Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = PV-TE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 673 KB  
Article
Advanced Energy Collection and Storage Systems: Socio-Economic Benefits and Environmental Effects in the Context of Energy System Transformation
by Alina Yakymchuk, Bogusława Baran-Zgłobicka and Russell Matia Woruba
Energies 2026, 19(2), 309; https://doi.org/10.3390/en19020309 - 7 Jan 2026
Abstract
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal [...] Read more.
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal (PV/T) hybrid systems, advanced batteries, hydrogen-based storage, and thermal energy storage (TES). Through a mixed-methods approach combining techno-economic analysis, macroeconomic modeling, and policy review, we evaluate the cost trajectories, performance indicators, and deployment impacts of these technologies across major economies. The paper also introduces a novel economic-mathematical model to quantify the long-term macroeconomic benefits of large-scale ECSS deployment, including GDP growth, job creation, and import substitution effects. Our results indicate significant cost reductions for ECSS by 2050, with battery storage costs projected to fall below USD 50 per kilowatt-hour (kWh) and green hydrogen production reaching as low as USD 1.2 per kilogram. Large-scale ECSS deployment was found to reduce electricity costs by up to 12%, lower fossil fuel imports by up to 25%, and generate substantial GDP growth and job creation, particularly in regions with supportive policy frameworks. Comparative cross-country analysis highlighted regional differences in economic effects, with the European Union, China, and the United States demonstrating the highest economic gains from ECSS adoption. The study also identified key challenges, including high capital costs, material supply risks, and regulatory barriers, emphasizing the need for integrated policies to accelerate ECSS deployment. These findings provide valuable insights for policymakers, industry stakeholders, and researchers aiming to design effective strategies for enhancing energy security, economic resilience, and environmental sustainability through advanced energy storage technologies. Full article
(This article belongs to the Special Issue Energy Economics and Management, Energy Efficiency, Renewable Energy)
Show Figures

Figure 1

39 pages, 2355 KB  
Review
Life-Cycle Assessment of Innovative Industrial Processes for Photovoltaic Production: Process-Level LCIs, Scale-Up Dynamics, and Recycling Implications
by Kyriaki Kiskira, Nikitas Gerolimos, Georgios Priniotakis and Dimitrios Nikolopoulos
Appl. Sci. 2026, 16(1), 501; https://doi.org/10.3390/app16010501 - 4 Jan 2026
Viewed by 99
Abstract
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module [...] Read more.
The rapid commercialization of next-generation photovoltaic (PV) technologies, particularly perovskite, thin-film roll-to-roll (R2R) architectures, and tandem devices, requires robust assessment of environmental performance at the level of industrial manufacturing processes. Environmental impacts can no longer be evaluated solely at the device or module level. Although many life-cycle assessment (LCA) studies compare silicon, cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite technologies, most rely on aggregated indicators and database-level inventories. Few studies systematically compile and harmonize process-level life-cycle inventories (LCIs) for the manufacturing steps that differentiate emerging industrial routes, such as solution coating, R2R processing, atomic layer deposition, low-temperature annealing, and advanced encapsulation–metallization strategies. In addition, inconsistencies in functional units, system boundaries, electricity-mix assumptions, and scale-up modeling continue to limit meaningful cross-study comparison. To address these gaps, this review (i) compiles and critically analyzes process-resolved LCIs for innovative PV manufacturing routes across laboratory, pilot, and industrial scales; (ii) quantifies sensitivity to scale-up, yield, throughput, and electricity carbon intensity; and (iii) proposes standardized methodological rules and open-access LCI templates to improve reproducibility, comparability, and integration with techno-economic and prospective LCA models. The review also synthesizes current evidence on recycling, circularity, and critical-material management. It highlights that end-of-life (EoL) benefits for emerging PV technologies are highly conditional and remain less mature than for crystalline-silicon systems. By shifting the analytical focus from technology class to manufacturing process and life-cycle configuration, this work provides a harmonized evidence base to support scalable, circular, and low-carbon industrial pathways for next-generation PV technologies. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Sustainable Materials Manufacturing)
Show Figures

