Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Phasmarhabditis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Viewed by 832
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 890 KiB  
Article
Species-Specific Chemotactic Responses of Entomopathogenic and Slug-Parasitic Nematodes to Cannabinoids from Cannabis sativa L.
by Marko Flajšman, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(6), 1469; https://doi.org/10.3390/agronomy15061469 - 16 Jun 2025
Viewed by 392
Abstract
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius [...] Read more.
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius myriophilus—to three major cannabinoids from Cannabis sativa: Δ9-tetrahydrocannabinol (THC), cannabigerol (CBG), and cannabidiol (CBD). Using a standardized chemotaxis assay, we quantified infective juvenile movement and calculated Chemotaxis Index (CI) values across varying cannabinoid concentrations. Our results revealed strong species-specific and dose-dependent responses. THC and CBG elicited significant attractant effects in P. papillosa, S. feltiae, and H. bacteriophora, with CI values ≥ 0.2, indicating their potential as behavioral modulators. In contrast, CBD had weaker or repellent effects, particularly at higher concentrations. O. myriophilus exhibited no consistent response, underscoring species-specific variation in chemosensory sensitivity. These findings demonstrate the potential utility of cannabinoids, especially THC and CBG, as biocompatible cues to enhance the efficacy of nematode-based biological control agents in integrated pest management (IPM). Further field-based studies are recommended to validate these results under realistic agricultural conditions. Full article
(This article belongs to the Special Issue Nematode Diseases and Their Management in Crop Plants)
Show Figures

