Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,725)

Search Parameters:
Keywords = Pareto optimal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2228 KiB  
Article
Multi-Objective Optimization of Abrasive Cutting Process Conditions to Increase Economic Efficiency
by Irina Aleksandrova
Technologies 2025, 13(8), 337; https://doi.org/10.3390/technologies13080337 - 3 Aug 2025
Viewed by 61
Abstract
Existing studies on the abrasive cutting process have primarily focused on the influence of cutting conditions on key parameters such as temperature, cut-off wheel wear, and machined surface quality. However, the choice of working conditions is often made based on the experience of [...] Read more.
Existing studies on the abrasive cutting process have primarily focused on the influence of cutting conditions on key parameters such as temperature, cut-off wheel wear, and machined surface quality. However, the choice of working conditions is often made based on the experience of qualified personnel or using data from reference sources. The literature also provides optimal values for the cutting mode elements, but these are only valid for specific methods and cutting conditions. This article proposes a new multi-objective optimization approach for determining the conditions for the implementation of the abrasive cutting process that leads to Pareto-optimal solutions for improving economic efficiency, evaluated by production rate and manufacturing net cost parameters. To demonstrate this approach, the elastic abrasive cutting process of structural steels C45 and 42Cr4 has been selected. Theoretical–experimental models for production rate and manufacturing net cost have been developed, reflecting the complex influence of the conditions of the elastic abrasive cutting process (compression force of the cut-off wheel on the workpiece and rotational frequency of the workpiece). Multi-objective compromise optimization based on a genetic algorithm has been conducted by applying two methods—the determination of a compromise optimal area for the conditions of the elastic abrasive cutting process and the generalized utility function method. Optimal conditions for the implementation of the elastic abrasive cutting process have been determined, ensuring the best combination of high production rate and low manufacturing net cost. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

30 pages, 8223 KiB  
Article
Optimal Time–Jerk Trajectory Planning for Manipulators Based on a Constrained Multi-Objective Dream Optimization Algorithm
by Zhijun Wu, Fang Wang and Tingting Bao
Machines 2025, 13(8), 682; https://doi.org/10.3390/machines13080682 - 2 Aug 2025
Viewed by 281
Abstract
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, [...] Read more.
A multi-objective optimal trajectory planning method is proposed for manipulators in this paper to enhance motion efficiency and to reduce component wear while ensuring motion smoothness. The trajectory is initially interpolated in the joint space by using quintic non-uniform B-splines with virtual points, achieving the C4 continuity of joint motion and satisfying dynamic, kinematic, geometric, synchronization, and boundary constraints. The interpolation reformulates the trajectory planning problem into an optimization problem, where the time intervals between desired adjacent waypoints serve as variables. Travelling time and the integral of the squared jerk along the entire trajectories comprise the multi-objective functions. A constrained multi-objective dream optimization algorithm is designed to solve the time–jerk optimal trajectory planning problem and generate Pareto solutions for optimized trajectories. Simulations conducted on 6-DOF manipulators validate the effectiveness and superiority of the proposed method in comparison with existing typical trajectory planning methods. Full article
(This article belongs to the Special Issue Cutting-Edge Automation in Robotic Machining)
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 170
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

44 pages, 2693 KiB  
Article
Managing Surcharge Risk in Strategic Fleet Deployment: A Partial Relaxed MIP Model Framework with a Case Study on China-Built Ships
by Yanmeng Tao, Ying Yang and Shuaian Wang
Appl. Sci. 2025, 15(15), 8582; https://doi.org/10.3390/app15158582 (registering DOI) - 1 Aug 2025
Viewed by 132
Abstract
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study [...] Read more.
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study addresses the heterogeneous ship routing and demand acceptance problem, aiming to maximize two conflicting objectives: weekly profit and total transport volume. We formulate the problem as a bi-objective mixed-integer programming model and prove that the ship chartering constraint matrix is totally unimodular, enabling the reformulation of the model into a partially relaxed MIP that preserves optimality while improving computational efficiency. We further analyze key mathematical properties showing that the Pareto frontier consists of a finite union of continuous, piecewise linear segments but is generally non-convex with discontinuities. A case study based on a realistic liner shipping network confirms the model’s effectiveness in capturing the trade-off between profit and transport volume. Sensitivity analyses show that increasing freight rates enables higher profits without large losses in volume. Notably, this paper provides a practical risk management framework for shipping companies to enhance their adaptability under shifting regulatory landscapes. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