Graphical abstract

23 pages, 2667 KB  
Article
Impact of Bottle Type and Gelatin-Based Film Strips with Ethyl Sinapate on Oxidative Status and Antioxidant Properties of Cold-Pressed Rapeseed Oil
by Dobrochna Rabiej-Kozioł, Alicja Tymczewska and Aleksandra Szydłowska-Czerniak
Foods 2026, 15(1), 46; https://doi.org/10.3390/foods15010046 - 23 Dec 2025
Viewed by 298
Abstract
Cold-pressed rapeseed oil aligns well with the trend of growing demand for minimally processed, health-promoting food products. It is essential to identify suitable storage conditions that protect cold-pressed rapeseed oil from oxidation, thereby extending its shelf life. In this study, the effect of [...] Read more.
Cold-pressed rapeseed oil aligns well with the trend of growing demand for minimally processed, health-promoting food products. It is essential to identify suitable storage conditions that protect cold-pressed rapeseed oil from oxidation, thereby extending its shelf life. In this study, the effect of gelatin/polyvinyl alcohol film strips enriched with ethyl sinapate (GPE) and immersed in cold-pressed rapeseed oil samples was evaluated during an accelerated storage test (14 days at 40 ± 1 °C under light (power of luminous flux = 385 lm). The influence of bottle type differing in shape (Marasca and Dorica) and glass colour (amber and clear) was also assessed. The incorporation of GPE into the stored oils enhanced their antioxidant activity (AA) determined by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS = 1956.78–2334.10 µmol Trolox (TE)/100 g), 2,2-diphenyl-1-picrylhydrazyl (DPPH = 528.29–691.19 µmol TE/100 g), ferric reducing antioxidant power methods (FRAP = 454.14–511.61 µmol TE/100 g) and total phenolic content (TPC = 41.62–47.25 mg sinapic acid (SA)/100 g) compared to oils without film strips (ABTS = 1217.89 –1422.80 µmol TE/100 g, DPPH = 376.85–464.13 µmol TE/100 g, FRAP = 98.28–126.40 µmol TE/100 g and TPC = 6.38–8.02 mg SA/100 g) after first week of storage and confirmed the effective gradual release of ethyl sinapate from films to oils during two weeks of accelerated storage (ABTS = 2064.80–3086.47 µmol TE/100 g, DPPH = 597.11–854.37 µmol TE/100 g, FRAP =428.00–599.76 µmol TE/100 g, and TPC = 35.02–57.19 mg SA/100 g). Moreover, the GPE inhibited oil deterioration by reducing both primary (peroxide value (PV) = 3.75–5.11 meq O2/kg and 3.64–4.89 meq O2/kg, K232 = 1.236–1.494 and 1.551–1.675 after the first and second week of storage, respectively) and secondary oxidation products (anisidine value (pAnV) = 1.03–1.16 and 1.08–1.61; K268 = 0.102–0.170 and 0.185–0.237 after the first and second week of storage, respectively) compared to oxidative status of oils without film strips (PV = 3.76–5.59 meq O2/kg, K232 = 1.452–1.828, pAnV = 0.85–2.27, K268 = 0.154–0.263). In addition, synchronous fluorescence spectroscopy was applied to monitor changes in the main fluorescent components of the studied oils. Overall, the use of a dark glass bottle combined with antioxidant film strips proved to be an effective strategy for prolonging the shelf life of cold-pressed rapeseed oil. Full article
(This article belongs to the Special Issue Preservation and Shelf Life Extension of Food Products)
Show Figures

