Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,767)

Search Parameters:
Keywords = Pb and Zn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 (registering DOI) - 3 Aug 2025
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

56 pages, 1035 KiB  
Review
Trace Elements—Role in Joint Function and Impact on Joint Diseases
by Łukasz Bryliński, Katarzyna Brylińska, Filip Woliński, Jolanta Sado, Miłosz Smyk, Olga Komar, Robert Karpiński, Marcin Prządka and Jacek Baj
Int. J. Mol. Sci. 2025, 26(15), 7493; https://doi.org/10.3390/ijms26157493 (registering DOI) - 2 Aug 2025
Viewed by 235
Abstract
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a [...] Read more.
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a serious social problem. Risk factors for the development of these diseases include overweight and obesity, gender, and intestinal microbiome disorders. Another factor that is considered to influence joint diseases is trace elements. Under normal conditions, elements such as iron (Fe), copper (Cu), cobalt (Co), iodine (I), manganese (Mn), zinc (Zn), silver (Ag), cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni) selenium (Se), boron (B), and silicon (Si) are part of enzymes involved in reactions that determine the proper functioning of cells, regulate redox metabolism, and determine the maturation of cells that build joint components. However, when the normal concentration of the above-mentioned elements is disturbed and toxic elements are present, dangerous joint diseases can develop. In this article, we focus on the role of trace elements in joint function. We describe the molecular mechanisms that explain their interaction with chondrocytes, osteocytes, osteoblasts, osteoclasts, and synoviocytes, as well as their proliferation, apoptosis, and extracellular matrix synthesis. We also focus on the role of these trace elements in the pathogenesis of joint diseases: rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE). We describe the roles of increased or decreased concentrations of individual elements in the pathogenesis and development of joint diseases and their impact on inflammation and disease progression, referring to molecular mechanisms. We also discuss their potential application in the treatment of joint diseases. Full article
Show Figures

Figure 1

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 - 2 Aug 2025
Viewed by 69
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 196
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Viewed by 96
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

15 pages, 860 KiB  
Article
Classification of Agricultural Soils in Manica and Sussundenga (Mozambique)
by Mário J. S. L. Pereira, João M. M. Leitão and Joaquim Esteves da Silva
Environments 2025, 12(8), 265; https://doi.org/10.3390/environments12080265 - 31 Jul 2025
Viewed by 165
Abstract
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine [...] Read more.
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine farms from the Manica and Sussundenga districts (Manica province) in three campaigns in 2021/2022, 2022/2023, and 2023/2024 (before and after the rainy seasons). They were subjected to a physical–chemical analysis to assess their quality from the fertility and environmental contamination point of view. Attending to the physical–chemical properties analysed, and for all the soils and sampling campaigns, a low concentration below the limit of detection for B of <0.2 mg/Kg for the majority of soils and a low concentration of Al < 0.025 mg/Kg for all the soils were obtained. Also, higher concentrations for the majority of soils for the Ca between 270 and 1634 mg/Kg, for the Mg between 41 and 601 mg/Kg, for the K between 17 and 406 mg/Kg, for the Mn between 13.6 and 522 mg/Kg, for the Fe between 66.3 and 243 mg/Kg, and for the P between <20 and 132 mg/Kg were estimated. In terms of texture and for the sand, a high percentage between 6.1 and 79% was found. In terms of metal concentrations and for all the soils of the Sussundenga district and sampling campaigns, a concentration above the reference value concentration for the Cr (76–1400 mg/Kg) and a concentration below the reference value concentration for the Pb (5–19 mg/Kg), Ba (13–120 mg/Kg) and for the Zn (10–61 mg/Kg) were evaluated. A multivariate data analysis methodology was used based on cluster and discriminant analysis. The analysis of twenty-three physical–chemical variables of the soils suggested four clusters of soils characterised by deficiencies and excess elements that must be corrected to improve the yield and quality of agricultural production. Moreover, the multivariate analysis of the metal composition of soil samples from the second and third campaigns, before and after the rainy season, suggested five clusters with a pristine composition and different metal pollutant compositions and concentrations. The information obtained in this study allows for the scientific comprehension of agricultural soil quality, which is crucial for designing agronomic and environmental corrective measures to improve food quality and quantity in the Manica and Sussundenga districts and ensure environmental, social, and economic sustainability. Full article
Show Figures