29 pages, 7249 KiB  
Article
Application of Multi-Objective Optimization for Path Planning and Scheduling: The Edible Oil Transportation System Framework
by Chin S. Chen, Chia J. Lin, Yu J. Lin and Feng C. Lin
Appl. Sci. 2025, 15(15), 8539; https://doi.org/10.3390/app15158539 (registering DOI) - 31 Jul 2025
Viewed by 202
Abstract
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest [...] Read more.
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest pipeline route for each task, and estimates pipeline resource usage to derive a node cost weight function. Additionally, the transport time is calculated using the Hagen–Poiseuille law by considering the viscosity coefficients of different oil types. To minimize both cost and time, task execution sequences are optimized based on a Pareto front approach. A 3D digital model of the pipeline system was developed using C#, SolidWorks Professional, and the Helix Toolkit V2.24.0 to simulate a realistic production environment. This model is integrated with a 3D visual human–machine interface(HMI) that displays the status of each task before execution and provides real-time scheduling adjustment and decision-making support. Experimental results show that the proposed method improves scheduling efficiency by over 43% across various scenarios, significantly enhancing overall pipeline transport performance. The proposed method is applicable to pipeline scheduling and transportation management in digital factories, contributing to improved operational efficiency and system integration. Full article
Show Figures

Figure 1

35 pages, 3218 KiB  
Article
Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
by Merve Akbas
Appl. Sci. 2025, 15(15), 8516; https://doi.org/10.3390/app15158516 (registering DOI) - 31 Jul 2025
Viewed by 139
Abstract
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing [...] Read more.
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing transport distance, processing energy intensity, initial moisture content, gradation adjustments, and regional electricity emission factors. Four advanced tree-based ensemble regression algorithms—Random Forest Regressor (RFR), Extremely Randomized Trees (ERTs), Gradient Boosted Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR)—were rigorously evaluated. Among these, GBR demonstrated superior predictive performance (R2 > 0.95, RMSE < 7.5), effectively capturing complex nonlinear interactions inherent in slag processing and logistics operations. Feature importance analysis via SHapley Additive exPlanations (SHAP) provided interpretative insights, highlighting transport distance and energy intensity as dominant factors affecting unit cost, while moisture content and grid emission factor predominantly influenced CO2 emissions. Subsequently, the Gradient Boosted Regressor model was integrated into a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) framework to explore optimal trade-offs between cost and emissions. The resulting Pareto front revealed a diverse solution space, with significant nonlinear trade-offs between economic efficiency and environmental performance, clearly identifying strategic inflection points. To facilitate actionable decision-making, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was applied, identifying an optimal balanced solution characterized by a transport distance of 47 km, energy intensity of 1.21 kWh/ton, moisture content of 6.2%, moderate gradation adjustment, and a grid CO2 factor of 0.47 kg CO2/kWh. This scenario offered a substantial reduction (45%) in CO2 emissions relative to cost-minimized solutions, with a moderate increase (33%) in total cost, presenting a realistic and balanced pathway for sustainable infrastructure practices. Overall, this study introduces a robust, scalable, and interpretable optimization framework, providing valuable methodological advancements for sustainable decision making in infrastructure planning and circular economy initiatives. Full article
Show Figures

Figure 1

20 pages, 4809 KiB  
Article
Design of a Bidirectional Veneer Defect Repair Method Based on Parametric Modeling and Multi-Objective Optimization
by Xingchen Ding, Jiuqing Liu, Xin Sun, Hao Chang, Jie Yan, Chengwen Sun and Chunmei Yang
Technologies 2025, 13(8), 324; https://doi.org/10.3390/technologies13080324 - 31 Jul 2025
Viewed by 205
Abstract
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. [...] Read more.
Repairing veneer defects is the key to ensuring the quality of plywood. In order to improve the maintenance quality and material utilization efficiency during the maintenance process, this paper proposes a bidirectional maintenance method based on gear rack transmission and its related equipment. Based on the working principle, a geometric relationship model was established, which combines the structural parameters of the mold, punch, and gear system. Simultaneously, it solves the problem of motion attitude analysis of conjugate tooth profiles under non-standard meshing conditions, aiming to establish a constraint relationship between stamping motion and structural design parameters. On this basis, a constrained optimization model was developed by integrating multi-objective optimization theory to maximize maintenance efficiency. The NSGA-III algorithm is used to solve the model and obtain the Pareto front solution set. Subsequently, three optimal parameter configurations were selected for simulation analysis and experimental platform construction. The simulation and experimental results indicate that the veneer repair time ranges from 0.6 to 1.8 seconds, depending on the stamping speed. A reduction of 28 mm in die height decreases the repair time by approximately 0.1 seconds, resulting in an efficiency improvement of about 14%. The experimental results confirm the effectiveness of the proposed method in repairing veneer defects. Vibration measurements further verify the system’s stable operation under parametric modeling and optimization design. The main vibration response occurs during the meshing and disengagement phases between the gear and rack. Full article
Show Figures