Figure 1

30 pages, 3727 KB  
Article
A Novel Model Chain for Analysing the Performance of Vehicle Integrated Photovoltaic (VIPV) Systems
by Hamid Samadi, Guido Ala, Miguel Centeno Brito, Marzia Traverso, Silvia Licciardi, Pietro Romano and Fabio Viola
World Electr. Veh. J. 2025, 16(11), 619; https://doi.org/10.3390/wevj16110619 - 13 Nov 2025
Viewed by 511
Abstract
This study proposes a novel framework for analyzing Vehicle-Integrated Photovoltaic (VIPV) systems, integrating optical, thermal, and electrical models. The model modifies existing fixed PV methodologies for VIPV applications to assess received irradiance, PV module temperature, and energy production, and is available as an [...] Read more.
This study proposes a novel framework for analyzing Vehicle-Integrated Photovoltaic (VIPV) systems, integrating optical, thermal, and electrical models. The model modifies existing fixed PV methodologies for VIPV applications to assess received irradiance, PV module temperature, and energy production, and is available as an open-source MATLAB tool (VIPVLIB) enabling simulations via a smartphone. A key innovation is the integration of meteorological data and real-time driving, dynamically updating vehicle position and orientation every second. Different time resolutions were explored to balance accuracy and computational efficiency for optical model, while the thermal model, enhanced by vehicle speed, wind effects, and thermal inertia, improved temperature and power predictions. Validation on a minibus operating within the University of Palermo campus confirmed the applicability of the proposed framework. The roof received 45–47% of total annual irradiation, and the total yearly energy yield reached about 4.3 MWh/Year for crystalline-silicon, 3.7 MWh/Year for CdTe, and 3.1 MWh/Year for CIGS, with the roof alone producing up to 2.1 MWh/Year (c-Si). Under hourly operation, the generated solar energy was sufficient to fully meet daily demand from April to August, while during continuous operation it supplied up to 60% of total consumption. The corresponding CO2-emission reduction ranged from about 3.5 ton/Year for internal-combustion vehicles to around 2 ton/Year for electric ones. The framework provides a structured, data-driven approach for VIPV analysis, capable of simulating dynamic optical, thermal, and electrical behaviors under actual driving conditions. Its modular architecture ensures both immediate applicability and long-term adaptability, serving as a solid foundation for advanced VIPV design, fleet-scale optimization, and sustainability-oriented policy assessment. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

25 pages, 6186 KB  
Article
Comparative Analysis of Battery and Thermal Energy Storage for Residential Photovoltaic Heat Pump Systems in Building Electrification
by Mingzhe Liu, Wei-An Chen, Yuan Gao and Zehuan Hu
Sustainability 2025, 17(21), 9497; https://doi.org/10.3390/su17219497 - 25 Oct 2025
Viewed by 1622
Abstract
Buildings with electrified heat pump systems, onsite photovoltaic (PV) generation, and energy storage offer strong potential for demand flexibility. This study compares two storage configurations, thermal energy storage (TES) and battery energy storage (BESS), to evaluate their impact on cooling performance and cost [...] Read more.
Buildings with electrified heat pump systems, onsite photovoltaic (PV) generation, and energy storage offer strong potential for demand flexibility. This study compares two storage configurations, thermal energy storage (TES) and battery energy storage (BESS), to evaluate their impact on cooling performance and cost savings. A Model Predictive Control (MPC) framework was developed to optimize system operations, aiming to minimize costs while maintaining occupant comfort. Results show that both configurations achieve substantial savings relative to a baseline. The TES system reduces daily operating costs by about 50%, while the BESS nearly eliminates them (over 90% reduction) and cuts grid electricity use by more than 65%. The BESS achieves superior performance because it can serve both the controllable heating, ventilation, and air conditioning (HVAC) system and the home’s broader electrical loads, thereby maximizing PV self-consumption. In contrast, the TES primarily influences the thermal load. These findings highlight that the choice between thermal and electrical storage greatly affects system outcomes. While the BESS provides a more comprehensive solution for whole-home energy management by addressing all electrical demands, further techno-economic evaluation is needed to assess the long-term feasibility and trade-offs of each configuration. Full article
Show Figures

