Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = Parametric amplification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2117 KiB  
Article
Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing
by Yue Hao, Jia-Le Tong, Suying Bai, Shao-Xiong Wu and Cheng-Hua Bai
Photonics 2025, 12(7), 628; https://doi.org/10.3390/photonics12070628 - 20 Jun 2025
Viewed by 299
Abstract
The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing [...] Read more.
The photon blockade effect, as a quantum behavior in cavity optomechanics, has certain limitations, including stringent requirements for system parameters and technical difficulties in achieving strong nonlinear interactions. This paper proposes a novel scheme that aims to achieve strong nonlinear effects through introducing the degenerate optical parametric amplifier (OPA) and mechanical squeezing. These enhanced nonlinear effects can significantly improve the photon blockade effect, effectively overcoming the limitations of weak coupling. Our theoretical analysis demonstrates the successful realization of an ideal single-photon blockade (1PB) state through optimized parameter conditions. Additionally, this joint approach significantly enhances the two-photon blockade (2PB) effect and broadens the region where 2PB occurs. This finding helps us identify the optimal system parameters to maximize two-photon emission efficiency. By precisely controlling these parameters, a new pathway is opened for more flexible manipulation and utilization of the photon blockade effect in experiments. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

21 pages, 2793 KiB  
Article
Enhancing Fault Detection in AUV-Integrated Navigation Systems: Analytical Models and Deep Learning Methods
by Huibao Yang, Bangshuai Li, Xiujing Gao, Bo Xiao and Hongwu Huang
J. Mar. Sci. Eng. 2025, 13(7), 1198; https://doi.org/10.3390/jmse13071198 - 20 Jun 2025
Viewed by 360
Abstract
In complex underwater environments, the stability of navigation for autonomous underwater vehicles (AUVs) is critical for mission success. To enhance the reliability of the AUV-integrated navigation system, fault detection technology was investigated. Initially, the causes and classifications of faults within the integrated navigation [...] Read more.
In complex underwater environments, the stability of navigation for autonomous underwater vehicles (AUVs) is critical for mission success. To enhance the reliability of the AUV-integrated navigation system, fault detection technology was investigated. Initially, the causes and classifications of faults within the integrated navigation system were analyzed in detail, and these faults were categorized as either abrupt or gradual, based on variations in sensor output characteristics under fault conditions. To overcome the limitations of the residual chi-square method in detecting gradual faults, a cumulative residual detection approach with error coefficient amplification was proposed. The algorithm enhances gradual fault detection by using eigenvalue analysis and constructing fault-frequency-based error amplification coefficients with non-parametric techniques. Furthermore, to improve the detection of gradual faults, artificial intelligence-based fault detection methods were also explored. Specifically, the particle swarm optimization (PSO) algorithm was employed to optimize the hyperparameters of a long short-term memory (LSTM) neural network, leading to the development of a PSO-LSTM fault detection model. In this model, the fault detection function was formulated by comparing the predictions generated by the PSO-LSTM model with those derived from the Kalman filter. The experimental results demonstrated that the fault detection function formulated by PSO-LSTM exhibited enhanced sensitivity to gradual faults and enabled the timely isolation of faulty sensors. In unfamiliar marine regions, the PSO-LSTM method demonstrates greater stability and avoids the need to recalibrate detection thresholds for each sea area—an important advantage for AUV autonomous navigation in complex environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 16870 KiB  
Article
Analysis of the Dynamic Active Earth Pressure from c-φ Backfill Considering the Amplification Effect of Seismic Acceleration
by Zhiliang Sun, Wei Wang and Hanghang Liu
Appl. Sci. 2025, 15(11), 5966; https://doi.org/10.3390/app15115966 - 26 May 2025
Viewed by 323
Abstract
This study extends the method of pseudo-dynamic analysis based on the Mononobe-Okabe (M-O) method by comprehensively incorporating the seismic acceleration response characteristics of backfill soil and the cohesive properties of the fill. The proposed method is adapted for backfill soils by incorporating the [...] Read more.
This study extends the method of pseudo-dynamic analysis based on the Mononobe-Okabe (M-O) method by comprehensively incorporating the seismic acceleration response characteristics of backfill soil and the cohesive properties of the fill. The proposed method is adapted for backfill soils by incorporating the cohesion c and internal friction angle φ (including scenarios with non-horizontal backfill surfaces). Theoretical formulas for the active earth pressure coefficient and its distribution on rigid retaining walls under the most unfavorable conditions are derived. The rationality of the proposed formulas is preliminarily verified using model test data from the relevant literature. A detailed parametric sensitivity analysis reveals the following trends: The active earth pressure coefficient Ka increases with increases in the amplification factor fa, wall backface inclination angle θ, backfill slope inclination i, lateral vibration period T, and horizontal seismic acceleration coefficient kh; Ka decreases with an increasing internal friction angle φ and cohesion/unit weight ratio c/γH. The failure wedge angle αa increases with increases in φ, θ, and c/γH, decreases with increases in fa, the soil–wall friction angle δ, i, T, kh, and the vertical seismic acceleration coefficient kv. Calculations are carried out to further identify the critical tensile stress depth in cohesive backfill soils using c and φ. The proposed analysis highlights the necessity of considering the seismic acceleration amplification factor fa, backfill cohesion c, and soil–wall adhesion cw in active earth pressure calculations. This study recommends that the seismic design of retaining walls should involve appropriate evaluation of the the actual cohesion of backfill materials and fully account for the acceleration amplification effects under seismic loading. Full article
Show Figures