Figure 1

19 pages, 8513 KiB  
Article
Multicriterial Heuristic Optimization of Cogeneration Supercritical Steam Cycles
by Victor-Eduard Cenușă and Ioana Opriș
Sustainability 2025, 17(15), 6927; https://doi.org/10.3390/su17156927 - 30 Jul 2025
Viewed by 236
Abstract
Heuristic optimization is used to find sustainable cogeneration steam power plants with steam reheat and supercritical main steam parameters. Design solutions are analyzed for steam consumer (SC) pressures of 3.6 and 40 bar and a heat flow rate of 40% of the fuel [...] Read more.
Heuristic optimization is used to find sustainable cogeneration steam power plants with steam reheat and supercritical main steam parameters. Design solutions are analyzed for steam consumer (SC) pressures of 3.6 and 40 bar and a heat flow rate of 40% of the fuel heat flow rate. The objective functions consisted in simultaneous maximization of global and exergetic efficiencies, power-to-heat ratio in full cogeneration mode, and specific investment minimization. For 3.6 bar, the indicators improve with the increase in the ratio between reheating and main steam pressure. The increase in SC pressure worsens the performance indicators. For an SC steam pressure of 40 bar and 9 feed water preheaters, the ratio between reheating and main steam pressure should be over 0.186 for maximum exergetic efficiency and between 0.10 and 0.16 for maximizing both global efficiency and power-to-heat ratio in full cogeneration mode. The average global efficiency for an SC requiring steam at 3.6 bar is 4.4 percentage points higher than in the case with 40 bar, the average specific investment being 10% lower. The Pareto solutions found in this study are useful in the design of sustainable cogeneration supercritical power plants. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

18 pages, 2954 KiB  
Article
A Multi-Objective Decision-Making Method for Optimal Scheduling Operating Points in Integrated Main-Distribution Networks with Static Security Region Constraints
by Kang Xu, Zhaopeng Liu and Shuaihu Li
Energies 2025, 18(15), 4018; https://doi.org/10.3390/en18154018 - 28 Jul 2025
Viewed by 260
Abstract
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling [...] Read more.
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling operating point. To address this problem, this paper proposes a multi-objective dispatch decision-making optimization model for the IMDN with static security region (SSR) constraints. Firstly, the non-sequential Monte Carlo sampling is employed to generate diverse operational scenarios, and then the key risk characteristics are extracted to construct the risk assessment index system for the transmission and distribution grid, respectively. Secondly, a hyperplane model of the SSR is developed for the IMDN based on alternating current power flow equations and line current constraints. Thirdly, a risk assessment matrix is constructed through optimal power flow calculations across multiple load levels, with the index weights determined via principal component analysis (PCA). Subsequently, a scheduling optimization model is formulated to minimize both the system generation costs and the comprehensive risk, where the adaptive grid density-improved multi-objective particle swarm optimization (AG-MOPSO) algorithm is employed to efficiently generate Pareto-optimal operating point solutions. A membership matrix of the solution set is then established using fuzzy comprehensive evaluation to identify the optimal compromised operating point for dispatch decision support. Finally, the effectiveness and superiority of the proposed method are validated using an integrated IEEE 9-bus and IEEE 33-bus test system. Full article
Show Figures