Figure 1

23 pages, 1371 KB  
Article
Impact of Whole Cereal–Pulse Flours on the Functionality and Antioxidant Properties of Gluten-Free Extruded Flours
by Franz J. Chuqui-Paulino, Davy W. Hidalgo Chávez, José L. Ramírez Ascheri, Caroline Grassi Mellinger, Jhony W. Vargas-Solorzano and Carlos W. Piler Carvalho
Foods 2025, 14(20), 3515; https://doi.org/10.3390/foods14203515 - 15 Oct 2025
Viewed by 1117
Abstract
Extruded whole flours from blends of cereals and pulses have great potential to be key ingredients in the development of more innovative gluten-free products, both from a technological and nutritional perspective. The objective of this work was to obtain pre-cooked flours from four [...] Read more.
Extruded whole flours from blends of cereals and pulses have great potential to be key ingredients in the development of more innovative gluten-free products, both from a technological and nutritional perspective. The objective of this work was to obtain pre-cooked flours from four formulations based on blends of whole cereals (PR: parboiled brown rice; PM: pearl millet) and pulses (CP: chickpea; CB: common bean). CB was fixed at 10%, and the other components (PR-PM-CP) were set at 60-15-15 (F1), 15-60-15 (F2), 15-15-60 (F3), and 30-30-30 (F4), which were extruded at two combined conditions of feed moisture and screw speed: mild E1 (30% and 300 rpm) and severe E2 (18% and 600 rpm). The temperature profile was kept constant from 25 to 130 °C (from feed to output). The protein, dietary fiber, and ash contents in the raw formulations varied from 11.2 to 17.4%, 9.8 to 15.0%, and 2.2 to 3.3%, respectively, according to the low or high pulse content in the blend. As more mechanical energy was delivered to the raw formulations (W·h/kg, 63.7 for E1 and 179.4 for E2), the extruded particles had increased water absorption (g/g) from 1.7 to 4.5 (E1) or 3.8 (E2), increased water solubility due to E2 from 10.9 to 20.9%, and decreased oil absorption (g/g) from 1.5 to 0.9 (E1 and E2). The peak viscosity (PV, cP) was noticeable only in the raw formulation F2 (355), which decreased 10.3% due to E1. In the other formulations, PV appeared due to E1 in F1 (528), F3 (420), and F4 (371), while it disappeared due to E2 in all formulations. However, at the E2 condition, they did show cold viscosity in the initial stage (222 to 394 cP). The final viscosity (FV, cP) decreased from 795 to 390 (E1) or 123 (E2). In F2, the contents of phenolic compounds (285 µg GAE/g) and ABTS+ (13.2 μmol TE/g) were more than twice that in the other formulations, and their respective degradations were low due to E1 (4.2 and 12%) and high due to E2 (16 and 17%). Extrusion cooking did not cause significant changes in the luminosity (81) and redness (0.9) of particles, while yellowness increased from 15.7 to 18.2 (E1) or 18.7 (E2). Based on these findings, it is concluded that both extrusion conditions improved the technological and functional properties. Regarding the formulations, F2 stood out for being rich in antioxidant capacity, which poorly degraded under the conditions studied. Further work is needed to contribute to understanding the optimization of formulas and processes that would improve the nutritional, sensorial, and functional properties while still preserving the bioactive value of the final products. Full article
Show Figures

