Nanostructured Higher Manganese Silicide Thermoelectrics Developed by Mechanical Alloying Using High-Purity and Recycled Silicon
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Mn(Si1−xAlx)1.75 (0 ≤ x ≤ 0.05) Phases Developed Using High-Purity Silicon
3.2. Mn(Si0.975Al0.025)1.75 Phases Developed Using Recycled Silicon Kerf
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bano, S.; Govind, B.; Bhardwaj, A.; Bhatt, K.; Misra, D.K. A Review on Fundamentals, Design and Optimization to High ZT of Thermoelectric Materials for Application to Thermoelectric Technology. J. Electron. Mater. 2021, 50, 6037–6059. [Google Scholar] [CrossRef]
- Mao, J.; Liu, Z.; Zhou, J.; Zhu, H.; Zhang, Q.; Chen, G.; Ren, Z. Advances in Thermoelectrics. Adv. Phys. 2018, 67, 69–147. [Google Scholar] [CrossRef]
- Hendricks, T.; Caillat, T.; Mori, T. Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022. Energies 2022, 15, 7307. [Google Scholar] [CrossRef]
- Yan, Q.; Kanatzidis, M.G. High-Performance Thermoelectrics and Challenges for Practical Devices. Nat. Mater. 2022, 21, 503–513. [Google Scholar] [CrossRef]
- Garcés-Ayerbe, C.; Rivera-Torres, P.; Suárez-Perales, I.; Leyva-de la Hiz, D.I. Is It Possible to Change from a Linear to a Circular Economy? An Overview of Opportunities and Barriers for European Small and Medium-Sized Enterprise Companies. Int. J. Environ. Res. Public Health 2019, 16, 851. [Google Scholar] [CrossRef]
- Purwanto, E.; Prasetio, T. Changing the Paradigm of a Linear Economy into a Circular Economy in Residential Waste Management. IOP Conf. Ser. Earth Environ. Sci. 2021, 945, 012054. [Google Scholar] [CrossRef]
- Luque López, A.; Hegedus, S. (Eds.) Handbook of Photovoltaic Science and Engineering, 2nd ed.; [fully rev. and updated]; Wiley: Chichester, UK, 2011; ISBN 978-0-470-72169-8. [Google Scholar]
- Yang, C.F.; Hsu, H.P.; Lan, C.W. A Rapid Thermal Process for Silicon Recycle and Refining from Cutting Kerf-Loss Slurry Waste. Sep. Purif. Technol. 2015, 149, 38–46. [Google Scholar] [CrossRef]
- Nakamura, S.; Mori, Y.; Takarabe, K. Mg2Si Thermoelectric Device Fabrication with Reused-Silicon. JJAP Conf. Proc. 2015, 3, 011202. [Google Scholar] [CrossRef]
- Mesaritis, G.; Symeou, E.; Delimitis, A.; Oikonomidis, S.; Jaegle, M.; Tarantik, K.; Nicolaou, C.; Kyratsi, T. Recycling Si-Kerf from Photovoltaics: A Very Promising Route to Thermoelectrics. J. Alloys Compd. 2019, 775, 1036–1043. [Google Scholar] [CrossRef]
- Mangelis, P.; Sousanis, A.; Mesaritis, G.; Ioannou, P.S.; Søiland, A.-K.; Xu, Y.; Kyratsi, T. High Thermoelectric Performance of Bi-Doped Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4 Based on Recyclable Si Kerf Derived from PV Manufacturing. ACS Appl. Electron. Mater. 2024, 6, 2988–2998. [Google Scholar] [CrossRef]
- Mesaritis, G.; Symeou, E.; Delimitis, A.; Constantinou, M.; Constantinides, G.; Jeagle, M.; Tarantik, K.; Kyratsi, T. Synthesis, Characterization and Thermoelectric Performance of Mg2(Si, Sn, Ge) Materials Using Si-Kerf Waste from Photovoltaic Technology. J. Alloys Compd. 2020, 826, 153933. [Google Scholar] [CrossRef]
