Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing
Abstract
:1. Introduction
2. Model and System Hamiltonian
3. System Dynamics
4. Enhancement of Single-Photon Blockade Effect
5. Enhancement of Two-Photon Blockade Effect
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorsel, A.; McCullen, J.D.; Meystre, P.; Vignes, E.; Walther, H. Optical Bistability and Mirror Confinement Induced by Radiation Pressure. Phys. Rev. Lett. 1983, 51, 1550–1553. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Metcalfe, M. Applications of cavity optomechanics. Appl. Phys. Rev. 2014, 1, 031105. [Google Scholar] [CrossRef]
- Favero, I.; Karrai, K. Optomechanics of deformable optical cavities. Nat. Photon. 2009, 3, 201–205. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef]
- Raimond, J.M.; Brune, M.; Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 2001, 73, 565–582. [Google Scholar] [CrossRef]
- Wu, S.X.; Bai, C.H.; Li, G.; Yu, C.S.; Zhang, T. Quantum squeezing-induced quantum entanglement and EPR steering in a coupled optomechanical system. Opt. Express 2024, 32, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Asjad, M.; Zippilli, S.; Vitali, D. Mechanical Einstein-Podolsky-Rosen entanglement with a finite-bandwidth squeezed reservoir. Phys. Rev. A 2016, 93, 062307. [Google Scholar] [CrossRef]
- Weis, S.; Rivière, R.; Deléglise, S.; Gavartin, E.; Arcizet, O.; Schliesser, A.; Kippenberg, T.J. Optomechanically induced transparency. Science 2010, 330, 1520–1523. [Google Scholar] [CrossRef]
- Xiong, H.; Wu, Y. Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 2018, 5, 031305. [Google Scholar] [CrossRef]
- Karuza, M.; Biancofiore, C.; Bawaj, M.; Molinelli, C.; Galassi, M.; Natali, R.; Tombesi, P.; Di Giuseppe, G.; Vitali, D. Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 2013, 88, 013804. [Google Scholar] [CrossRef]
- Koppenhöfer, M.; Padgett, C.; Cady, J.V.; Dharod, V.; Oh, H.; Bleszynski Jayich, A.C.; Clerk, A.A. Single-Spin Readout and Quantum Sensing Using Optomechanically Induced Transparency. Phys. Rev. Lett. 2023, 130, 093603. [Google Scholar] [CrossRef]
- Imamoḡlu, A.; Schmidt, H.; Woods, G.; Deutsch, M. Strongly Interacting Photons in a Nonlinear Cavity. Phys. Rev. Lett. 1997, 79, 1467–1470. [Google Scholar] [CrossRef]
- Rebić, S.; Parkins, A.S.; Tan, S.M. Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency. Phys. Rev. A 2002, 65, 063804. [Google Scholar] [CrossRef]
- Gao, X.C.; Wu, X.J.; Bai, C.H.; Wu, S.X.; Yu, C.S. Photon blockade with a trapped Λ-type three-level atom in asymmetrical cavity. Opt. Express 2023, 31, 36796–36809. [Google Scholar] [CrossRef]
- Wu, S.X.; Gao, X.C.; Cheng, H.H.; Bai, C.H. Nonreciprocal photon blockade induced by parametric amplification in an asymmetrical cavity. Phys. Rev. A 2025, 111, 043714. [Google Scholar] [CrossRef]
- Huang, B.; Li, C.; Fan, B.; Duan, Z. Dissipation-Induced Photon Blockade in the Anti-Jaynes–Cummings Model. Photonics 2024, 11, 369. [Google Scholar] [CrossRef]
- Rempe, G.; Thompson, R.J.; Kimble, H.J.; Lalezari, R. Measurement of ultralow losses in an optical interferometer. Opt. Lett. 1992, 17, 363–365. [Google Scholar] [CrossRef]
- Tian, L.; Zoller, P. Coupled Ion-Nanomechanical Systems. Phys. Rev. Lett. 2004, 93, 266403. [Google Scholar] [CrossRef]
- Hensinger, W.K.; Utami, D.W.; Goan, H.S.; Schwab, K.; Monroe, C.; Milburn, G.J. Ion trap transducers for quantum electromechanical oscillators. Phys. Rev. A 2005, 72, 041405. [Google Scholar] [CrossRef]
- Vernooy, D.W.; Furusawa, A.; Georgiades, N.P.; Ilchenko, V.S.; Kimble, H.J. Cavity QED with high-Q whispering gallery modes. Phys. Rev. A 1998, 57, R2293–R2296. [Google Scholar] [CrossRef]
- Vučković, J.; Lončar, M.; Mabuchi, H.; Scherer, A. Design of photonic crystal microcavities for cavity QED. Phys. Rev. E 2001, 65, 016608. [Google Scholar] [CrossRef] [PubMed]