Graphical abstract

19 pages, 8019 KB  
Article
Experimental Comparison of Water-Based Cooling Methods for PV Modules in Tropical Conditions
by Nam Quyen Nguyen, Hristo Ivanov Beloev, Huy Bich Nguyen and Van Lanh Nguyen
Energies 2025, 18(19), 5054; https://doi.org/10.3390/en18195054 - 23 Sep 2025
Viewed by 3135
Abstract
It is well known that temperature strongly affects the photovoltaic (PV) performance. Raising the working temperature leads to a significant decrease in PV output of the power capacity, and it also lowers power conversion efficiency. This issue is highly important for the PV [...] Read more.
It is well known that temperature strongly affects the photovoltaic (PV) performance. Raising the working temperature leads to a significant decrease in PV output of the power capacity, and it also lowers power conversion efficiency. This issue is highly important for the PV systems operating in tropical climate areas such as southern Viet Nam. Developing the cooling methods applied for reducing the PV module temperature might be the solution to this problem and has attracted many researchers and industrial sectors. However, the existing research might not sufficiently address the comparative evaluation of multiple active water-based cooling methods on power conservation efficiency, power output, and cost implications under high-temperature conditions in tropical areas. This study is a case study that aims at conducting some experimental investigations for active water-based cooling methods applied to PV modules in Ho Chi Minh City, South Viet Nam. There are four active water-based cooling methods, including the spraying liquid method (SL), the dripping droplet method (DD), tube heat exchanger method (TE), and the liquid flowing on the PV surface method (LF), that have been developed and experimentally investigated. The voltage, current, temperature, and humidity of the PV cells have been automatically recorded in every one-minute interval via sensors and electronic devices. The experimental results indicate that the surface temperature, the power conversion efficiency, and the output power of PV module are developed toward the useful and positive direction with four cooling methods. In detail, the SL is the best one, in which it leads the PV temperature to reduce from 52 °C to 34–35 °C, the output power increases up to 6.3%, its power conversion efficiency improves up to 2%, while the water flow rate is at its lowest with 0.65 L/min. Similarly, LF also creates results that are similar to SL, but it needs a higher amount of cooling water, which is up to 3.27 L/min. The other methods, like DD and TE, have less power conversion efficiency compared to the SL; it improves only around 1 to 1.3%. These results might be useful for improving the benefits of PV power generation in some tropical regions and contributing to the green energy development in the world. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 3839 KB  
Article
Optimization of Energy Consumption and Light Environment for Three-Domain Division Cadmium Telluride Photovoltaic Windows Based on Entropy Weight–TOPSIS
by Hong-Xia Yang, Chun-Yan He, Xue-Rui Wang and Hai Zheng
Buildings 2025, 15(18), 3296; https://doi.org/10.3390/buildings15183296 - 12 Sep 2025
Viewed by 586
Abstract
To address the limitations of traditional cadmium telluride (CdTe) photovoltaic (PV) windows in comprehensively considering overall building energy consumption, indoor lighting comfort, and outdoor visibility, this study proposes a three-domain division CdTe PV window design, which divides the window into three areas, each [...] Read more.
To address the limitations of traditional cadmium telluride (CdTe) photovoltaic (PV) windows in comprehensively considering overall building energy consumption, indoor lighting comfort, and outdoor visibility, this study proposes a three-domain division CdTe PV window design, which divides the window into three areas, each undertaking different functions. This study utilized the Energy Plus 9.3.0 software and Radiance 1.6.0 software for numerical simulation to explore the impact of different design parameters (such as coverage rate and arrangement mode of PV) of the three-domain division PV windows on building energy consumption and the proportion of indoor effective natural lighting (UDI300lx–2000lx) in single-story office buildings in Yan’an. Additionally, this study employed the entropy weight–TOPSIS method to conduct a comprehensive evaluation of 84 schemes. The results indicate that both the coverage rate and the arrangement mode of PV significantly influence building energy-saving and indoor lighting environment. The energy-saving rate initially increases and then decreases with higher PV coverage, while UDI300lx–2000lx generally exhibits an upward trend and slightly decreases later. The V3-V1 or H3-V1 arrangement mode demonstrates superior energy-saving performance, whereas the H3-V1 or V3-H1 arrangement mode provides better indoor lighting comfort. The evaluation weights for energy-saving rate and effective daylighting are 0.38 and 0.62, respectively. Based on the comprehensive evaluation, the optimal configuration is determined to be V1-90%-V2-10%-H3-90%, achieving an energy-saving rate of 11.1% and a UDI300lx–2000lx value of 56.95%. Full article
(This article belongs to the Special Issue Advanced Technologies in Building Energy Saving and Carbon Reduction)
Show Figures