Figure 1

18 pages, 2015 KiB  
Article
Assessment of Potentially Toxic Element Pollution in Surface Soils of the Upper Ohře River Basin
by Veronika Zemanová, Ladislav Menšík, Edzard Hangen, Bernd Schilling, Lukáš Hlisnikovský and Eva Kunzová
Toxics 2025, 13(8), 644; https://doi.org/10.3390/toxics13080644 (registering DOI) - 30 Jul 2025
Viewed by 123
Abstract
The soils of river basins are often exposed to contaminants resulting from anthropogenic activities. This research identified 11 potentially toxic elements (PTEs) and assessed pollution indices, ecological risk assessments, and human health risks in the topsoil of the Upper Ohře River Basin (Czech [...] Read more.
The soils of river basins are often exposed to contaminants resulting from anthropogenic activities. This research identified 11 potentially toxic elements (PTEs) and assessed pollution indices, ecological risk assessments, and human health risks in the topsoil of the Upper Ohře River Basin (Czech Republic and Germany). Among the PTEs, As, Cd, Cu, Pb, and Zn exhibited considerable variability across the area, with contents exceeding the legislative limits of the Czech Republic, particularly at three locations near coal mining activities. Various indices indicated significant contamination in the river basin (pollution load index > 1, except at one location); however, the level of pollution varied across locations and in relation to the used indices. The ecological risk factor identified As and Cd as the primary pollutants. The potential ecological risk index indicated a strong risk, with two locations showing a highly strong ecological risk. The findings revealed no serious non-carcinogenic or carcinogenic risks to adults, while risks were confirmed for children, with As being the main contributor. This research provides basic information for managing pollution from PTEs and protecting the soils and residents of the Upper Ohře River Basin. In this region, particular attention should be paid towards As and Cd. Full article
Show Figures

Graphical abstract

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 153
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

13 pages, 1866 KiB  
Article
Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site
by Madina Dyussembayeva, Yerbol Shakenov, Vladimir Kolbin, Azhar Tashekova, Assan Aidarkhanov, Umirzak Dzhusipbekov, Gulzipa Nurgalieva, Zamira Bayakhmetova, Dulat Duisenbay and Ulzhan Aksakalova
Sustainability 2025, 17(15), 6921; https://doi.org/10.3390/su17156921 - 30 Jul 2025
Viewed by 161
Abstract
This article presents the potential use of a humic agent called ‘Superhumate’, obtained from weathered coal from the Shubarkol deposit in Kazakhstan. The experiment was conducted using model solutions and surface mine water samples from the “Degelen” site at the Semipalatinsk Test Site. [...] Read more.
This article presents the potential use of a humic agent called ‘Superhumate’, obtained from weathered coal from the Shubarkol deposit in Kazakhstan. The experiment was conducted using model solutions and surface mine water samples from the “Degelen” site at the Semipalatinsk Test Site. The adsorption of heavy metals and toxic elements using the “Superhumate” agent was carried out under dynamic conditions using a chromatographic column. Tests were conducted at a natural pH range of 5–8 (mine waters) and with a model solution at pH 1.7. Assessing the sorption efficiency of this preparation revealed that at pH 1.7, the agent does not adsorb elements such as Cd, Cu, Pb, and Zn. Under dynamic experimental conditions, using the preparation for mine waters at natural pH levels (pH 5–8), elements such as Be, Sr, Mo, Cd, Cs, Zn, and U were efficiently adsorbed at levels of 60–95%. The sorption efficiency of Pb ions was found to be almost independent of pH. The experimental results obtained with mine water samples indicate that alkaline solutions have the highest sorption efficiency, with pH ≥ 7, which is attributed to the solubility of the agent. Full article
Show Figures

Figure 1

17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 222
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 861
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