- Eichenfield, M.; Camacho, R.; Chan, J.; Vahala, K.J.; Painter, O. A picogram-and nanometre-scale photonic-crystal optomechanical cavity. Nature 2009, 459, 550–555. [Google Scholar] [CrossRef]
- Chan, J.; Eichenfield, M.; Camacho, R.; Painter, O. Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity. Opt. Express 2009, 17, 3802–3817. [Google Scholar] [CrossRef]
- Mitatha, S.; Pornsuwancharoen, N.; Yupapin, P.P. A Simultaneous Short-Wave and Millimeter-Wave Generation Using a Soliton Pulse Within a Nano-Waveguide. IEEE Photonics Technol. Lett. 2009, 21, 932–934. [Google Scholar] [CrossRef]
- Noual, A.; Pennec, Y.; Akjouj, A.; Djafari-Rouhani, B.; Dobrzynski, L. Nanoscale plasmon waveguide including cavity resonator. J. Phys. Condens. Mat. 2009, 21, 375301. [Google Scholar] [CrossRef] [PubMed]
- Genes, C.; Vitali, D.; Tombesi, P.; Gigan, S.; Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 2008, 77, 033804. [Google Scholar] [CrossRef]
- Mansouri, D.; Rezaie, B.; Ranjbar N, A.; Daeichian, A. Cavity-assisted coherent feedback cooling of a mechanical resonator to the ground-state in the unresolved sideband regime. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 165501. [Google Scholar] [CrossRef]
- Cohadon, P.F.; Heidmann, A.; Pinard, M. Cooling of a Mirror by Radiation Pressure. Phys. Rev. Lett. 1999, 83, 3174–3177. [Google Scholar] [CrossRef]
- Guo, J.; Norte, R.; Gröblacher, S. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State. Phys. Rev. Lett. 2019, 123, 223602. [Google Scholar] [CrossRef]
- Wang, X.; Vinjanampathy, S.; Strauch, F.W.; Jacobs, K. Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control. Phys. Rev. Lett. 2011, 107, 177204. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.L.; Otten, M.; Gray, S.K. Ground-state cooling enabled by critical coupling and dark entangled states. Phys. Rev. B 2019, 99, 014107. [Google Scholar] [CrossRef]
- Neuhauser, W.; Hohenstatt, M.; Toschek, P.; Dehmelt, H. Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well. Phys. Rev. Lett. 1978, 41, 233–236. [Google Scholar] [CrossRef]
- Leibrandt, D.R.; Labaziewicz, J.; Vuletić, V.; Chuang, I.L. Cavity Sideband Cooling of a Single Trapped Ion. Phys. Rev. Lett. 2009, 103, 103001. [Google Scholar] [CrossRef]
- Teufel, J.D.; Donner, T.; Li, D.; Harlow, J.W.; Allman, M.; Cicak, K.; Sirois, A.J.; Whittaker, J.D.; Lehnert, K.W.; Simmonds, R.W. Sideband cooling of micromechanical motion to the quantum ground state. Nature 2011, 475, 359–363. [Google Scholar] [CrossRef]
- Marquardt, F.; Chen, J.P.; Clerk, A.A.; Girvin, S.M. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion. Phys. Rev. Lett. 2007, 99, 093902. [Google Scholar] [CrossRef]
- Asjad, M.; Abari, N.E.; Zippilli, S.; Vitali, D. Optomechanical cooling with intracavity squeezed light. Opt. Express 2019, 27, 32427–32444. [Google Scholar] [CrossRef]
- Kiraz, A.; Atatüre, M.; Imamoğlu, A. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A 2004, 69, 032305. [Google Scholar] [CrossRef]
- An, J.H.; Feng, M.; Oh, C.H. Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 2009, 79, 032303. [Google Scholar] [CrossRef]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2018, 82, 016001. [Google Scholar] [CrossRef]
- Jennewein, T.; Barbieri, M.; White, A.G. Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis. J. Mod. Opt. 2011, 58, 276–287. [Google Scholar] [CrossRef]
- Hartmann, M.J. Quantum simulation with interacting photons. J. Opt. 2016, 18, 104005. [Google Scholar] [CrossRef]
- Cerf, N.J.; Adami, C.; Kwiat, P.G. Optical simulation of quantum logic. Phys. Rev. A 1998, 57, R1477–R1480. [Google Scholar] [CrossRef]