Figure 1

14 pages, 799 KiB  
Article
Chemotactic Responses of Slug-Parasitic Nematodes to Potato-Tuber-Emitted Volatile Organic Compounds
by Žiga Laznik, Stanislav Trdan and Mohammad Yonesi
Agronomy 2025, 15(4), 951; https://doi.org/10.3390/agronomy15040951 - 14 Apr 2025
Cited by 2 | Viewed by 406
Abstract
Parasitic nematodes play a vital role in soil ecosystems, contributing to natural pest suppression. Among them, slug-parasitic species such as Phasmarhabditis papillosa (Schneider) Andrassy, Oscheius myriophilus (Poinar), and Oscheius onirici Torrini et al. are promising biological control agents against mollusk pests. These nematodes [...] Read more.
Parasitic nematodes play a vital role in soil ecosystems, contributing to natural pest suppression. Among them, slug-parasitic species such as Phasmarhabditis papillosa (Schneider) Andrassy, Oscheius myriophilus (Poinar), and Oscheius onirici Torrini et al. are promising biological control agents against mollusk pests. These nematodes rely on plant-emitted volatile organic compounds (VOCs) for host location, yet their chemotactic responses to specific VOCs remain unclear. This study assessed the responses of P. papillosa, O. myriophilus, and O. onirici to VOCs emitted by potato (S. tuberosum) tubers under varying temperature (18 °C, 22 °C) and concentration conditions (pure compound, 0.03 ppm). The results indicate that octanal was the strongest attractant, particularly for O. myriophilus, while nonanal exhibited species-dependent effects. Hydrocarbons such as undecane and 1,2,4-trimethylbenzene had minimal or repellent effects, whereas 6-methyl-5-hepten-2-one showed moderate attraction. Chemotactic responses were stronger at 18 °C, and attraction increased with higher VOC concentrations, suggesting a threshold-dependent response. These findings enhance our understanding of plant–nematode interactions and suggest that octanal and 6-methyl-5-hepten-2-one could improve nematode-based slug control strategies. However, environmental factors such as soil composition and microbial activity may influence VOC diffusion and nematode recruitment. Future research should focus on optimizing VOC formulations, assessing field applicability, and integrating these findings into sustainable pest management programs. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 1277 KiB  
Article
Responses of Parasitic Nematodes to Volatile Organic Compounds Emitted by Brassica nigra Roots
by Žiga Laznik, Tímea Tóth, Szabolcs Ádám, Stanislav Trdan, Ivana Majić and Tamás Lakatos
Agronomy 2025, 15(3), 664; https://doi.org/10.3390/agronomy15030664 - 6 Mar 2025
Cited by 3 | Viewed by 1136
Abstract
Parasitic nematodes, particularly those in the Rhabditidae family, are vital components of belowground ecosystems, contributing to pest regulation and sustainable agriculture. This study investigated the chemotactic responses of three nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and O. onirici—to volatile organic [...] Read more.
Parasitic nematodes, particularly those in the Rhabditidae family, are vital components of belowground ecosystems, contributing to pest regulation and sustainable agriculture. This study investigated the chemotactic responses of three nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and O. onirici—to volatile organic compounds (VOCs) emitted by Brassica nigra roots under herbivory by Delia radicum larvae. Using a chemotaxis assay, the effects of five VOCs (dimethyl sulfide, dimethyl disulfide, allyl isothiocyanate, phenylethyl isothiocyanate, and benzonitrile) were tested at two concentrations (pure and 0.03 ppm) and two temperatures (18 °C and 22 °C). The results revealed that VOCs and temperature significantly influenced nematode responses, while nematode species and VOC concentration showed limited effects. Benzonitrile consistently demonstrated strong chemoattractant properties, particularly for O. myriophilus and O. onirici. Conversely, allyl isothiocyanate exhibited potent nematicidal effects, inhibiting motility and causing mortality. Dimethyl disulfide and dimethyl sulfide elicited moderate to strong attractant responses, with species- and temperature-dependent variations. Significant interactions between VOCs, temperature, and nematode species highlighted the complexity of these ecological interactions. These findings emphasize the ecological roles of VOCs in mediating nematode behavior and their potential applications in sustainable pest management. Benzonitrile emerged as a promising candidate for nematode-based biocontrol strategies, while allyl isothiocyanate showed potential as a direct nematicidal agent. The study underscores the importance of integrating chemical cues into pest management systems to enhance agricultural sustainability and reduce reliance on chemical pesticides. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 3039 KiB  
Article
Immune-Related Gene Profiles and Differential Expression in the Grey Garden Slug Deroceras reticulatum Infected with the Parasitic Nematode Phasmarhabditis hermaphrodita
by Muhammad Hafeez, Rory Mc Donnell, Andrew Colton, Dana Howe, Dee Denver, Ruth C. Martin and Man-Yeon Choi
Insects 2024, 15(5), 311; https://doi.org/10.3390/insects15050311 - 26 Apr 2024
Cited by 2 | Viewed by 2176
Abstract
The grey garden slug (Deroceras reticulatum), a common terrestrial slug native to Europe with a global distribution including North America, is commonly considered the most severe slug pest in agriculture. The nematode Phasmarhabditis hermaphrodita, which has been used in the [...] Read more.
The grey garden slug (Deroceras reticulatum), a common terrestrial slug native to Europe with a global distribution including North America, is commonly considered the most severe slug pest in agriculture. The nematode Phasmarhabditis hermaphrodita, which has been used in the U.K. and Europe as a commercial biocontrol agent since 1994, has also recently been collected in Oregon and California and has long been considered a candidate biocontrol agent for slug management in the U.S. In this study, we report differential gene expressions in nematode-infected slugs using RNA-seq to identify slug immune-related genes against nematodes. Comparison of gene expression levels between the whole bodies of a nematode-infected slug (N-S) and an uninfected control slug (C-S) revealed that there were a total of 39,380 regulated unigenes, of which 3084 (3%) were upregulated and 6761 (6%) were downregulated at greater than 2-fold change (FC > 2) in the nematode-infected slug. To further investigate the biological functions of differentially expressed genes (DEGs), gene ontology (GO) and functional enrichment analysis were performed to map the DEGs to terms in the GO, eukaryotic ortholog groups of proteins (KOG) and Kyoto Encyclopedia of Genes and Genome Pathway (KEGG) databases. Among these DEGs, approximately 228 genes associated with immunity or immune-related pathways were upregulated 2-fold or more in the N-S compared to C-S. These genes include toll, Imd, JNK, scavenger receptors (SCRs), C-type lectins (CTLs), immunoglobulin-like domains, and JAK/STAT63 signaling pathways. From the RNA-seq results, we selected 18 genes and confirmed their expression levels by qRT-PCR. Our findings provide insights into the immune response of slugs during nematode infection. These studies provide fundamental information that will be valuable for the development of new methods of pest slug control using pathogenic nematodes in the field. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