- Mangelis, P.; Ioannou, P.S.; So̷iland, A.-K.; Kyratsi, T. Mechanical Alloying: An Advantageous Method for the Development of Mg2Si0.8Sn0.2 and Mg2Si Thermoelectrics Using Commercial and Recyclable Silicon. ACS Appl. Energy Mater. 2025, 8, 1783–1795. [Google Scholar] [CrossRef]
- Ioannou, P.S.; Mangelis, P.; Hadjipanteli, S.; Mina, M.; Søiland, A.K.; Giapintzakis, J.; Kyratsi, T. Development of Silicide Thermoelectric Modules Based on High Purity Si and Recycled Si-Kerf: A Contact Resistance Investigation. Mater. Today Energy 2025, 49, 101855. [Google Scholar] [CrossRef]
- Kawasumi, I.; Sakata, M.; Nishida, I.; Masumoto, K. Crystal Growth of Manganese Silicide, MnSi~1.73 and Semiconducting Properties of Mn15Si26. J. Mater. Sci. 1981, 16, 355–366. [Google Scholar] [CrossRef]
- Migas, D.B.; Shaposhnikov, V.L.; Filonov, A.B.; Borisenko, V.E.; Dorozhkin, N.N. Ab Initio Study of the Band Structures of Different Phases of Higher Manganese Silicides. Phys. Rev. B 2008, 77, 075205. [Google Scholar] [CrossRef]
- Liu, W.-D.; Chen, Z.-G.; Zou, J. Eco-Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. Adv. Energy Mater. 2018, 8, 1800056. [Google Scholar] [CrossRef]
- Kim, G.; Shin, H.; Lee, J.; Lee, W. A Review on Silicide-Based Materials: Thermoelectric and Mechanical Properties. Met. Mater. Int. 2021, 27, 2205–2219. [Google Scholar] [CrossRef]
- Teknetzi, A.; Tarani, E.; Symeou, E.; Karfaridis, D.; Stathokostopoulos, D.; Pavlidou, E.; Kyratsi, T.; Hatzikraniotis, E.; Chrissafis, K.; Vourlias, G. Structure and Thermoelectric Properties of Higher Manganese Silicides Synthesized by Pack Cementation. Ceram. Int. 2021, 47, 243–251. [Google Scholar] [CrossRef]
- Higgins, J.M.; Schmitt, A.L.; Guzei, I.A.; Jin, S. Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase. J. Am. Chem. Soc. 2008, 130, 16086–16094. [Google Scholar] [CrossRef]
- Levinson, L.M. Investigation of the Defect Manganese Silicide MnnSi2n−m. J. Solid State Chem. 1973, 6, 126–135. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Igarashi, D.; Hayashi, K.; Kajitani, T.; Yubuta, K. Modulated Crystal Structure of Chimney-Ladder Higher Manganese Silicides MnSiγ (γ∼1.74). Phys. Rev. B 2008, 78, 214104. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Hamada, H.; Nagai, H.; Hayashi, K. Crystal Structure and Thermoelectric Properties of Lightly Substituted Higher Manganese Silicides. Materials 2018, 11, 926. [Google Scholar] [CrossRef]
- Le Tonquesse, S.; Joanny, L.; Guo, Q.; Elkaim, E.; Demange, V.; Berthebaud, D.; Mori, T.; Pasturel, M.; Prestipino, C. Influence of Stoichiometry and Aging at Operating Temperature on Thermoelectric Higher Manganese Silicides. Chem. Mater. 2020, 32, 10601–10609. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Ono, I.; Hayashi, K.; Miyazaki, Y. Relevance of Solidification Kinetics for Enhanced Thermoelectric Performance in Al-Doped Higher Manganese Silicides. ACS Appl. Mater. Interfaces 2022, 14, 51983–51993. [Google Scholar] [CrossRef]
- Ghodke, S.; Hiroishi, N.; Yamamoto, A.; Ikuta, H.; Matsunami, M.; Takeuchi, T. Enhanced Thermoelectric Properties of W- and Fe-Substituted MnSiγ. J. Electron. Mater. 2016, 45, 5279–5284. [Google Scholar] [CrossRef]