Figure 1

19 pages, 14276 KiB  
Article
Parameter Optimization Analysis of Buttressed Pile Foundation Beam Retaining Wall Under Seismic Action
by Yonggui Lin, Chunshan Yang, Aoyu Xu, Hui Ma, Yadong Li and Chuanzhi Wang
Buildings 2025, 15(10), 1748; https://doi.org/10.3390/buildings15101748 - 21 May 2025
Viewed by 338
Abstract
To enhance the seismic performance of the pile foundation beam retaining wall-anti-slide pile system in slope engineering, this study adopts an innovative approach combining shaking-table tests and three-dimensional numerical modeling to systematically investigate the dynamic coupling effects between the geometric parameters of the [...] Read more.
To enhance the seismic performance of the pile foundation beam retaining wall-anti-slide pile system in slope engineering, this study adopts an innovative approach combining shaking-table tests and three-dimensional numerical modeling to systematically investigate the dynamic coupling effects between the geometric parameters of the beam-slab and the height of the retaining wall. The results demonstrate that the numerical model effectively reproduces the time–frequency characteristics of pile-top acceleration observed in the shaking-table tests, revealing a U-shaped displacement distribution pattern along the slope crest under seismic loading, with larger displacements in the middle and smaller ones on both sides. Parameter sensitivity analysis of the pile foundation beam retaining wall-anti-slide pile system indicates that while increasing the width of the beam-slab improves the overall stability of anti-slide piles, it also exacerbates the stress concentration at the base of the retaining wall. Conversely, an increase in retaining wall height leads to the nonlinear amplification of the acceleration response in the pile–soil system. The study confirms that optimizing the synergistic design of the beam-slab length and width while controlling the retaining wall height can significantly enhance the seismic performance of the structure. These findings provide a numerical model-based analysis method with both theoretical depth and engineering applicability for the parametric design of pile foundation beam retaining wall anti-slide pile systems in slope engineering located in high-seismic regions. Full article
Show Figures

Figure 1

26 pages, 5622 KiB  
Article
UMFNet: Frequency-Guided Multi-Scale Fusion with Dynamic Noise Suppression for Robust Low-Light Object Detection
by Shihao Gong, Zheng Ma and Xiang Li
Appl. Sci. 2025, 15(10), 5362; https://doi.org/10.3390/app15105362 - 11 May 2025
Viewed by 604
Abstract
The dominant low-light object detectors face the following spectral trilemma: (1) the loss of high-frequency structural details during denoising, (2) the amplification of low-frequency illumination distortion, and (3) cross-band interference in multi-scale features. To resolve these intertwined challenges, we present UMFNet—a frequency-guided [...] Read more.
The dominant low-light object detectors face the following spectral trilemma: (1) the loss of high-frequency structural details during denoising, (2) the amplification of low-frequency illumination distortion, and (3) cross-band interference in multi-scale features. To resolve these intertwined challenges, we present UMFNet—a frequency-guided detection framework that unifies adaptive frequency distillation with inter-band attention coordination. Our technical breakthroughs manifest through three key innovations: (1) a frequency-adaptive fusion (FAF) module employing learnable wavelet kernels (16–64 decomposition basis) with dynamic SNR-gated thresholding, achieving an 89.7% photon utilization rate in ≤1 lux conditions—2.4× higher than fixed-basis approaches; (2) a spatial-channel coordinated attention (SCCA) mechanism with dual-domain nonlinear gating that reduces high-frequency hallucination by 37% through parametric phase alignment (verified via gradient direction alignment coefficient ρG = 0.93); (3) a spectral perception loss combining the frequency-weighted structural similarity index measure (SSIM) with gradient-aware focal modulation, enforcing physics-constrained feature recovery. Extensive validation demonstrates UMFNet’s leadership: 73.1% mAP@50 on EXDark (+6.4% over YOLOv8 baseline), 58.7% on DarkFace (+3.1% over GLARE), and 40.2% on thermal FLIR ADAS (+9.7% improvement). This work pioneers a new paradigm for precision-critical vision systems in photon-starved environments. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