- Hamsen, C.; Tolazzi, K.N.; Wilk, T.; Rempe, G. Two-Photon Blockade in an Atom-Driven Cavity QED System. Phys. Rev. Lett. 2017, 118, 133604. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.J.; Gong, S.Q. Two-photon blockade generated and enhanced by mechanical squeezing. Phys. Rev. A 2021, 103, 043509. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Shen, H.Z.; Yi, X.X. Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A 2015, 92, 023838. [Google Scholar] [CrossRef]
- Wu, Q.C.; Zhang, X.Y.; Wang, Y.M.; Liu, T.; Zhou, Y.H.; Shen, H.Z.; Yang, C.P. Two-photon blockade with second-order nonlinearity in cavity systems. Int. J. Theor. Phys. 2022, 61, 21. [Google Scholar] [CrossRef]
- Ferretti, S.; Gerace, D. Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys. Rev. B 2012, 85, 033303. [Google Scholar] [CrossRef]
- Peyronel, T.; Firstenberg, O.; Liang, Q.Y.; Hofferberth, S.; Gorshkov, A.V.; Pohl, T.; Lukin, M.D.; Vuletić, V. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 2012, 488, 57–60. [Google Scholar] [CrossRef]
- Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S.L.; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E.; Song, J.; et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 2015, 6, 8655. [Google Scholar] [CrossRef]
- Ren, Y.; Duan, S.; Xie, W.; Shao, Y.; Duan, Z. Antibunched photon-pair source based on photon blockade in a nondegenerate optical parametric oscillator. Phys. Rev. A 2021, 103, 053710. [Google Scholar] [CrossRef]
- Claudon, J.; Bleuse, J.; Malik, N.S.; Bazin, M.; Jaffrennou, P.; Gregersen, N.; Sauvan, C.; Lalanne, P.; Gérard, J.M. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 2010, 4, 174–177. [Google Scholar] [CrossRef]
- Husko, C.A.; Clark, A.S.; Collins, M.J.; De Rossi, A.; Combrié, S.; Lehoucq, G.; Rey, I.H.; Krauss, T.F.; Xiong, C.; Eggleton, B.J. Multi-photon absorption limits to heralded single photon sources. Sci. Rep. 2013, 3, 3087. [Google Scholar] [CrossRef] [PubMed]
- Zasedatelev, A.V.; Baranikov, A.V.; Sannikov, D.; Urbonas, D.; Scafirimuto, F.; Shishkov, V.Y.; Andrianov, E.S.; Lozovik, Y.E.; Scherf, U.; Stöferle, T.; et al. Single-photon nonlinearity at room temperature. Nature 2021, 597, 493–497. [Google Scholar] [CrossRef]
- Hloušek, J.; Straka, I.; Ježek, M. Experimental observation of anomalous supralinear response of single-photon detectors. Appl. Phys. Rev. 2023, 10, 011412. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Liu, T.; Su, Q.P.; Zhang, X.Y.; Wu, Q.C.; Chen, D.X.; Shi, Z.C.; Shen, H.Z.; Yang, C.P. Universal Photon Blockade. Phys. Rev. Lett. 2025, 134, 183601. [Google Scholar] [CrossRef]
- Collett, M.J.; Gardiner, C.W. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 1984, 30, 1386–1391. [Google Scholar] [CrossRef]
- Wu, L.A.; Xiao, M.; Kimble, H.J. Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 1987, 4, 1465–1475. [Google Scholar] [CrossRef]
- Lü, X.Y.; Wu, Y.; Johansson, J.R.; Jing, H.; Zhang, J.; Nori, F. Squeezed Optomechanics with Phase-Matched Amplification and Dissipation. Phys. Rev. Lett. 2015, 114, 093602. [Google Scholar] [CrossRef]
- Wang, D.Y.; Yan, L.L.; Su, S.L.; Bai, C.H.; Wang, H.F.; Liang, E. Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator. Opt. Express 2023, 31, 22343–22357. [Google Scholar] [CrossRef]
- Shen, H.Z.; Wang, Q.; Wang, J.; Yi, X.X. Nonreciprocal unconventional photon blockade in a driven dissipative cavity with parametric amplification. Phys. Rev. A 2020, 101, 013826. [Google Scholar] [CrossRef]
- Bai, C.H.; Wang, D.Y.; Zhang, S.; Liu, S.; Wang, H.F. Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photon. Res. 2019, 7, 1229–1239. [Google Scholar] [CrossRef]
- Wu, S.X.; Bai, C.H.; Li, G.; Yu, C.S.; Zhang, T. Enhancing the quantum entanglement and EPR steering of a coupled optomechanical system with a squeezed vacuum field. J. Opt. Soc. Am. B 2023, 40, 2885–2893. [Google Scholar] [CrossRef]