- Parse, N.; Tanusilp, S.; Silpawilawan, W.; Kurosaki, K.; Pinitsoontorn, S. Enhancing Thermoelectric Properties of Higher Manganese Silicide (HMS) by Partial Ta Substitution. J. Electron. Mater. 2020, 49, 2726–2733. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Lou, Q.; He, M.; Jiang, B.; Yu, Y.; Wu, D.; He, J. Enhanced Thermoelectric Properties in Chimney Ladder Structured Mn(BxSi1-x)1.75 Due to the Dual Lattice Occupation of Boron. Appl. Phys. Lett. 2019, 115, 123902. [Google Scholar] [CrossRef]
- Le Tonquesse, S.; Dorcet, V.; Joanny, L.; Demange, V.; Prestipino, C.; Guo, Q.; Berthebaud, D.; Mori, T.; Pasturel, M. Mesostructure—Thermoelectric Properties Relationships in VxMn1−xSi1.74 (x = 0, 0.04) Higher Manganese Silicides Prepared by Magnesiothermy. J. Alloys Compd. 2020, 816, 152577. [Google Scholar] [CrossRef]
- Shin, D.-K.; Ur, S.-C.; Jang, K.-W.; Kim, I.-H. Solid-State Synthesis and Thermoelectric Properties of Cr-Doped MnSi1.75−δ. J. Electron. Mater. 2014, 43, 2104–2108. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, W.; Liu, Z.; Fu, X.; Le Tonquesse, S.; Sato, N.; Son, H.-W.; Shimamura, K.; Berthebaud, D.; Mori, T. Thermoelectric Performance of Cr Doped and Cr–Fe Double-Doped Higher Manganese Silicides with Adjusted Carrier Concentration and Significant Electron–Phonon Interaction. ACS Appl. Mater. Interfaces 2021, 13, 8574–8583. [Google Scholar] [CrossRef]
- Li, G.; Liu, F.; Liu, Z.; Yang, E.; Kang, H.; Chen, Z.; Guo, E.; Wang, T. Boosting Thermoelectric Performance of Higher Manganese Silicide through Hf Incorporation. Ceram. Int. 2025, 51, 32168–32174. [Google Scholar] [CrossRef]
- Luo, W.; Li, H.; Fu, F.; Hao, W.; Tang, X. Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method. J. Electron. Mater. 2011, 40, 1233–1237. [Google Scholar] [CrossRef]
- Shin, D.-K.; You, S.-W.; Kim, I.-H. Solid-State Synthesis and Thermoelectric Properties of Al-Doped MnSi1.73. J. Korean Phys. Soc. 2014, 64, 1412–1415. [Google Scholar] [CrossRef]
- Li, Z.; Su, Z.; Zhang, H.; Wang, Q.; Wang, J.; Qian, X.; Cao, Q.; Ding, Z.; Li, J.-F.; Wang, S. Isoelectronic Re-Ge-Codoped Higher Manganese Silicides with Enhanced Thermoelectric Properties via Band Optimization, Charge Transfer, and Phonon Scattering. J. Eur. Ceram. Soc. 2023, 43, 4799–4807. [Google Scholar] [CrossRef]
- Jiang, M.-X.; Yang, S.-R.; Tsao, I.-Y.; Wardhana, B.S.; Hsueh, S.-F.; Jang, J.S.-C.; Hsin, C.-L.; Lee, S.-W. Enhanced Thermoelectric Properties of P-Type Sn-Substituted Higher Manganese Silicides. Nanomaterials 2024, 14, 494. [Google Scholar] [CrossRef]
- Li, G.; Kang, H.; Chen, Z.; Guo, E.; Wang, T. Enhancing Thermoelectric Performance of Higher Manganese Silicide through Ge Doping. Vacuum 2025, 238, 114299. [Google Scholar] [CrossRef]
- Homma, T.; Kamata, T.; Saito, N.; Ghodke, S.; Takeuchi, T. Effects of Re Substitution for Mn on Microstructures and Properties in Re-Substituted Higher Manganese Silicide Thermoelectric Material. J. Alloys Compd. 2019, 776, 8–15. [Google Scholar] [CrossRef]
- Ghodke, S.; Yamamoto, A.; Hu, H.-C.; Nishino, S.; Matsunaga, T.; Byeon, D.; Ikuta, H.; Takeuchi, T. Improved Thermoelectric Properties of Re-Substituted Higher Manganese Silicides by Inducing Phonon Scattering and an Energy-Filtering Effect at Grain Boundary Interfaces. ACS Appl. Mater. Interfaces 2019, 11, 31169–31175. [Google Scholar] [CrossRef]
