50. [Google Scholar]
- Affat, S. Classifications, Advantages, Disadvantages, Toxicity Effects of Natural and Synthetic Dyes: A Review. Univ. Thi-Qar J. Sci. 2021, 8, 130–135. [Google Scholar]
- Salem, N.; Msaada, K.; Hamdaoui, G.; Limam, F.; Marzouk, B. Variation in Phenolic Composition and Antioxidant Activity during Flower Development of Safflower (Carthamus tinctorius L.). J. Agric. Food Chem. 2011, 59, 4455–4463. [Google Scholar] [CrossRef] [PubMed]
- Hudz, N.; Ivanova, R.; Brindza, J.; Grygorieva, O.; Schubertová, Z.; Ivanišová, E. Approaches to the Determination of Antioxidant Activity of Extracts from Bee Bread and Safflower Leaves and Flowers. Potravin. Slovak J. Food Sci. 2017, 11, 480–488. [Google Scholar] [CrossRef]
- Patanè, C.; Cosentino, S.L.; Calcagno, S.; Pulvirenti, L.; Siracusa, L. How Do Sowing Time and Plant Density Affect the Pigments Safflomins and Carthamin in Florets of Safflower? Ind. Crops Prod. 2020, 148, 112313. [Google Scholar] [CrossRef]
- Mohammadi, M.; Tavakoli, A. Effect of Harvest Time of Spring Safflower (Carthamus tinctorius L.) Florets on the Production of Red and Yellow Pigments. Qual. Assur. Saf. Crops Foods 2015, 7, 581–588. [Google Scholar] [CrossRef]
- Jadhav, B.A.; Joshi, A.A. Extraction and Quantitative Estimation of Bio Active Component (Yellow and Red Carthamin) from Dried Safflower Petals. Indian J. Sci. Technol. 2015, 8, 1–5. [Google Scholar] [CrossRef]
- Setshogela, B.P. Influence of Harvest Time and Genotype on Seed Yield, Petal Yield and Carthamidin and Carthamin Contents, and 580 Mineral Nutritional Content in Safflower (Carthamus tinctorius L.). Master’s Thesis, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana, 2024. [Google Scholar]
- Groeneveld, I.; Kanelli, M.; Ariese, F.; Van Bommel, M.R. Parameters That Affect the Photodegradation of Dyes and Pigments in Solution and on Substrate—An Overview. Dye. Pigment. 2023, 210, 110999. [Google Scholar] [CrossRef]
- Yoon, J.-M.; Cho, M.-H.; Park, J.-E.; Kim, Y.-J.; Hahn, T.-R.; Paik, Y. Thermal Stability of the Pigments Hydroxysafflor Yellow A, Safflor Yellow B, and Precarthamin from Safflower (Carthamus tinctorius). J. Food Sci. 2006, 68, 839–843. [Google Scholar] [CrossRef]
- Fatahi, N.M.; Carapetian; Heidari, R. Comparing Stability of Carthamin and Safflower Yellow Pigments at pH, Temperature and Light, from Safflower (Carthamus tinctorius L.) Florets. Res. J. Biol. Sci. 2009, 4, 250–253. [Google Scholar]
- Ren, C.; Wang, J.; Xian, B.; Tang, X.; Liu, X.; Hu, X.; Hu, Z.; Wu, Y.; Chen, C.; Wu, Q.; et al. Transcriptome Analysis of Flavonoid Biosynthesis in Safflower Flowers Grown under Different Light Intensities. PeerJ 2020, 8, e8671. [Google Scholar] [CrossRef]
- Liu, J.; Ahmad, N.; Hong, Y.; Zhu, M.; Zaman, S.; Wang, N.; Yao, N.; Liu, X. Molecular Characterization of an Isoflavone 2′-Hydroxylase Gene Revealed Positive Insights into Flavonoid Accumulation and Abiotic Stress Tolerance in Safflower. Molecules 2022, 27, 8001. [Google Scholar] [CrossRef]