26 pages, 15212 KiB  
Article
Dynamic Response and Reliability Assessment of Power Transmission Towers Under Wind-Blown Sand Loads
by Jun Lu, Jin Li, Xiaoqian Ma, Weiguang Tian, Linfeng Zhang and Peng Zhang
Energies 2025, 18(9), 2316; https://doi.org/10.3390/en18092316 - 30 Apr 2025
Viewed by 275
Abstract
The global transition toward clean energy has driven the extensive deployment of overhead tower-lines in desserts, where such structures face unique challenges from wind–sand interactions. The current design standards often overlook these combined loads due to oversimplified collision models and inadequate computational frameworks. [...] Read more.
The global transition toward clean energy has driven the extensive deployment of overhead tower-lines in desserts, where such structures face unique challenges from wind–sand interactions. The current design standards often overlook these combined loads due to oversimplified collision models and inadequate computational frameworks. These gaps are bridged in the present study through the development of a refined impact force model grounded in Hertz contact theory, which captures transient collision mechanics and energy dissipation during sand–structure interactions. Validated against field data from northwest China, the model enables a comprehensive parametric analysis of wind speed (5–60 m/s), sand density (1000–3500 kg/m3), elastic modulus (5–100 GPa), and Poisson’s ratio (0.1–0.4). Our results show that peak impact forces increase by 66.7% (with sand density) and 148% (with elastic modulus), with higher wind speeds amplifying forces nonlinearly, reaching 8 N at 30 m/s. An increased elastic modulus shifts energy dissipation toward elastic rebound, reducing the penetration depth by 28%. The dynamic analysis of a 123.6 m transmission tower under wind–sand coupling loads demonstrated significant structural response amplifications; displacements and axial forces increased by 28% and 41%, respectively, compared to pure wind conditions. These findings reveal the importance of integrating coupling load effects into design codes, particularly for towers in sandstorm-prone regions. The proposed framework provides a robust basis for enhancing structural resilience, offering practical insights for revising safety standards and optimizing maintenance strategies in arid environments. Full article
Show Figures

Figure 1

16 pages, 328 KiB  
Review
Dynamical Casimir Effect: 55 Years Later
by Viktor V. Dodonov
Physics 2025, 7(2), 10; https://doi.org/10.3390/physics7020010 - 29 Mar 2025
Viewed by 4876
Abstract
The paper represents a brief review of the publications in 2020 to 2024 related to the phenomena combined under the name of dynamical Casimir effect. Full article
27 pages, 6152 KiB  
Article
Neural Network-Based Prediction of Amplification Factors for Nonlinear Soil Behaviour: Insights into Site Proxies
by Ahmed Boudghene Stambouli and Lotfi Guizani
Appl. Sci. 2025, 15(7), 3618; https://doi.org/10.3390/app15073618 - 26 Mar 2025
Cited by 2 | Viewed by 397
Abstract
The identification of the most pertinent site parameters to classify soils in terms of their amplification of seismic ground motions is still of prime interest to earthquake engineering and codes. This study investigates many options for improving soil classifications in order to reduce [...] Read more.
The identification of the most pertinent site parameters to classify soils in terms of their amplification of seismic ground motions is still of prime interest to earthquake engineering and codes. This study investigates many options for improving soil classifications in order to reduce the deviation between “exact” predictions using wave propagation and the method used in seismic codes based on amplification (site) factors. To this end, an exhaustive parametric study is carried out to obtain nonlinear responses of sets of 324 clay and sand columns and to constitute the database for neuronal network methods used to predict the regression equations of the amplification factors in terms of seismic and site parameters. A wide variety of parameters and their combinations are considered in the study, namely, soil depth, shear wave velocity, the stiffness of the underlaying bedrock, and the intensity and frequency content of the seismic excitation. A database of AFs for 324 nonlinear soil profiles of sand and clay under multiple records with different intensities and frequency contents is obtained by wave propagation, where soil nonlinearity is accounted for through the equivalent linear model and an iterative procedure. Then, a Generalized Regression Neural Network (GRNN) is used on the obtained database to determine the most significant parameters affecting the AFs. A second neural network, the Radial Basis Function (RBF) network, is used to develop simple and practical prediction equations. Both the whole period range and specific short-, mid-, and long-period ranges associated with the AFs, Fa, Fv, and Fl, respectively, are considered. The results indicate that the amplification factor of an arbitrary soil profile can be satisfactorily approximated with a limited number of sites and the seismic record parameters (two to six). The best parameter pair is (PGA; resonance frequency, f0), which leads to a standard deviation reduction of at least 65%. For improved performance, we propose the practical triplet PGA;Vs30;f0 with Vs30 being the average shear wave velocity within the upper 30 m of soil below the foundation. Most other relevant results include the fact that the AFs for long periods (Fl) can be significantly higher than those for short or mid periods for soft soils. Finally, it is recommended to further refine this study by including additional soil parameters such as spatial configuration and by adopting more refined soil models. Full article
Show Figures