- Yamamoto, A.; Ghodke, S.; Miyazaki, H.; Inukai, M.; Nishino, Y.; Matsunami, M.; Takeuchi, T. Thermoelectric Properties of Supersaturated Re Solid Solution of Higher Manganese Silicides. Jpn. J. Appl. Phys. 2016, 55, 020301. [Google Scholar] [CrossRef]
- Chen, X.; Weathers, A.; Salta, D.; Zhang, L.; Zhou, J.; Goodenough, J.B.; Shi, L. Effects of (Al, Ge) Double Doping on the Thermoelectric Properties of Higher Manganese Silicides. J. Appl. Phys. 2013, 114, 173705. [Google Scholar] [CrossRef]
- Ponnambalam, V.; Morelli, D.T.; Bhattacharya, S.; Tritt, T.M. The Role of Simultaneous Substitution of Cr and Ru on the Thermoelectric Properties of Defect Manganese Silicides MnSiδ (1.73 < δ < 1.75). J. Alloys Compd. 2013, 580, 598–603. [Google Scholar] [CrossRef]
- Barczak, S.A.; Downie, R.A.; Popuri, S.R.; Decourt, R.; Pollet, M.; Bos, J.W.G. Thermoelectric Properties of Fe and Al Double Substituted MnSiγ (γ~1.73). J. Solid. State Chem. 2015, 227, 55–59. [Google Scholar] [CrossRef]
- Nhi Truong, D.Y.; Berthebaud, D.; Gascoin, F.; Kleinke, H. Molybdenum, Tungsten, and Aluminium Substitution for Enhancement of the Thermoelectric Performance of Higher Manganese Silicides. J. Electron. Mater. 2015, 44, 3603–3611. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Q.; Zhao, L.; Zhang, H.; Su, Z.; Wang, Q.; Wang, J.; Cao, Q.; Ding, Z.; Wang, S.; et al. Exploiting Synergies for High Thermoelectric Performance in Higher Manganese Silicide-Based Semiconductors through Element Co-Doping, Energy Filtering, and Phonon Scattering. Ceram. Int. 2024, 50, 17604–17612. [Google Scholar] [CrossRef]
- Prajapati, C.; Muthiah, S.; Upadhyay, N.K.; Bathula, S.; Kedia, D.K.; Dhakate, S.R. Nanostructured Inclusions Enhancing the Thermoelectric Performance of Higher Manganese Silicide by Modulating the Transport Properties. Ceram. Int. 2024, 50, 40087–40095. [Google Scholar] [CrossRef]
- Li, Z.; Dong, J.-F.; Sun, F.-H.; Hirono, S.; Li, J.-F. Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire. Chem. Mater. 2017, 29, 7378–7389. [Google Scholar] [CrossRef]
- Razavi-Tousi, S.S.; Tseng, Y.-C. Failure Analysis and Mechanical Reliability of Cast Higher Manganese Silicide. J. Alloys Compd. 2018, 764, 745–754. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Razavi-Tousi, S.S.; Ramirez, D.; Kleinke, H. Advancing the Reliability of Thermoelectric Materials: A Case Study of Silicides through Statistics. Appl. Phys. Lett. 2021, 119, 193903. [Google Scholar] [CrossRef]
- Vivès, S.; Navone, C.; Gaudin, E.; Gorsse, S. Improved Microstructure and Thermoelectric Properties of Higher Manganese Silicide Processed by Reactive Spark Plasma Sintering. J. Mater. Sci. 2017, 52, 12826–12833. [Google Scholar] [CrossRef]
- Kim, G.; Rim, H.J.; Lee, K.H.; Roh, J.W.; Lee, W. Suppressed Secondary Phase Generation in Thermoelectric Higher Manganese Silicide by Fabrication Process Optimization. Ceram. Int. 2019, 45, 19538–19541. [Google Scholar] [CrossRef]