- Xian, B.; Chen, C.; Wang, J.; Chen, J.; Wu, Q.; Ren, C.; Pei, J. Cloning and Expression Analysis of HY5 Transcription Factor Gene of Safflower in Response to Light Signal. Biotechnol. Appl. Biochem. 2023, 70, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Li, R.; Sun, M.; Hu, X.; Xiao, M.; Hu, Z.; Jiao, P.; Pu, S.; Zhai, J.; Zhang, J. Current Advances of Carthamus tinctorius L.: A Review of Its Application and Molecular Regulation of Flavonoid Biosynthesis. Med. Plant Biol. 2024, 3, e004. [Google Scholar] [CrossRef]
- Xu, W.; Dubos, C.; Lepiniec, L. Transcriptional Control of Flavonoid Biosynthesis by MYB–bHLH–WDR Complexes. Trends Plant Sci. 2015, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Lv, Y.; Zhang, J.; Ahmad, N.; Li, X.; Yao, N.; Liu, X.; Li, H. The Safflower MBW Complex Regulates HYSA Accumulation through Degradation by the E3 Ligase CtBB1. JIPB 2023, 65, 1277–1296. [Google Scholar] [CrossRef]
- Pu, Z.-J.; Yue, S.-J.; Zhou, G.-S.; Yan, H.; Shi, X.-Q.; Zhu, Z.-H.; Huang, S.-L.; Peng, G.-P.; Chen, Y.-Y.; Bai, J.-Q.; et al. The Comprehensive Evaluation of Safflowers in Different Producing Areas by Combined Analysis of Color, Chemical Compounds, and Biological Activity. Molecules 2019, 24, 3381. [Google Scholar] [CrossRef]
- Bai, H.; Yang, J.; Wang, R. Carthamus tinctorius L.: A Comprehensive Review of Its Ethnomedicine, Phytochemistry, Pharmacology, and Clinical Applications. Front. Pharmacol. 2025, 16, 1609299. [Google Scholar] [CrossRef]
- Ebadi, F.; Mohseni, M.; Mirza Alizadeh, A. Evaluation of Antioxidant Activity of Safflower Florets (Carthamus tinctorius L.) as Food Coloring Agents. J. Chem. Pharm. Res. 2014, 6, 539–544. [Google Scholar]
- Amic, D.; Davidović-Amić, D.; Beslo, D.; Trinajstić, N. Structure-Radical Scavenging Activity Relationships of Flavonoids. Croat. Chem. Acta 2003, 76, 55–61. [Google Scholar]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant Activity of Some Algerian Medicinal Plants Extracts Containing Phenolic Compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Salem, N.; Msaada, K.; Elkahoui, S.; Mangano, G.; Azaeiz, S.; Ben Slimen, I.; Kefi, S.; Pintore, G.; Limam, F.; Marzouk, B. Evaluation of Antibacterial, Antifungal, and Antioxidant Activities of Safflower Natural Dyes during Flowering. BioMed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wang, X.; Chen, J.; Jiao, R.; Wang, L.; Li, Y.M.; Zuo, Y.; Liu, Y.; Lei, L.; Ma, K.Y.; et al. Biology of Ageing and Role of Dietary Antioxidants. BioMed Res. Int. 2014, 2014, 831841. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.-P.; Li, S.; Li, H.-B. Spices for Prevention and Treatment of Cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef]
- Yue, S.; Tang, Y.; Li, S.; Duan, J.-A. Chemical and Biological Properties of Quinochalcone C-Glycosides from the Florets of Carthamus tinctorius. Molecules 2013, 18, 15220–15254. [Google Scholar] [CrossRef]