Figure 1

52 pages, 3733 KiB  
Article
A Hybrid Deep Reinforcement Learning and Metaheuristic Framework for Heritage Tourism Route Optimization in Warin Chamrap’s Old Town
by Rapeepan Pitakaso, Thanatkij Srichok, Surajet Khonjun, Natthapong Nanthasamroeng, Arunrat Sawettham, Paweena Khampukka, Sairoong Dinkoksung, Kanya Jungvimut, Ganokgarn Jirasirilerd, Chawapot Supasarn, Pornpimol Mongkhonngam and Yong Boonarree
Heritage 2025, 8(8), 301; https://doi.org/10.3390/heritage8080301 - 28 Jul 2025
Viewed by 574
Abstract
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework [...] Read more.
Designing optimal heritage tourism routes in secondary cities involves complex trade-offs between cultural richness, travel time, carbon emissions, spatial coherence, and group satisfaction. This study addresses the Personalized Group Trip Design Problem (PGTDP) under real-world constraints by proposing DRL–IMVO–GAN—a hybrid multi-objective optimization framework that integrates Deep Reinforcement Learning (DRL) for policy-guided initialization, an Improved Multiverse Optimizer (IMVO) for global search, and a Generative Adversarial Network (GAN) for local refinement and solution diversity. The model operates within a digital twin of Warin Chamrap’s old town, leveraging 92 POIs, congestion heatmaps, and behaviorally clustered tourist profiles. The proposed method was benchmarked against seven state-of-the-art techniques, including PSO + DRL, Genetic Algorithm with Multi-Neighborhood Search (Genetic + MNS), Dual-ACO, ALNS-ASP, and others. Results demonstrate that DRL–IMVO–GAN consistently dominates across key metrics. Under equal-objective weighting, it attained the highest heritage score (74.2), shortest travel time (21.3 min), and top satisfaction score (17.5 out of 18), along with the highest hypervolume (0.85) and Pareto Coverage Ratio (0.95). Beyond performance, the framework exhibits strong generalization in zero- and few-shot scenarios, adapting to unseen POIs, modified constraints, and new user profiles without retraining. These findings underscore the method’s robustness, behavioral coherence, and interpretability—positioning it as a scalable, intelligent decision-support tool for sustainable and user-centered cultural tourism planning in secondary cities. Full article
(This article belongs to the Special Issue AI and the Future of Cultural Heritage)
Show Figures

Figure 1

14 pages, 1771 KiB  
Article
An Adaptive Overcurrent Protection Method for Distribution Networks Based on Dynamic Multi-Objective Optimization Algorithm
by Biao Xu, Fan Ouyang, Yangyang Li, Kun Yu, Fei Ao, Hui Li and Liming Tan
Algorithms 2025, 18(8), 472; https://doi.org/10.3390/a18080472 - 28 Jul 2025
Viewed by 205
Abstract
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This [...] Read more.
With the large-scale integration of renewable energy into distribution networks, traditional fixed-setting overcurrent protection strategies struggle to adapt to rapid fluctuations in renewable energy (e.g., wind and photovoltaic) output. Optimizing current settings is crucial for enhancing the stability of modern distribution networks. This paper proposes an adaptive overcurrent protection method based on an improved NSGA-II algorithm. By dynamically detecting renewable power fluctuations and generating adaptive solutions, the method enables the online optimization of protection parameters, effectively reducing misoperation rates, shortening operation times, and significantly improving the reliability and resilience of distribution networks. Using the rate of renewable power variation as the core criterion, renewable power changes are categorized into abrupt and gradual scenarios. Depending on the scenario, either a random solution injection strategy (DNSGA-II-A) or a Gaussian mutation strategy (DNSGA-II-B) is dynamically applied to adjust overcurrent protection settings and time delays, ensuring real-time alignment with grid conditions. Hard constraints such as sensitivity, selectivity, and misoperation rate are embedded to guarantee compliance with relay protection standards. Additionally, the convergence of the Pareto front change rate serves as the termination condition, reducing computational redundancy and avoiding local optima. Simulation tests on a 10 kV distribution network integrated with a wind farm validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