- Saminathan, M.; Palraj, J.; Wesley, P.; Moorthy, M.; Ravikirana; Perumal, S. Thermoelectric Properties of P-Type Si-Rich Higher Manganese Silicide for Mid-Temperature Applications. Mater. Lett. 2021, 302, 130444. [Google Scholar] [CrossRef]
- Zhou, A.J.; Zhu, T.J.; Zhao, X.B.; Yang, S.H.; Dasgupta, T.; Stiewe, C.; Hassdorf, R.; Mueller, E. Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions. J. Electron. Mater. 2010, 39, 2002–2007. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Goodenough, J.B.; Shi, L. Enhanced Thermoelectric Power Factor of Re-Substituted Higher Manganese Silicides with Small Islands of MnSi Secondary Phase. J. Mater. Chem. C 2015, 3, 10500–10508. [Google Scholar] [CrossRef]
- Luo, W.; Li, H.; Yan, Y.; Lin, Z.; Tang, X.; Zhang, Q.; Uher, C. Rapid Synthesis of High Thermoelectric Performance Higher Manganese Silicide with In-Situ Formed Nano-Phase of MnSi. Intermetallics 2011, 19, 404–408. [Google Scholar] [CrossRef]
- Muthiah, S.; Singh, R.C.; Pathak, B.D.; Avasthi, P.K.; Kumar, R.; Kumar, A.; Srivastava, A.K.; Dhar, A. Significant Enhancement in Thermoelectric Performance of Nanostructured Higher Manganese Silicides Synthesized Employing a Melt Spinning Technique. Nanoscale 2018, 10, 1970–1977. [Google Scholar] [CrossRef]
- Perumal, S.; Gorsse, S.; Ail, U.; Prakasam, M.; Vivès, S.; Decourt, R.; Umarji, A.M. Low Thermal Conductivity of Endogenous Manganese Silicide/Si Composites for Thermoelectricity. Mater. Lett. 2015, 155, 41–43. [Google Scholar] [CrossRef]
- Sadia, Y.; Dinnerman, L.; Gelbstein, Y. Mechanical Alloying and Spark Plasma Sintering of Higher Manganese Silicides for Thermoelectric Applications. J. Electron. Mater. 2013, 42, 1926–1931. [Google Scholar] [CrossRef]
- Zhou, A.J.; Zhao, X.B.; Zhu, T.J.; Dasgupta, T.; Stiewe, C.; Hassdorf, R.; Mueller, E. Mechanochemical Decomposition of Higher Manganese Silicides in the Ball Milling Process. Intermetallics 2010, 18, 2051–2056. [Google Scholar] [CrossRef]
- Shin, D.-K.; Jang, K.-W.; Ur, S.-C.; Kim, I.-H. Thermoelectric Properties of Higher Manganese Silicides Prepared by Mechanical Alloying and Hot Pressing. J. Electron. Mater. 2013, 42, 1756–1761. [Google Scholar] [CrossRef]
- Zamanipour, Z.; Shi, X.; Mozafari, M.; Krasinski, J.S.; Tayebi, L.; Vashaee, D. Synthesis, Characterization, and Thermoelectric Properties of Nanostructured Bulk p-Type MnSi1.73, MnSi1.75, and MnSi1.77. Ceram. Int. 2013, 39, 2353–2358. [Google Scholar] [CrossRef]
- Chen, X.; Shi, L.; Zhou, J.; Goodenough, J.B. Effects of Ball Milling on Microstructures and Thermoelectric Properties of Higher Manganese Silicides. J. Alloys Compd. 2015, 641, 30–36. [Google Scholar] [CrossRef]
- Saleemi, M.; Famengo, A.; Fiameni, S.; Boldrini, S.; Battiston, S.; Johnsson, M.; Muhammed, M.; Toprak, M.S. Thermoelectric Performance of Higher Manganese Silicide Nanocomposites. J. Alloys Compd. 2015, 619, 31–37. [Google Scholar] [CrossRef]
- Zhou, A.; Zhu, T.; Zhao, X.; Mueller, E. Grain Size Effect on the Phase Transformations of Higher Manganese Silicide Thermoelectric Materials: An In Situ Energy Dispersive x-Ray Diffraction Study. J. Mater. Res. 2011, 26, 1900–1906. [Google Scholar] [CrossRef]