- Abou Chehade, L.; Angelini, L.G.; Tavarini, S. Genotype and Seasonal Variation Affect Yield and Oil Quality of Safflower (Carthamus tinctorius L.) under Mediterranean Conditions. Agronomy 2022, 12, 122. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Agronomy Monographs; Page, A.L., Ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 595–624. ISBN 978-0-89118-072-2. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Agronomy Monographs; Page, A.L., Ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 403–430. ISBN 978-0-89118-072-2. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. In Agronomy Monographs; Page, A.L., Ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 159–165. ISBN 978-0-89118-072-2. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Agronomy Monographs; Page, A.L., Ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 539–579. ISBN 978-0-89118-072-2. [Google Scholar]
- Mclean, E.O. Soil pH and Lime Requirement. In Agronomy Monographs; Page, A.L., Ed.; Wiley: Hoboken, NJ, USA, 1982; Volume 9, pp. 199–224. ISBN 978-0-89118-072-2. [Google Scholar]
- Flemmer, A.C.; Franchini, M.C.; Lindström, L.I. Description of Safflower (Carthamus tinctorius) Phenological Growth Stages According to the Extended BBCH Scale: Safflower Phenological Growth Stages. Ann. Appl. Biol. 2015, 166, 331–339. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Lamiaceae Often Used in Portuguese Folk Medicine as a Source of Powerful Antioxidants: Vitamins and Phenolics. LWT—Food Sci. Technol. 2010, 43, 544–550. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Tavarini, S.; Angelini, L.G. Stevia rebaudiana Bertoni as a Source of Bioactive Compounds: The Effect of Harvest Time, Experimental Site and Crop Age on Steviol Glycoside Content and Antioxidant Properties. J. Sci. Food Agric. 2013, 93, 2121–2129. [Google Scholar] [CrossRef]
- Tadhani, M.B.; Patel, V.H.; Subhash, R. In Vitro Antioxidant Activities of Stevia rebaudiana Leaves and Callus. J. Food Compos. Anal. 2007, 20, 323–329. [Google Scholar] [CrossRef]
- Banerjee, A.; Dave, R.N. Validating Clusters Using the Hopkins Statistic. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542), Budapest, Hungary, 25–29 July 2004; IEEE: New York, NY, USA, 2004; Volume 1, pp. 149–153. [Google Scholar]
- Lawson, R.G.; Jurs, P.C. New Index for Clustering Tendency and Its Application to Chemical Problems. J. Chem. Inf. Comput. Sci. 1990, 30, 36–41. [Google Scholar] [CrossRef]





| Genotype | Floret Dry Yield Per Head (g) | Mean | No. Heads Per Plant | Mean | Floret Dry Yield Per Plant (g) | Mean | |||
|---|---|---|---|---|---|---|---|---|---|
| Autumn | Spring | Autumn | Spring | Autumn | Spring | ||||
| Pieve | 0.15 ± 0.05 | 0.16 ± 0.02 | 0.16 A | 16.98 ± 3.75 | 15.75 ± 1.04 | 16.37 A | 2.31 ± 0.19 | 2.51 ± 0.39 | 2.41 A |
| Boemondo | 0.12 ± 0.02 | 0.13 ± 0.00 | 0.13 B | 11.18 ± 1.31 | 8.83 ± 0.45 | 10.01 CD | 1.30 ± 0.23 | 1.13 ± 0.18 | 1.22 CD |