Figure 1

17 pages, 5466 KB  
Article
Research on Photovoltaic Power Stations and Energy Storage Capacity Planning for a Multi-Energy Complementary System Considering a Combined Cycle of Gas Turbine Unit for Seasonal Load Demand
by Yongneng Ding, Yuxuan Lu, Weitao Yi, Yan Huang and Xi Zhu
Processes 2025, 13(9), 2897; https://doi.org/10.3390/pr13092897 - 10 Sep 2025
Viewed by 529
Abstract
Multi-energy systems could utilize the complementary characteristics of heterogeneous energy to improve operational flexibility and energy efficiency. However, seasonal fluctuations and uncertainty of load would have a great influence on the effectiveness of the system planning scheme. Regarding this issue, this paper proposes [...] Read more.
Multi-energy systems could utilize the complementary characteristics of heterogeneous energy to improve operational flexibility and energy efficiency. However, seasonal fluctuations and uncertainty of load would have a great influence on the effectiveness of the system planning scheme. Regarding this issue, this paper proposes a photovoltaic power (PV) station and thermal energy storage (TES) capacity planning model with considering the electrical load uncertainty based on a stochastic optimization method. And four-season load demand scenarios are built by Generative Adversarial Networks (GANs). At last, the proposed capacity configuration model is tested in a case study, and the results show the influence of seasonal fluctuations in load, scenario number, and TES capacity. Full article
Show Figures

Figure 1

20 pages, 1743 KB  
Article
Deep Reinforcement Learning Approaches the MILP Optimum of a Multi-Energy Optimization in Energy Communities
by Vinzent Vetter, Philipp Wohlgenannt, Peter Kepplinger and Elias Eder
Energies 2025, 18(17), 4489; https://doi.org/10.3390/en18174489 - 23 Aug 2025
Cited by 2 | Viewed by 1740
Abstract
As energy systems transition toward high shares of variable renewable generation, local energy communities (ECs) are increasingly relevant for enabling demand-side flexibility and self-sufficiency. This shift is particularly evident in the residential sector, where the deployment of photovoltaic (PV) systems is rapidly growing. [...] Read more.
As energy systems transition toward high shares of variable renewable generation, local energy communities (ECs) are increasingly relevant for enabling demand-side flexibility and self-sufficiency. This shift is particularly evident in the residential sector, where the deployment of photovoltaic (PV) systems is rapidly growing. While mixed-integer linear programming (MILP) remains the standard for operational optimization and demand response in such systems, its computational burden limits scalability and responsiveness under real-time or uncertain conditions. Reinforcement learning (RL), by contrast, offers a model-free, adaptive alternative. However, its application to real-world energy system operation remains limited. This study explores the application of a Deep Q-Network (DQN) to a real residential EC, which has received limited attention in prior work. The system comprises three single-family homes sharing a centralized heating system with a thermal energy storage (TES), a PV installation, and a grid connection. We compare the performance of MILP and RL controllers across economic and environmental metrics. Relative to a reference scenario without TES, MILP and RL reduce energy costs by 10.06% and 8.78%, respectively, and both approaches yield lower total energy consumption and CO2-equivalent emissions. Notably, the trained RL agent achieves a near-optimal outcome while requiring only 22% of the MILP’s computation time. These results demonstrate that DQNs can offer a computationally efficient and practically viable alternative to MILP for real-time control in residential energy systems. Full article
(This article belongs to the Special Issue Smart Energy Management and Sustainable Urban Communities)
Show Figures

Figure 1

18 pages, 4612 KB  
Article
Nanostructured Higher Manganese Silicide Thermoelectrics Developed by Mechanical Alloying Using High-Purity and Recycled Silicon
by Panagiotis Mangelis, Kostas Georgiou, Panagiotis Savva Ioannou, Savvas Hadjipanteli, Anne-Karin Søiland and Theodora Kyratsi
Nanomaterials 2025, 15(16), 1286; https://doi.org/10.3390/nano15161286 - 21 Aug 2025
Cited by 2 | Viewed by 1276
Abstract
Mechanical alloying (MA) has been proven to be an energy-efficient synthetic route for the development of high-performance thermoelectric (TE) materials. Higher Manganese Silicide (HMS) phases of the general formula Mn(Si1−xAlx)1.75 (0 ≤ x ≤ 0.05) were prepared by [...] Read more.
Mechanical alloying (MA) has been proven to be an energy-efficient synthetic route for the development of high-performance thermoelectric (TE) materials. Higher Manganese Silicide (HMS) phases of the general formula Mn(Si1−xAlx)1.75 (0 ≤ x ≤ 0.05) were prepared by MA implementing a short-time ball-milling process. Powder XRD and SEM analysis were carried out to validate the HMS phases, while small amounts of the secondary phase, MnSi, were also identified, especially for the Al-doped products. Electrical transport properties measurements showed that Al substitution causes an effective hole doping. A remarkable increase in electrical conductivity is observed for the Al-doped phases, while the corresponding reduction in the Seebeck coefficient is indicative of the increase in carrier density. Despite the small percentages of MnSi detected in Al-doped phases, an improvement in TE efficiency is achieved in the series Mn(Si1−xAlx)1.75 (0 ≤ x ≤ 0.05). The 2.5% Al-doped phase exhibits a maximum figure-of-merit (ZT) of 0.43 at 773 K. Moreover, in an effort to utilize recycled silicon byproducts from photovoltaic (PV) manufacturing, Al-doped phases are developed by MA using two types of Si kerf. The two kerf-based products exhibit lower TE efficiencies, due to the increased amounts of the metallic MnSi phase. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