Figure 1

21 pages, 12423 KiB  
Article
Three-Band Spectral Camera Structure Design Based on the Topology Optimization Method
by Kai Hu, Yuzhu Wan, Jialong Guo, Chunbo Zou and Xiangtao Zheng
Appl. Sci. 2025, 15(6), 2974; https://doi.org/10.3390/app15062974 - 10 Mar 2025
Viewed by 669
Abstract
The housing and bracket structure are critical components of multispectral cameras; the mechanical properties significantly affect the stability of the optical system and the imaging quality. At the same time, their weight directly impacts the overall load capacity and functional expansion of the [...] Read more.
The housing and bracket structure are critical components of multispectral cameras; the mechanical properties significantly affect the stability of the optical system and the imaging quality. At the same time, their weight directly impacts the overall load capacity and functional expansion of the device. In this study, the housing and bracket structure of a three-band camera were optimized based on the initial design. Using a combination of density-based topology optimization and multi-objective genetic algorithms in parametric optimization, redundant structures were removed to achieve a lightweight design. As a result, the total weight of the housing and bracket was reduced from 9.56 kg to 5.51 kg, achieving a 42.4% weight reduction. In the optimized structure, under gravity conditions, the maximum deformation along the z-axis did not exceed 7 nm, and the maximum amplification factor in the dynamic analysis was 1.42. The analysis demonstrates that the optimized housing and bracket exhibit excellent dynamic and static performance, meeting all testing requirements, and, under gravitational conditions, the spot diagram and modulation transfer function effect are negligible. Furthermore, in a static environment, the detection range across all spectral bands reaches 18.5 km, satisfying the mission requirements. This optimization design provides a strong reference for the lightweight design of future optical equipment. Full article
Show Figures

Figure 1

13 pages, 2964 KiB  
Article
Nonlinear-Optical Processing of OAM Light States in a Few-Mode Fiber
by Cheng Guo, Afshin Shamsshooli, Francesca Parmigiani, Xiaoying Li and Michael Vasilyev
Photonics 2025, 12(3), 233; https://doi.org/10.3390/photonics12030233 - 4 Mar 2025
Viewed by 786
Abstract
Utilizing the phase-matching conditions of inter-modal four-wave mixing in an elliptical-core few-mode fiber supporting three non-degenerate modes, we experimentally demonstrate schemes for generating orbital-angular-momentum (OAM)-entangled photon pairs with high mode purity and for achieving highly mode-selective frequency conversion of beams in OAM-compatible (LP [...] Read more.
Utilizing the phase-matching conditions of inter-modal four-wave mixing in an elliptical-core few-mode fiber supporting three non-degenerate modes, we experimentally demonstrate schemes for generating orbital-angular-momentum (OAM)-entangled photon pairs with high mode purity and for achieving highly mode-selective frequency conversion of beams in OAM-compatible (LP11a, LP11b) mode basis. These techniques expand the toolbox for using OAM modes in both classical and quantum communications and information processing. Full article
(This article belongs to the Special Issue Progress in OAM Beams: Recent Innovations and Future Perspectives)
Show Figures