13 pages, 609 KiB  
Article
Leaching of Potentially Toxic Elements from Paper and Plastic Cups in Hot Water and Their Health Risk Assessment
by Mahmoud Mohery, Kholoud Ahmed Hamam, Sheldon Landsberger, Israa J. Hakeem and Mohamed Soliman
Toxics 2025, 13(8), 626; https://doi.org/10.3390/toxics13080626 - 26 Jul 2025
Viewed by 360
Abstract
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve [...] Read more.
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve potentially toxic elements, namely As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Pb, Sb, V, and Zn, were determined in leachates, revealing significant variability in mass fractions between paper and plastic cups, with plastic cups demonstrating greater leaching potential. Health risk assessments, including hazard quotient (HQ) and excess lifetime cancer risk (ELCR), indicated minimal non-carcinogenic and carcinogenic risks for most elements, except Pb, which posed elevated non-carcinogenic risk, especially in plastic cups. Children showed higher relative exposure levels compared to adults due to their lower body weights (the HQ in children is two times greater than in adults). Overall, the findings of the current study underscore the need for stricter monitoring and regulation of materials used in disposable cups, especially plastic ones, to mitigate potential health risks. Future investigations should assess the leaching behavior of potentially toxic elements under conditions that accurately mimic real-world usage. Such investigations ought to incorporate a systematic evaluation of diverse temperature regimes, varying exposure durations, and different beverage types. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

16 pages, 3829 KiB  
Article
Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining
by Nour-Eddine Menad and Alassane Traoré
Metals 2025, 15(8), 834; https://doi.org/10.3390/met15080834 (registering DOI) - 26 Jul 2025
Viewed by 225
Abstract
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and [...] Read more.
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and strategies aimed at diversifying its supply sources, including waste recycling. In this context, the present study was conducted with the objective of developing innovative processes to concentrate valuable metals present in the non-recovered fractions of waste electrical and electronic equipment (WEEE). Three types of samples were studied: washing table residues (WTRs), printed circuit boards (PCBs), and powders from cathode-ray tube screens (CRT powders). Several separation techniques, based on the physical properties of the elements, were implemented, including electrostatic separation, magnetic separation, and density and gravity-based separations. The results obtained are promising. For WTRs and PCBs, the recovery rates of targeted metals (Cu, Al, Pb, Zn, Sn) reached approximately 91% and 80%, respectively. In addition to these metals, other valuable metals, present in significant quantities, deserve further exploration. Regarding CRT powders, the performances are also encouraging, with recovery rates of 54.7% for zinc, 57.1% for yttrium, and approximately 71% for europium. Although these results are satisfactory, optimizations are possible to maximize the recovery of these critical elements. The techniques implemented have demonstrated their effectiveness in concentrating target metals in the treated fractions. These results confirm that recycling constitutes a viable alternative to address resource shortages and secure part of the supplies needed for the European Union’s industry. Full article
Show Figures

Figure 1

15 pages, 6386 KiB  
Article
Soil, Tree Species, and Pleurozium schreberi as Tools for Monitoring Heavy Metal Pollution in Urban Parks
by Marek Pająk, Michał Gąsiorek, Marta Szostak and Wiktor Halecki
Sustainability 2025, 17(15), 6708; https://doi.org/10.3390/su17156708 - 23 Jul 2025
Viewed by 225
Abstract
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal [...] Read more.
Urban parks are an integral component of cities; however, they are susceptible to heavy metal contamination from anthropogenic sources. Here, we investigated the moss Pleurozium schreberi and tree leaves as bioindicators for monitoring heavy metal contamination in urban parks. We determined heavy metal concentrations in P. schreberi, leaf tissues of selected tree species, and soil samples collected from various locations within a designated urban parks. The order of heavy metal accumulation was Zn > Pb > Cr > Cu > Ni > Cd > Hg in soil and Zn > Cu > Pb > Cr > Ni > Cd > Hg in P. schreberi. The order was Zn > Cu > Cr > Ni > Pb > Cd > Hg in linden and sycamore leaves, while birch leaves displayed a similar order but with slightly more Ni than Cr. The heavy metal concentration in the tested soils correlated positively with finer textures (clay and silt) and negatively with sand. The highest metal accumulation index (MAI) was noted in birch and P. schreberi, corresponding to the highest total heavy metal accumulation. The bioconcentration factor (BAF) was also higher in P. schreberi, indicating a greater ability to accumulate heavy metals than tree leaves, except silver birch for Zn in one of the parks. Silver birch displayed the highest phytoremediation capacity among the analysed tree species, highlighting its potential as a suitable bioindicator in heavy metal-laden urban parks. Our findings revealed significant variation in heavy metal accumulation, highlighting the potential of these bioindicators to map contamination patterns. Full article
(This article belongs to the Special Issue Evaluation of Landscape Ecology and Urban Ecosystems)
Show Figures

Figure 1

18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 217
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

Back to TopTop