40 pages, 1622 KB  
Review
A Review of Phase-Change Material-Based Thermal Batteries for Sustainable Energy Storage of Solar Photovoltaic Systems Coupled to Heat Pumps in the Building Sector
by Shafquat Rana and Joshua M. Pearce
Energies 2025, 18(13), 3265; https://doi.org/10.3390/en18133265 - 22 Jun 2025
Viewed by 3352
Abstract
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is [...] Read more.
Buildings account for about a third of global energy and it is thus imperative to eliminate the use of fossil fuels to power and provide for their thermal needs. Solar photovoltaic (PV) technology can provide power and with electrification, heating/cooling, but there is often a load mismatch with the intermittent solar supply. Electric batteries can overcome this challenge at high solar penetration rates but are still capital-intensive. A promising solution is thermal energy storage (TES), which has a low cost per unit of energy. This review provides an in-depth analysis of TES but specifically focuses on phase change material (PCM)-based TES, and its significance in the building sector. The classification, characterization, properties, applications, challenges, and modeling of PCM-TES are detailed. Finally, the potential for integrating TES with PV and heat pump (HP) technologies to decarbonize the residential sector is detailed. Although many studies show proof of carbon reduction for the individual and coupled systems, the integration of PV+HP+PCM-TES systems as a whole unit has not been developed to achieve carbon neutrality and facilitate net zero emission goals. Overall, there is still a lack of available literature and experimental datasets for these complex systems which are needed to develop models for global implementation as well as studies to quantify their economic and environmental performance. Full article
Show Figures

Graphical abstract

20 pages, 3570 KB  
Article
Effect of Moisture Content of Fresh Pecans on Mechanical Shelling Efficiency, Nutritional Features, and Packaging Method
by Wenyue Tan, Yunfang He, Ziyan Wang, Yang Ni, Mengyang Xu, Jianke Du, Chenghang Liu and Xiaodong Jia
Foods 2025, 14(5), 757; https://doi.org/10.3390/foods14050757 - 23 Feb 2025
Cited by 1 | Viewed by 1530
Abstract
Fresh pecans are increasingly popular for their sweet taste and high nutritional value. To facilitate their commercialization, it is crucial to screen the proper moisture content for efficient mechanical shelling while retaining nutritional quality and finding a reasonable packaging method for storage. This [...] Read more.
Fresh pecans are increasingly popular for their sweet taste and high nutritional value. To facilitate their commercialization, it is crucial to screen the proper moisture content for efficient mechanical shelling while retaining nutritional quality and finding a reasonable packaging method for storage. This study compared the mechanical shelling efficiencies of fresh pecans with different moisture contents via a standardized evaluation system used by the U.S. Department of Agriculture for over 70 years. The results indicated that pecans dried for 24 h (17.51% moisture, wet basis) achieved the highest mechanical shelling efficiency with the lowest kernel shoulders damaged (DSh%, 31.7%), shortest separation time (10.67 min·kg−1), and highest rate of complete halves (CH, 91.6%). Compared with dried pecans, fresh pecans had a lighter testa color (L*, 55.05), higher 2,2-Diphenyl-1-picrylhydrazyl (DPPH, 18.88 μg TE·g−1) and 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS, 87.15 μmol TE·g−1), free-radical scavenging activity, and lower acid values (AV, 0.21 mg·g−1) and peroxide values (PV, 0.003 mg·g−1). Aluminum film packaging with vacuum (ALV) best preserved the quality of fresh pecans during 9 months of storage, as indicated by the acid and peroxide values. The results of this study provided a first report for the industrialization of fresh pecans. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