Figure 1

27 pages, 9816 KiB  
Article
Investigation of Geotechnical Seismic Isolation Systems Based on Recycled Tire Rubber–Sand Mixtures
by Doğan Sağlam and Murat Tonaroğlu
Appl. Sci. 2025, 15(4), 2133; https://doi.org/10.3390/app15042133 - 18 Feb 2025
Viewed by 888
Abstract
In geotechnical earthquake engineering, enhancing the seismic properties of foundation soil to modify the characteristics of earthquake waves transmitted to structures presents a viable solution. This study investigates the effect of placing an isolation layer, composed of a mixture of recycled tire rubber [...] Read more.
In geotechnical earthquake engineering, enhancing the seismic properties of foundation soil to modify the characteristics of earthquake waves transmitted to structures presents a viable solution. This study investigates the effect of placing an isolation layer, composed of a mixture of recycled tire rubber and sand, beneath structures to mitigate seismic forces acting on buildings situated on soil layers with high amplification potential. In other words, the role of a soil layer functioning as a seismic isolator is examined. To achieve this objective, the seismic behavior of building-type structures is analyzed through numerical simulations, supplemented by laboratory experiments available in the literature. The numerical analyses are performed in the frequency domain using the finite element method within a one-dimensional (1D) framework. To validate the feasibility of the proposed isolation layer based on parametric analysis results, comparisons are made with laboratory tests available. In the literature, seismic isolation applications with thicknesses ranging from 1 to 3 m resulted in reductions of 6.8% to 16.17% in response spectral accelerations measured at the surface, while improvements in Fourier amplitude ratios ranged between 12.03% and 13.98%. This approach aims to provide an economical and efficient solution for earthquake-resistant structures while simultaneously promoting sustainability by recycling waste tires, contributing both to environmental conservation and economic benefits. Full article
(This article belongs to the Special Issue Soil-Structure Interaction in Structural and Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 2840 KiB  
Article
Experimental Investigation of a Hybrid S-Band Amplifier Based on Two Parametric Wavelength Converters and an Erbium-Doped Fiber Amplifier
by Cheng Guo, Afshin Shamsshooli, Michael Vasilyev, Youichi Akasaka, Paparao Palacharla, Ryuichi Sugizaki and Shigehiro Takasaka
Photonics 2025, 12(2), 100; https://doi.org/10.3390/photonics12020100 - 23 Jan 2025
Viewed by 1074
Abstract
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation [...] Read more.
Multi-band optical communication presents a promising avenue for the significant enhancement of fiber-optic transmission capacity without incurring additional costs related to new cable deployment via the utilization of the bandwidth beyond the established C&L bands. However, a big challenge in its field implementation lies in the high cost and suboptimal performance of optical amplifiers, stemming from the underdeveloped state of rare-earth-doped fiber-optic amplifier technologies for these bands. Fiber-optic parametric amplifiers provide an alternative for wideband optical amplification, yet their low power efficiency limits their practical use in the field. In this paper, we study a hybrid optical amplifier that combines the excellent power efficiency of rare-earth-doped amplifiers with broadband wavelength conversion capability of parametric amplifiers. It uses wavelength converters to shift signals between the S- and L-bands, amplifying them with an L-band erbium-doped fiber amplifier, and converting them back to the S-band. We experimentally demonstrate such a hybrid S-band amplifier, characterize its performance with 16-QAM input signals, and evaluate its power efficiency and four-wave-mixing-induced crosstalk. This hybrid approach paves the way for scalable expansion of optical communication bands without waiting for advancements in rare-earth-doped amplifier technology. Full article
Show Figures

Figure 1

18 pages, 3781 KiB  
Article
A Multiscale Model to Assess Bridge Vulnerability Under Extreme Wave Loading
by Umberto De Maio, Fabrizio Greco, Paolo Lonetti and Paolo Nevone Blasi
J. Mar. Sci. Eng. 2024, 12(12), 2145; https://doi.org/10.3390/jmse12122145 - 25 Nov 2024
Cited by 1 | Viewed by 1001
Abstract
A multiscale model is proposed to assess the impact of wave loading on coastal or inland bridges. The formulation integrates various scales to examine the effects of flooding actions on fluid and structural systems, transitioning from global to local representation scales. The fluid [...] Read more.
A multiscale model is proposed to assess the impact of wave loading on coastal or inland bridges. The formulation integrates various scales to examine the effects of flooding actions on fluid and structural systems, transitioning from global to local representation scales. The fluid flow was modeled using a turbulent two-phase level set formulation, while the structural system employed the 3D solid mechanics theory. Coupling between subsystems was addressed through an FSI formulation using the ALE moving mesh methodology. The proposed model’s validity was confirmed through comparisons with numerical and experimental data from the literature. A parametric study was conducted on wave load characteristics associated with typical flood or tsunami scenarios. This included verifying the wave load formulas from existing codes or refined formulations found in the literature, along with assessing the dynamic amplification’s effects on key bridge design variables and the worst loading cases involving bridge uplift and horizontal forces comparable to those typically used in seismic actions. Furthermore, a parametric study was undertaken to examine fluid flow and bridge characteristics, such as bridge elevation, speed, inundation ratio, and bearing system typology. The proposed study aims to identify the worst-case scenarios for bridge deck vulnerability. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