18 pages, 4042 KiB  
Article
The Role of Ascorbate–Glutathione System and Volatiles Emitted by Insect-Damaged Lettuce Roots as Navigation Signals for Insect and Slug Parasitic Nematodes
by Žiga Laznik, Mitja Križman, Jure Zekič, Mihaela Roškarič, Stanislav Trdan and Andreja Urbanek Krajnc
Insects 2023, 14(6), 559; https://doi.org/10.3390/insects14060559 - 15 Jun 2023
Cited by 1 | Viewed by 1794
Abstract
The effect of wireworm-damaged lettuce roots on the antioxidative defense system (ascorbate–glutathione cycle, photosynthetic pigments) and movement of insect/slug parasitic nematodes towards determined root exudates was studied in a glasshouse experiment. Lettuce seedlings were grown in a substrate soil in the absence/presence of [...] Read more.
The effect of wireworm-damaged lettuce roots on the antioxidative defense system (ascorbate–glutathione cycle, photosynthetic pigments) and movement of insect/slug parasitic nematodes towards determined root exudates was studied in a glasshouse experiment. Lettuce seedlings were grown in a substrate soil in the absence/presence of wireworms (Elateridae). The ascorbate–glutathione system and photosynthetic pigments were analyzed by HPLC, while volatile organic compounds (VOC) emitted by lettuce roots were investigated by GC-MS. Herbivore-induced root compounds, namely 2,4-nonadienal, glutathione, and ascorbic acid, were selected for a chemotaxis assay with nematodes Steinernema feltiae, S. carpocapsae, Heterorhabditis bacteriophora, Phasmarhabditis papillosa, and Oscheius myriophilus. Root pests had a negative effect on the content of photosynthetic pigments in the leaves of infested plants, indicating that they reacted to the presence of reactive oxygen species (ROS). Using lettuce as a model plant, we recognized the ascorbate–glutathione system as a redox hub in defense response against wireworms and analyzed its role in root-exudate-mediated chemotaxis of nematodes. Infected plants also demonstrated increased levels of volatile 2,4-nonadienal. Entomopathogenic nematodes (EPNs, S. feltiae, S. carpocapsae, and H. bacteriophora) proved to be more mobile than parasitic nematodes O. myriophilus and P. papillosa towards chemotaxis compounds. Among them, 2,4-nonadienal repelled all tested nematodes. Most exudates that are involved in belowground tritrophic interactions remain unknown, but an increasing effort is being made in this field of research. Understanding more of these complex interactions would not only allow a better understanding of the rhizosphere but could also offer ecologically sound alternatives in the pest management of agricultural systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1467 KiB  
Article
Discovery of Oscheius myriophilus (Nematoda: Rhabditidae) in Gastropods and Its Similar Virulence to Phasmarhabditis papillosa against Arion vulgaris, Deroceras reticulatum, and Cernuella virgata
by Žiga Laznik, Stanislav Trdan, Tímea Tóth, Szabolcs Ádám, Tamás Lakatos and Ivana Majić
Agronomy 2023, 13(5), 1386; https://doi.org/10.3390/agronomy13051386 - 17 May 2023
Cited by 6 | Viewed by 2202
Abstract
Between July and September 2021, researchers collected 100 specimens of the Spanish slug, Arion vulgaris, and dissected their cadavers to examine them for parasitic nematodes. Molecular techniques were used to identify the nematodes, which confirmed the presence of Oscheius myriophilus, marking [...] Read more.
Between July and September 2021, researchers collected 100 specimens of the Spanish slug, Arion vulgaris, and dissected their cadavers to examine them for parasitic nematodes. Molecular techniques were used to identify the nematodes, which confirmed the presence of Oscheius myriophilus, marking the first recorded instance of this nematode in a gastropod host. To test the virulence of Slovenian strains of O. myriophilus and Phasmarhabditis papillosa and their effects on the feeding behavior of the Spanish slug, grey field slug (Deroceras reticulatum), and vineyard snail (Cernuella virgata), laboratory bioassays were conducted using nematodes grown in vivo. Nematodes were applied at various doses ranging from 10 to 500 nematodes/gastropod. The results showed that O. myriophilus and P. papillosa caused significant mortality (82.5% ± 2.5% at 15 °C) of the Spanish slug while being less effective against the vineyard snail and grey field slug. Nematodes were more virulent at a lower temperature (15 °C) than at the higher temperature (20 °C) tested in the experiment. Additionally, both nematode species significantly reduced gastropod herbivory. The potential use of O. myriophilus and P. papillosa as biological control agents against gastropods is discussed. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