40 pages, 1207 KB  
Review
Recent Advances in Flexible Solar Cells; Materials, Fabrication, and Commercialization
by Maoz Maoz, Zohair Abbas, Syed Abdul Basit Shah and Vanni Lughi
Sustainability 2025, 17(5), 1820; https://doi.org/10.3390/su17051820 - 21 Feb 2025
Cited by 10 | Viewed by 12464
Abstract
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so [...] Read more.
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so was once impossible. They have a wide range of applications due to their flexibility and moldability, making it possible to conform these modules to surfaces like curved rooftops and other irregular structures. In this paper, we provide a comprehensive review of all the materials used in flexible PV modules with a focus on their role in sustainability. We thoroughly discuss the active-layer materials for crystalline silicon (c-Si)-based solar cells (SC) and thin-film solar cells such as cadmium telluride (CdTe), as well as copper indium gallium diselenide (CIGS), amorphous thin-film silicon (a-Si), perovskite and organic solar cells. Various properties, such as the optical, barrier, thermal, and mechanical properties of different substrate materials, are reviewed. Transport layers and conductive electrode materials are discussed with a focus on emerging trends and contributions to sustainable PV technology. Various fabrication techniques involved in making flexible PV modules, along with advantages, disadvantages, and future trends, are highlighted in the paper. The commercialization of flexible PV is also discussed, which is a crucial milestone in advancing and adapting new technologies in the PV industry with a focus on contributing toward sustainability. Full article
Show Figures

Figure 1

23 pages, 9072 KB  
Article
Energy-Saving and Decarbonization Design Optimization for School Canteen Buildings: A Case Study in Nanjing
by Yuhan Zhang, Kai Hu, Yankai Yang, Depeng Li, Tao Deng, Zhongping Hu and Yizhe Xu
Buildings 2025, 15(3), 455; https://doi.org/10.3390/buildings15030455 - 31 Jan 2025
Cited by 3 | Viewed by 2005
Abstract
In light of global climate change and China’s commitment to carbon neutrality by 2060, this study explores energy-saving and decarbonization design optimization for educational buildings, with a specific focus on a high school canteen in Nanjing. Through a comparative analysis of optimal energy-saving [...] Read more.
In light of global climate change and China’s commitment to carbon neutrality by 2060, this study explores energy-saving and decarbonization design optimization for educational buildings, with a specific focus on a high school canteen in Nanjing. Through a comparative analysis of optimal energy-saving and lifecycle decarbonization retrofit schemes, the study aims to identify the performance differences and provide practical guidance for retrofitting educational buildings. The optimization process involves two separate single-objective optimizations: one aimed at minimizing annual total primary energy consumption (TES) and the other at minimizing lifecycle carbon emissions (E). Energy performance is simulated using EnergyPlus 23.1.0, while the Strengthened Elitist Genetic Algorithm (SEGA) is applied to optimize design variables such as insulation materials, window types, window-to-wall ratios (WWRs), and photovoltaic (PV) system configurations. The results reveal that the optimal energy-saving scheme achieves zero net energy consumption annually, generating a surplus of 20,625.2 kWh (15.05 kWh/m2). Conversely, the optimal decarbonization scheme achieves zero lifecycle carbon emissions, contributing a carbon reduction of 386,926.4 kg, albeit with a 28.83% higher lifecycle TES compared to the energy-saving scheme. This study underscores the distinctions between energy-saving and decarbonization retrofits and offers valuable insights for sustainable retrofitting of educational buildings in China. Full article
Show Figures

Figure 1

Back to TopTop