23 pages, 2443 KiB  
Article
Research on Coordinated Planning and Operational Strategies for Novel FACTS Devices Based on Interline Power Flow Control
by Yangqing Dan, Hui Zhong, Chenxuan Wang, Jun Wang, Yanan Fei and Le Yu
Electronics 2025, 14(15), 3002; https://doi.org/10.3390/electronics14153002 - 28 Jul 2025
Viewed by 279
Abstract
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow [...] Read more.
Under the “dual carbon” goals and rapid clean energy development, power grids face challenges including rapid load growth, uneven power flow distribution, and limited transmission capacity. This paper proposes a novel FACTS device with fault tolerance and switchable topology that maintains power flow control over multiple lines during N-1 faults, enhancing grid safety and economy. The paper establishes a steady-state mathematical model based on additional virtual nodes and provides power flow calculation methods to accurately reflect the device’s control characteristics. An entropy-weighted TOPSIS method was employed to establish a quantitative evaluation system for assessing the grid performance improvement after FACTS device integration. To address interaction issues among multiple flexible devices, an optimization planning model considering th3e coordinated effects of UPFC and VSC-HVDC was constructed. Multi-objective particle swarm optimization obtained Pareto solution sets, combined with the evaluation system, to determine the optimal configuration schemes. Considering wind power uncertainty and fault risks, we propose a system-level coordinated operation strategy. This strategy constructs probabilistic risk indicators and introduces topology switching control constraints. Using particle swarm optimization, it achieves a balance between safety and economic objectives. Simulation results in the Jiangsu power grid scenarios demonstrated significant advantages in enhancing the transmission capacity, optimizing the power flow distribution, and ensuring system security. Full article
Show Figures

Figure 1

20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 170
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 5172 KiB  
Article
Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs
by Yuzhuo Zhang, Jiale Peng, Zi Wang, Meng Xi, Jinlong Liu and Lei Xu
Buildings 2025, 15(15), 2640; https://doi.org/10.3390/buildings15152640 - 26 Jul 2025
Viewed by 507
Abstract
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this [...] Read more.
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this gap, this study proposes an AI-assisted framework integrating machine learning (ML) and Multi-Objective Optimization (MOO) to achieve a sustainable GPC design. A robust database of 1154 experimental records was developed, focusing on five key predictors: cement content, water-to-binder ratio, aggregate composition, glass powder content, and curing age. Seven ML models were optimized via Bayesian tuning, with the Ensemble Tree model achieving superior accuracy (R2 = 0.959 on test data). SHapley Additive exPlanations (SHAP) analysis further elucidated the contribution mechanisms and underlying interactions of material components on GPC compressive strength. Subsequently, a MOO framework minimized unit cost and CO2 emissions while meeting compressive strength targets (15–70 MPa), solved using the NSGA-II algorithm for Pareto solutions and TOPSIS for decision-making. The Pareto-optimal solutions provide actionable guidelines for engineers to align GPC design with circular economy principles and low-carbon policies. This work advances sustainable construction practices by bridging AI-driven innovation with building materials, directly supporting global goals for waste valorization and carbon neutrality. Full article
Show Figures

Figure 1

18 pages, 4826 KiB  
Article
Study on Optimal Adaptive Meta-Model and Performance Optimization of Built-In Permanent Magnet Synchronous Motor
by Chuanfu Jin, Wei Zhou, Wei Yang, Yao Wu, Jinlong Li, Yongtong Wang and Kang Li
Actuators 2025, 14(8), 373; https://doi.org/10.3390/act14080373 - 25 Jul 2025
Viewed by 138
Abstract
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic [...] Read more.
To overcome the limitations of single-objective optimization in permanent magnet synchronous motor (PMSM) performance enhancement, this study proposes an adaptive moving least squares (AMLS) for a 12-pole/36-slot built-in PMSM. Through comprehensive exploration of the design space, a systematic approach is established for holistic motor performance improvement. The Gaussian weight function is modified to improve the model’s fitting accuracy, and the decay rate of the control weight is optimized. The optimal adaptive meta-model for the built-in PMSM is selected based on the coefficient of determination. Subsequently, sensitivity analysis is conducted to identify the parameters that most significantly influence key performance indicators, including torque ripple, stator core loss, electromagnetic force amplitude, and average output torque. These parameters are then chosen as the optimal design variables. A multi-objective optimization framework, built upon the optimal adaptive meta-model, is developed to address the multi-objective optimization problem. The results demonstrate increased output torque, along with reductions in stator core loss, torque ripple, and radial electromagnetic force, thereby significantly improving the overall performance of the motor. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

Back to TopTop