| Belisario | 0.11 ± 0.01 | 0.15 ± 0.02 | 0.13 B | 11.78 ± 0.31 | 8.30 ± 1.15 | 10.04 CD | 1.34 ± 0.03 | 1.22 ± 0.33 | 1.28 BC |
| Benno | 0.11 ± 0.03 | 0.13 ± 0.02 | 0.12 B | 11.06 ± 1.69 | 9.86 ± 1.94 | 10.46 C | 1.21 ± 0.11 | 1.29 ± 0.33 | 1.25 BCD |
| Roberto | 0.12 ± 0.02 | 0.14 ± 0.03 | 0.13 B | 8.14 ± 0.96 | 8.33 ± 1.81 | 8.24 D | 0.96 ± 0.11 | 1.12 ± 0.19 | 1.04 D |
| Montola 2000 | 0.09 ± 0.01 | 0.14 ± 0.01 | 0.12 B | 14.36 ± 1.85 | 11.90 ± 2.96 | 13.13 B | 1.29 ± 0.11 | 1.65 ± 0.54 | 1.47 B |
| Mean | 0.12 B | 0.14 A | 12.25 A | 10.50 B | 1.40 | 1.49 | |||
| Peak No. | Identified Compound | Retention Time (min) | λmax (nm) | Molecular Ion Pos. Mode | Main Product Ions (m/z) | Molecular Ion Neg. Mode | Main Product Ions (m/z) |
|---|---|---|---|---|---|---|---|
| 1 | hydroxysafflor yellow A (C27H32O16) | 4.7 | 402, 237 | [M + K]+ 651.13 | 633.11, 615.10, 531.08 | [M − H]− 611.16 | 491.12, 473.10 |
| 2 | flavonoid glucoside (C27H30O16) | 7.6 | 336 | [M + H]+ 611.15 | n.d. | [M − H]− 609.14 | 449.10, 284.03, 255.03, 151.00 |
| 3 | flavonoid glucoside (C27H30O16) | 8.1 | 340 | [M + H]+ 611.15 | 313.05, 303.04, 287.05, 211.02 | [M − H]− 609.14 | 300.02, 271.02, 151.00 |
| 4 | safflor yellow A (C27H30O15) | 15.4 | 407, 273 | [M + H]+ 595.16 | 287.05 | [M − H]− 593.15 | 285.04 |
| 5 | safflomin C and isomer (C30H30O14) | 18.1 | 401 | [M + H]+ 615.16 | 453.11, 289.06, 123.04 | [M − H]− 613.15 | 361.10, 287.05, 241.04, 119.05 |
| 6 | 18.7 | 406 | |||||
| 7 | Carthamin (C43H42O22) | 22.8 | 519, 380 | [M + Na]+ 933.19 | n.d. | [M − H]− 909.20 | 502.10, 407.09, 287.05 |
| Genotype | Sowing Time | Normalized Chromatographic Peak Areas (400 nm) ± sd | |||
|---|---|---|---|---|---|
| Hydroxysafflor Yellow A | Safflor Yellow A | Safflomin C + C * | Total Quinochalcones | ||
| Pieve | autumn | 1022 ± 76 | 792 ± 56 | 101 ± 8 | 1916 ± 140 |
| spring | 1286 ± 96 | 1137 ± 81 | 96 ± 7 | 2519 ± 184 | |
| Boemondo | autumn | 1030 ± 77 | 835 ± 59 | 100 ± 7 | 1965 ± 143 |
| spring | 728 ± 54 | 526 ± 37 | 75 ± 6 | 1329 ± 97 | |
| Belisario | autumn | 832 ± 62 | 525 ± 37 | 69 ± 5 | 1426 ± 104 |
| spring | 1270 ± 95 | 939 ± 67 | 87 ± 7 | 2296 ± 167 | |
| Benno | autumn | 2349 ± 176 | 1732 ± 123 | 253 ± 19 | 4334 ± 316 |
| spring | 1086 ± 81 | 883 ± 63 | 94 ± 7 | 2064 ± 151 | |
| Roberto | autumn | 1130 ± 84 | 956 ± 68 | 100 ± 7 | 2185 ± 159 |
| spring | 896 ± 67 | 752 ± 53 | 77 ± 6 | 1725 ± 126 | |
| Montola 2000 | autumn | 998 ± 75 | 841 ± 60 | 107 ± 8 | 1946 ± 142 |
| spring | 816 ± 61 | 691 ± 49 | 78 ± 6 | 1585 ± 116 | |
| Source of Variation | Total Phenols | Total Flavonoids | FRAP | DPPH |
|---|---|---|---|---|
| Genotype (G) | 17.82 *** | 36.85 *** | 22.30 *** | 2277 *** |
| Sowing time (S) | 32.75 *** | 0.07 ns | 23.36 *** | 261.1 *** |
| G × S Block | 16.94 *** 1.36 ns | 4.54 ** 0.35 ns | 12.51 *** 0.85 ns | 1945 *** 44.92 ns |
| Genotype | Autumn Sowing | Spring Sowing | Mean |
|---|---|---|---|