8 pages, 1004 KiB  
Article
Lethality of Three Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) to Succinea Snails
by Jacob Schurkman, Irma Tandingan De Ley and Adler R. Dillman
Agriculture 2022, 12(6), 837; https://doi.org/10.3390/agriculture12060837 - 10 Jun 2022
Cited by 2 | Viewed by 2616
Abstract
Succinea snails are considered to be invasive and pestiferous gastropods to those in the floricultural industry. Their small size makes them difficult to locate within large plant shipments, and their presence on decorative plants can constitute for an entire shipment to be rejected [...] Read more.
Succinea snails are considered to be invasive and pestiferous gastropods to those in the floricultural industry. Their small size makes them difficult to locate within large plant shipments, and their presence on decorative plants can constitute for an entire shipment to be rejected for sale and distribution. Research performed on Succinea snails is limited, especially in terms of effective mitigation strategies. The nematode Phasmarhabditis hermaphrodita is a biological control agent used on pestiferous gastropods throughout some European nations. Here, three strains of Phasmarhabditis from the United States (P. hermaphrodita, P. californica, and P. papillosa) were assessed as biological control agents against Succinea snails in controlled laboratory conditions, along with the molluscicide Sluggo Plus® as a control. All species of Phasmarhabditis applied at 30 IJs/cm2 caused significant mortality compared to the non-treated control and treatment with Sluggo Plus®. P. californica caused 100% mortality 6 days after exposure, while P. hermaphrodita and P. papillosa caused the same mortality rate 7 days after exposure. The molluscicide was unable to cause significant mortality compared to the non-treated control. Additional research with US Phasmarhabditis strains, including their non-target effects and distribution may lead to their being a viable option for biological control against Succinea snails. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 1531 KiB  
Article
Lethality of Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) Nematodes to the Grey Field Slug Deroceras reticulatum on Canna Lilies in a Lath House
by Jacob Schurkman, Christine Dodge, Rory Mc Donnell, Irma Tandingan De Ley and Adler R. Dillman
Agronomy 2022, 12(1), 20; https://doi.org/10.3390/agronomy12010020 - 23 Dec 2021
Cited by 7 | Viewed by 4551
Abstract
The grey field slug, Deroceras reticulatum, is an agricultural pest causing damage to a wide variety of crops each year. The nematode Phasmarhabditis hermaphrodita has been shown to effectively kill this slug in field-simulated conditions, leading to its widespread use as a [...] Read more.
The grey field slug, Deroceras reticulatum, is an agricultural pest causing damage to a wide variety of crops each year. The nematode Phasmarhabditis hermaphrodita has been shown to effectively kill this slug in field-simulated conditions, leading to its widespread use as a biological control agent in Europe. However, recently discovered isolates of Phasmarhabditis from California have not been tested in a field-simulated environment. The lethality of three local isolates of Phasmarhabditis (P. hermaphrodita, P. californica, & P. papillosa) as well as the molluscicide Sluggo Plus® was assessed on D. reticulatum in a lath house. Remaining leaf area on Canna lilies and slug mortality were recorded after 3 weeks of exposure to treatments. Local isolates efficiently killed D. reticulatum and protection from leaf damage was attained by treatment with P. papillosa. Further experimentation is required to assess plant protection afforded by Phasmarhabditis as plants in some trials may have been in poor health. The three tested Phasmarhabditis isolates are reasonable candidates for biological control within the United States but additional information, particularly on the lethality to non-target gastropods, is needed before an informed decision on their use can be made. Full article
(This article belongs to the Special Issue Nematodes: Drivers of Agricultural Ecosystem Performance)
Show Figures