26 pages, 416 KiB  
Perspective
Foundational Issues in Dynamical Casimir Effect and Analogue Features in Cosmological Particle Creation
by Jen-Tsung Hsiang and Bei-Lok Hu
Universe 2024, 10(11), 418; https://doi.org/10.3390/universe10110418 - 7 Nov 2024
Cited by 3 | Viewed by 1358
Abstract
Moving mirrors as analogue sources of Hawking radiation from black holes have been explored extensively but less so with cosmological particle creation (CPC), even though the analogy between the dynamical Casimir effect (DCE) and CPC based on the mechanism of the parametric amplification [...] Read more.
Moving mirrors as analogue sources of Hawking radiation from black holes have been explored extensively but less so with cosmological particle creation (CPC), even though the analogy between the dynamical Casimir effect (DCE) and CPC based on the mechanism of the parametric amplification of quantum field fluctuations has also been known for a long time. This ‘perspective’ essay intends to convey some of the rigor and thoroughness of quantum field theory in curved spacetime, which serves as the theoretical foundation of CPC, to DCE, which enjoys a variety of active experimental explorations. We have selected seven issues of relevance to address, starting from the naively simple ones, e.g., why one should be bothered with ‘curved’ spacetime when performing a laboratory experiment in ostensibly flat space, to foundational theoretical ones, such as the frequent appearance of nonlocal dissipation in the system dynamics induced by colored noises in its field environment, the existence of quantum Lenz law and fluctuation–dissipation relations in the backreaction effects of DCE emission on the moving atom/mirror or the source, and the construction of a microphysics model to account for the dynamical responses of a mirror or medium. The strengthening of the theoretical ground for DCE is not only useful for improving conceptual clarity but needed for the development of the proof-of-concept type of future experimental designs for DCE. The results from the DCE experiments in turn will enrich our understanding of quantum field effects in the early universe because they are, in the spirit of analogue gravity, our best hopes for the verification of these fundamental processes. Full article
(This article belongs to the Special Issue Quantum Physics including Gravity: Highlights and Novelties)
11 pages, 2736 KiB  
Article
Identification of Topographic Seismic Site Periods in Sloping Terrains
by Edgar Giovanny Diaz-Segura and Jorge Eduardo Oviedo-Veas
Appl. Sci. 2024, 14(17), 7506; https://doi.org/10.3390/app14177506 - 25 Aug 2024
Cited by 2 | Viewed by 1055
Abstract
The fundamental period of a terrain is a key parameter for characterizing the maximum soil amplification. Since the 1960s, research has been conducted for sloping terrains with a focus on evaluating topographic effects. However, few studies have focused on identifying whether the site [...] Read more.
The fundamental period of a terrain is a key parameter for characterizing the maximum soil amplification. Since the 1960s, research has been conducted for sloping terrains with a focus on evaluating topographic effects. However, few studies have focused on identifying whether the site topography induces an amplification peak that is associated with a characteristic period of sloping terrain. This study conducts a parametric analysis to identify a potential amplification pattern attributable to terrain geometry, using two-dimensional finite element models subjected to the action of a dynamic signal. The periods in which amplification peaks are generated are evaluated and compared with the amplification response recorded in the free field on horizontal terrain. The results reveal that the dynamic response of sloping terrain is a combination of the response from the surrounding terrain to the sloping zone and vice versa, and a distinctive amplification peak linked to the topography is identified. A new expression is proposed to define a topographic seismic site period in terms of shear wave velocity and the total soil thickness from the bedrock to the crest of sloping terrain. This study advances the processes of characterizing the seismic response of sloping terrains by demonstrating that the topographic seismic site period is consistent regardless of the slope angle. This provides engineers with a new dimension of analysis for the practical definition of criteria to determine topographic effects in design spectra. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering: Current Progress and Road Ahead)
Show Figures

Figure 1

Back to TopTop