- Gan, J.H.; Liu, Y.C.; Lu, C.; Wang, X.; Tey, M.K.; You, L. Intracavity-Squeezed Optomechanical Cooling. Laser Photonics Rev. 2019, 13, 1900120. [Google Scholar] [CrossRef]
- Xie, H.; He, L.W.; Shang, X.; Lin, X.M. Photon Blockade in Cavity Optomechanics via Parametric Amplification. Adv. Quantum Technol. 2024, 7, 2400065. [Google Scholar] [CrossRef]
- Xie, H.; He, L.W.; Shang, X.; Lin, X.M. Phonon Blockade in A Squeezed Cavity Optomechanical System. Adv. Quantum Technol. 2024, 7, 2300239. [Google Scholar] [CrossRef]
- Lemonde, M.A.; Didier, N.; Clerk, A.A. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nat. Commun. 2016, 7, 11338. [Google Scholar] [CrossRef]
- Peano, V.; Schwefel, H.G.L.; Marquardt, C.; Marquardt, F. Intracavity Squeezing Can Enhance Quantum-Limited Optomechanical Position Detection through Deamplification. Phys. Rev. Lett. 2015, 115, 243603. [Google Scholar] [CrossRef]
- Lau, H.K.; Clerk, A.A. Ground-State Cooling and High-Fidelity Quantum Transduction via Parametrically Driven Bad-Cavity Optomechanics. Phys. Rev. Lett. 2020, 124, 103602. [Google Scholar] [CrossRef]
- Li, M.; Pernice, W.H.P.; Tang, H.X. Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides. Phys. Rev. Lett. 2009, 103, 223901. [Google Scholar] [CrossRef]
- Yang, P.; Xia, X.; He, H.; Li, S.; Han, X.; Zhang, P.; Li, G.; Zhang, P.; Xu, J.; Yang, Y.; et al. Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity. Phys. Rev. Lett. 2019, 123, 233604. [Google Scholar] [CrossRef] [PubMed]
- Pirkkalainen, J.M.; Cho, S.; Massel, F.; Tuorila, J.; Heikkilä, T.; Hakonen, P.; Sillanpää, M. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 2015, 6, 6981. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Benito, M.; Putz, S.; Zajac, D.M.; Taylor, J.M.; Burkard, G.; Petta, J.R. A coherent spin–photon interface in silicon. Nature 2018, 555, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.C.; Zhang, J.Q.; Xiao, Y.; Feng, M.; Zhang, Z.M. Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A 2014, 90, 043825. [Google Scholar] [CrossRef]
- Ullah, K.; Jing, H.; Saif, F. Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanics. Phys. Rev. A 2018, 97, 033812. [Google Scholar] [CrossRef]
- Bai, C.H.; Wang, D.Y.; Zhang, S.; Liu, S.; Wang, H.F. Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation. Phys. Rev. A 2021, 103, 033508. [Google Scholar] [CrossRef]
- Sarma, B.; Sarma, A.K. Tunable phonon blockade in weakly nonlinear coupled mechanical resonators via Coulomb interaction. Sci. Rep. 2018, 8, 14583. [Google Scholar] [CrossRef]
- DeJesus, E.X.; Kaufman, C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 1987, 35, 5288–5290. [Google Scholar] [CrossRef]
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Wang, Y.; Wu, J.L.; Han, J.X.; Xia, Y.; Jiang, Y.Y.; Song, J. Enhanced Phonon Blockade in a Weakly Coupled Hybrid System via Mechanical Parametric Amplification. Phys. Rev. Appl. 2022, 17, 024009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Tong, J.-L.; Bai, S.; Wu, S.-X.; Bai, C.-H. Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing. Photonics 2025, 12, 628. https://doi.org/10.3390/photonics12070628
Hao Y, Tong J-L, Bai S, Wu S-X, Bai C-H. Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing. Photonics. 2025; 12(7):628. https://doi.org/10.3390/photonics12070628
Chicago/Turabian StyleHao, Yue, Jia-Le Tong, Suying Bai, Shao-Xiong Wu, and Cheng-Hua Bai. 2025. "Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing" Photonics 12, no. 7: 628. https://doi.org/10.3390/photonics12070628
APA StyleHao, Y., Tong, J.-L., Bai, S., Wu, S.-X., & Bai, C.-H. (2025). Enhancement of Photon Blockade Under the Joint Effect of Optical Parametric Amplification and Mechanical Squeezing. Photonics, 12(7), 628. https://doi.org/10.3390/photonics12070628