Figure 1

17 pages, 359 KiB  
Perspective
Biological Control of Pest Non-Marine Molluscs: A Pacific Perspective on Risks to Non-Target Organisms
by Carl C. Christensen, Robert H. Cowie, Norine W. Yeung and Kenneth A. Hayes
Insects 2021, 12(7), 583; https://doi.org/10.3390/insects12070583 - 28 Jun 2021
Cited by 10 | Viewed by 5282
Abstract
Classic biological control of pest non-marine molluscs has a long history of disastrous outcomes, and despite claims to the contrary, few advances have been made to ensure that contemporary biocontrol efforts targeting molluscs are safe and effective. For more than half a century, [...] Read more.
Classic biological control of pest non-marine molluscs has a long history of disastrous outcomes, and despite claims to the contrary, few advances have been made to ensure that contemporary biocontrol efforts targeting molluscs are safe and effective. For more than half a century, malacologists have warned of the dangers in applying practices developed in the field of insect biological control, where biocontrol agents are often highly host-specific, to the use of generalist predators and parasites against non-marine mollusc pests. Unfortunately, many of the lessons that should have been learned from these failed biocontrol programs have not been rigorously applied to contemporary efforts. Here, we briefly review the failures of past non-marine mollusc biocontrol efforts in the Pacific islands and their adverse environmental impacts that continue to reverberate across ecosystems. We highlight the fact that none of these past programs has ever been demonstrated to be effective against targeted species, and at least two (the snails Euglandina spp. and the flatworm Platydemus manokwari) are implicated in the extinction of hundreds of snail species endemic to Pacific islands. We also highlight other recent efforts, including the proposed use of sarcophagid flies and nematodes in the genus Phasmarhabditis, that clearly illustrate the false claims that past bad practices are not being repeated. We are not making the claim that biocontrol programs can never be safe and effective. Instead, we hope that in highlighting the need for robust controls, clear and measurable definitions of success, and a broader understanding of ecosystem level interactions within a rigorous scientific framework are all necessary before claims of success can be made by biocontrol advocates. Without such amendments to contemporary biocontrol programs, it will be impossible to avoid repeating the failures of non-marine mollusc biocontrol programs to date. Full article
(This article belongs to the Special Issue Biology and Management of Slug and Snail Pests)
17 pages, 4286 KiB  
Article
The Immune Response of the Invasive Golden Apple Snail to a Nematode-Based Molluscicide Involves Different Organs
by Alice Montanari, Giulia Bergamini, Agnese Ferrari, Anita Ferri, Milena Nasi, Roberto Simonini and Davide Malagoli
Biology 2020, 9(11), 371; https://doi.org/10.3390/biology9110371 - 30 Oct 2020
Cited by 11 | Viewed by 4567
Abstract
The spreading of alien and invasive species poses new challenges for the ecosystem services, the sustainable production of food, and human well-being. Unveiling and targeting the immune system of invasive species can prove helpful for basic and applied research. Here, we present evidence [...] Read more.
The spreading of alien and invasive species poses new challenges for the ecosystem services, the sustainable production of food, and human well-being. Unveiling and targeting the immune system of invasive species can prove helpful for basic and applied research. Here, we present evidence that a nematode (Phasmarhabditis hermaphrodita)-based molluscicide exerts dose-dependent lethal effects on the golden apple snail, Pomacea canaliculata. When used at 1.7 g/L, this biopesticide kills about 30% of snails within one week and promotes a change in the expression of Pc-bpi, an orthologue of mammalian bactericidal/permeability increasing protein (BPI). Changes in Pc-bpi expression, as monitored by quantitative PCR (qPCR), occurred in two immune-related organs, namely the anterior kidney and the gills, after exposure at 18 and 25 °C, respectively. Histological analyses revealed the presence of the nematode in the snail anterior kidney and the gills at both 18 and 25 °C. The mantle and the central nervous system had a stable Pc-bpi expression and seemed not affected by the nematodes. Fluorescence in situ hybridization (FISH) experiments demonstrated the expression of Pc-bpi in circulating hemocytes, nurturing the possibility that increased Pc-bpi expression in the anterior kidney and gills may be due to the hemocytes patrolling the organs. While suggesting that P. hermaphrodita-based biopesticides enable the sustainable control of P. canaliculata spread, our experiments also unveiled an organ-specific and temperature-dependent response in the snails exposed to the nematodes. Overall, our data indicate that, after exposure to a pathogen, the snail P. canaliculata can mount a complex, multi-organ innate immune response. Full article
Show Figures

Figure 1

8 pages, 1837 KiB  
Article
Investigating the Side-Effects of Neem-Derived Pesticides on Commercial Entomopathogenic and Slug-Parasitic Nematode Products Under Laboratory Conditions
by Renáta Petrikovszki, Pratik Doshi, György Turóczi, Ferenc Tóth and Péter Nagy
Plants 2019, 8(8), 281; https://doi.org/10.3390/plants8080281 - 12 Aug 2019
Cited by 11 | Viewed by 4457
Abstract
Lethal effects of neem derived pesticides (neem leaf extract (NLE) and NeemAzal-T/S (NA)) were examined on different entomopathogenic (EPN) and slug-parasitic (SPN) nematodes. In our recent study, neem derived pesticides were tested against Phasmarhabditis hermaphrodita for the first time under in vitro conditions. [...] Read more.
Lethal effects of neem derived pesticides (neem leaf extract (NLE) and NeemAzal-T/S (NA)) were examined on different entomopathogenic (EPN) and slug-parasitic (SPN) nematodes. In our recent study, neem derived pesticides were tested against Phasmarhabditis hermaphrodita for the first time under in vitro conditions. Laboratory experiments were set up in 96-well microplates with different concentrations of NLE (0.1%, 0.3%, 0.6%, and 1%) and NA (0.001%, 0.003%, 0.006%, and 0.01%) and Milli-Q water as the control. After 24-h exposure time, mortality of individual nematodes was observed and recorded. Considering LC10 values, 0.1% of NLE could be used safely in combination with all the EPNs and SPNs tested in recent study. A concentration of NA three times higher than the recommended dosage did not harm either EPN or SPN species. In conclusion, NeemAzal-T/S might be applied with EPNs and the SPN Ph. hermaphrodita simultaneously, while the compatibility of neem leaf extract and beneficial nematode products needs further evaluation. Full article
Show Figures

Figure 1

Back to TopTop