- Neubauer, A.; Pfleiderer, C.; Ritz, R.; Niklowitz, P.G.; Böni, P. Hall Effect and Magnetoresistance in MnSi. Phys. B: Condens. Matter 2009, 404, 3163–3166. [Google Scholar] [CrossRef]
- Liu, W.-D.; Shi, X.-L.; Moshwan, R.; Sun, Q.; Yang, L.; Chen, Z.-G.; Zou, J. Effectively Restricting MnSi Precipitates for Simultaneously Enhancing the Seebeck Coefficient and Electrical Conductivity in Higher Manganese Silicide. J. Mater. Chem. C 2019, 7, 7212–7218. [Google Scholar] [CrossRef]
- Luo, W.-H.; Li, H.; Lin, Z.-B.; Tang, X.-F. State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China Effects of Si Content on Phase Composition and Thermoelectric Properties of Higher Manganese Silicide. Acta Phys. Sin. 2010, 59, 8783–8788. [Google Scholar] [CrossRef]
- Nhi Truong, D.Y.; Kleinke, H.; Gascoin, F. Preparation of Pure Higher Manganese Silicides through Wet Ball Milling and Reactive Sintering with Enhanced Thermoelectric Properties. Intermetallics 2015, 66, 127–132. [Google Scholar] [CrossRef]
- Ioannou, M.; Polymeris, G.S.; Hatzikraniotis, E.; Paraskevopoulos, K.M.; Kyratsi, T. Effect of Bi-Doping and Mg-Excess on the Thermoelectric Properties of Mg2Si Materials. J. Phys. Chem. Solids 2014, 75, 984–991. [Google Scholar] [CrossRef]
- Symeou, E.; Karyou, M.; Delimitis, A.; Constantinou, M.; Constantinides, G.; Nicolaou, C.; Giapintzakis, I.; Kyratsi, T. Preparation of Highly Efficient Thermoelectric Bi-Doped Mg2Si0.55-xSn0.4Gex (x = 0 and 0.05) Materials with a Scalable Mechanical Alloying Method. J. Phys. Chem. Solids 2022, 161, 110472. [Google Scholar] [CrossRef]
- Kim, H.-S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz Number with Seebeck Coefficient Measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef]
- Cheng, J.-G.; Zhou, F.; Zhou, J.-S.; Goodenough, J.B.; Sui, Y. Enhanced Thermoelectric Power near the Quantum Phase Transition in the Itinerant-Electron Ferromagnet MnSi. Phys. Rev. B 2010, 82, 214402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangelis, P.; Georgiou, K.; Ioannou, P.S.; Hadjipanteli, S.; Søiland, A.-K.; Kyratsi, T. Nanostructured Higher Manganese Silicide Thermoelectrics Developed by Mechanical Alloying Using High-Purity and Recycled Silicon. Nanomaterials 2025, 15, 1286. https://doi.org/10.3390/nano15161286
Mangelis P, Georgiou K, Ioannou PS, Hadjipanteli S, Søiland A-K, Kyratsi T. Nanostructured Higher Manganese Silicide Thermoelectrics Developed by Mechanical Alloying Using High-Purity and Recycled Silicon. Nanomaterials. 2025; 15(16):1286. https://doi.org/10.3390/nano15161286
Chicago/Turabian StyleMangelis, Panagiotis, Kostas Georgiou, Panagiotis Savva Ioannou, Savvas Hadjipanteli, Anne-Karin Søiland, and Theodora Kyratsi. 2025. "Nanostructured Higher Manganese Silicide Thermoelectrics Developed by Mechanical Alloying Using High-Purity and Recycled Silicon" Nanomaterials 15, no. 16: 1286. https://doi.org/10.3390/nano15161286
APA StyleMangelis, P., Georgiou, K., Ioannou, P. S., Hadjipanteli, S., Søiland, A.-K., & Kyratsi, T. (2025). Nanostructured Higher Manganese Silicide Thermoelectrics Developed by Mechanical Alloying Using High-Purity and Recycled Silicon. Nanomaterials, 15(16), 1286. https://doi.org/10.3390/nano15161286