| Pieve | 25.56 ± 3.63 ab | 13.58 ± 0.64 fg | 19.57 BC |
| Boemondo | 12.02 ± 2.78 g | 17.11 ± 1.75 de | 14.57 D |
| Belisario | 24.62 ± 1.08 ab | 15.68 ± 2.38 ef | 20.15 BC |
| Benno | 17.36 ± 0.85 dc | 19.42 ± 0.42 cd | 18.39 C |
| Roberto | 23.66 ± 3.04 ab | 19.68 ± 1.49 cd | 21.67 B |
| Montola 2000 | 26.49 ± 0.50 a | 22.34 ± 0.11 bc | 24.42 A |
| Mean | 21.62 A | 17.97 B |
| Genotype | Autumn Sowing | Spring Sowing | Mean |
|---|---|---|---|
| Pieve | 4.88 ± 0.68 c | 3.63 ± 0.49 e | 4.26 BC |
| Boemondo | 3.13 ± 0.23 e | 3.50 ± 0.49 e | 3.32 D |
| Belisario | 3.55 ± 0.05 e | 4.01 ± 0.34 cde | 3.78 CD |
| Benno | 3.85 ± 0.30 de | 3.39 ± 0.84 e | 3.62 D |
| Roberto | 4.85 ± 0.62 c | 4.59 ± 0.46 cd | 4.72 B |
| Montola 2000 | 6.18 ± 0.81 b | 7.59 ± 0.40 a | 6.89 A |
| Mean | 4.41 A | 4.45 A |
| Genotype | Autumn Sowing | Spring Sowing | Mean |
|---|---|---|---|
| Pieve | 122.53 ± 16.20 ab | 68.67 ± 3.13 e | 95.60 BC |
| Boemondo | 77.00 ± 16.43 e | 94.40 ± 4.33 d | 85.70 C |
| Belisario | 123.22 ± 14.13 ab | 70.58 ± 2.05 e | 96.90 B |
| Benno | 92.22 ± 4.09 d | 105.97 ± 6.99 cd | 99.10 B |
| Roberto | 96.96 ± 0.03 d | 105.18 ± 3.30 cd | 101.07 B |
| Montola 2000 | 130.00 ± 3.72 a | 115.28 ± 2.25 bc | 122.64 A |
| Mean | 106.98 A | 93.34 B |
| Genotype | Pieve | Boemondo | Belisario | Benno | Roberto | Montola 2000 | Mean |
|---|---|---|---|---|---|---|---|
| Autumn sowing | 2.25 ± 0.01 f | 3.20 ± 0.02 ab | 2.05 ± 0.01 g | 3.00 ± 0.01 b | 2.48 ± 0.02 d | 1.69 ± 0.01 h | 2.44 B |
| Spring sowing | 3.21 ± 0.03 a | 2.47 ± 0.02 d | 2.60 ± 0.01 c | 2.43 ± 0.03 e | 2.49 ± 0.02 d | 2.06 ± 0.01 g | 2.54 A |
| Mean | 2.73 B | 2.83 A | 2.32 D | 2.71 B | 2.48 C | 1.87 E | |
| BHT | 0.41 | ||||||
| Ascorbic Acid | 0.16 | ||||||
| Trolox | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Clemente, C.; Tavarini, S.; Antoni, S.; Zublena, S.; Angelini, L.G.; Degano, I. Natural Dyes and Antioxidant Compounds from Safflower (Carthamus tinctorius L.) Florets: The Effects of Genotype and Sowing Time. Plants 2026, 15, 282. https://doi.org/10.3390/plants15020282
Clemente C, Tavarini S, Antoni S, Zublena S, Angelini LG, Degano I. Natural Dyes and Antioxidant Compounds from Safflower (Carthamus tinctorius L.) Florets: The Effects of Genotype and Sowing Time. Plants. 2026; 15(2):282. https://doi.org/10.3390/plants15020282
Chicago/Turabian StyleClemente, Clarissa, Silvia Tavarini, Shaula Antoni, Silvia Zublena, Luciana G. Angelini, and Ilaria Degano. 2026. "Natural Dyes and Antioxidant Compounds from Safflower (Carthamus tinctorius L.) Florets: The Effects of Genotype and Sowing Time" Plants 15, no. 2: 282. https://doi.org/10.3390/plants15020282
APA StyleClemente, C., Tavarini, S., Antoni, S., Zublena, S., Angelini, L. G., & Degano, I. (2026). Natural Dyes and Antioxidant Compounds from Safflower (Carthamus tinctorius L.) Florets: The Effects of Genotype and Sowing Time. Plants, 15(2), 282. https://doi.org/10.3390/plants15020282

