Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = PTC-oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3019 KiB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Viewed by 184
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

19 pages, 2133 KiB  
Article
Electrodeposited Co Crystalline Islands Shelled with Facile Spontaneously Deposited Pt for Improved Oxygen Reduction
by Jelena Golubović, Lazar Rakočević, Vladimir Rajić, Miloš Milović and Svetlana Štrbac
Catalysts 2025, 15(5), 490; https://doi.org/10.3390/catal15050490 - 18 May 2025
Viewed by 565
Abstract
The cobalt crystalline islands (Cocryst) were electrochemically deposited onto a glassy carbon (GC) support and then modified by a facile spontaneous deposition of platinum. The electrocatalytic activity of the resulting Cocryst-Pt core-shell catalyst was evaluated for the oxygen reduction [...] Read more.
The cobalt crystalline islands (Cocryst) were electrochemically deposited onto a glassy carbon (GC) support and then modified by a facile spontaneous deposition of platinum. The electrocatalytic activity of the resulting Cocryst-Pt core-shell catalyst was evaluated for the oxygen reduction reaction (ORR) in an alkaline medium. The XRD characterization of the Cocryst-Pt islands revealed that the cobalt core had a hexagonal close-packed (hcp) crystalline structure, and that the platinum shell exhibited a crystalline structure with a preferential (111) orientation. SEM images showed that the average lateral size of the Cocryst islands was 1.17 μm, which increased to 1.32 μm after adding platinum. The XPS analysis indicated that the outer layer of the bulk metallic Cocryst islands was fully oxidized. During the spontaneous deposition of platinum, the outer Co(OH)2 layer was dissolved, leaving the cobalt core in a metallic state, while the platinum shell remained only partially oxidized. The high electrochemically active surface area of the Cocryst-Pt/GC electrode, along with a suitable crystalline structure of the Cocryst-Pt islands, contributes to enhancing its ORR activity by providing a greater number of surface active sites for oxygen adsorption and subsequent reduction. The ORR on the Cocryst-Pt catalyst occurs via a four-electron reaction pathway, with onset and half-wave potentials of 1.07 V and 0.87 V, respectively, which exceed those of polycrystalline platinum and a commercial benchmark Pt/C. Full article
(This article belongs to the Special Issue Insight into Electrocatalysts for Oxygen Reduction Reaction)
Show Figures

Figure 1

19 pages, 12247 KiB  
Article
Nanoscale Fe3O4 Electrocatalysts for Oxygen Reduction Reaction
by Junjie Zhang, Jilong Wang, Yaoming Fu, Xing Peng, Maosong Xia, Weidong Peng, Yaowei Liang and Wuguo Wei
Molecules 2025, 30(8), 1753; https://doi.org/10.3390/molecules30081753 - 14 Apr 2025
Viewed by 681
Abstract
This study presents a straightforward hydrothermal synthesis approach to fabricate uniform and highly dispersed nanoscale Fe3O4 electrocatalysts for the oxygen reduction reaction (ORR). FeSO4·7H2O is used as the precursor, and sodium dodecyl sulfate (SDS) is incorporated [...] Read more.
This study presents a straightforward hydrothermal synthesis approach to fabricate uniform and highly dispersed nanoscale Fe3O4 electrocatalysts for the oxygen reduction reaction (ORR). FeSO4·7H2O is used as the precursor, and sodium dodecyl sulfate (SDS) is incorporated as a dispersing agent to optimize particle size and dispersion. The SDS concentration plays a crucial role in controlling the particle size and distribution, with higher SDS concentrations resulting in smaller, well-dispersed particles (30–40 nm), compared to the agglomerated particles formed without SDS. The Fe3O4 catalyst demonstrates significant enhancement in ORR performance, with a half-wave potential of 0.091 V vs. Hg/HgO and a limiting diffusion current density of −5.50 mA cm2, surpassing the performance of agglomerated Fe3O4 and approaching that of state-of-the-art 20% Pt/C catalysts. Additionally, the Fe3O4 catalyst exhibits superior stability and resistance to methanol and CO poisoning, presenting a promising alternative to platinum-based catalysts for ORR applications. This work introduces an efficient approach for the synthesis of high-performance and evenly distributed Fe3O4 electrocatalysts, offering a new pathway for the development of metal oxide-based ORR catalysts with enhanced activity and durability. Full article
(This article belongs to the Special Issue Development and Design of Novel Electrode Materials)
Show Figures

Graphical abstract

15 pages, 5978 KiB  
Article
Enhanced Methanol Electro-Oxidation in Hierarchical Au-Pt Dendrites Supported on Graphene-like Substrate
by Zifeng Zhu, Yiming Zhao, Yongming Ruan, Xuexiang Weng and Gesmi Milcovich
Coatings 2025, 15(4), 458; https://doi.org/10.3390/coatings15040458 - 12 Apr 2025
Cited by 1 | Viewed by 675
Abstract
This study presents an easy and rapid two-step electrodeposition method for the synthesis of a novel hierarchical dendritic AuPt bimetallic nanocomposite electrode. Ascorbic acid served as both a reducing and directing agent, while a roughened carbon substrate facilitated the formation of the unique [...] Read more.
This study presents an easy and rapid two-step electrodeposition method for the synthesis of a novel hierarchical dendritic AuPt bimetallic nanocomposite electrode. Ascorbic acid served as both a reducing and directing agent, while a roughened carbon substrate facilitated the formation of the unique dendritic nanostructure. The structural and compositional properties of the synthesized material were comprehensively characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), selected area electron diffraction (SAED), and transmission electron microscopy (TEM). The resulting nanocomposite exhibited a significantly enhanced specific surface area of 6.97 m2 g−1, compared to commercial Pt/C. Electrochemical investigations demonstrated superior electrocatalytic activity and durability for methanol oxidation in the prepared AuPt nanocomposite electrode, suggesting its promising potential for fuel cell applications. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Protein Phosphatases MoPtc5, MoPtc1, and MoPtc2 Contribute to the Vegetative Growth, Stress Adaptation, and Virulence of Magnaporthe oryzae
by Jules Biregeya, Frankline Jagero Otieno, Meilian Chen, Anjago Wilfred Mabeche, Abah Felix, Nsanzinshuti Aimable, Yakubu Saddeeq Abubakar, Osakina Aron, Guodong Lu, Zonghua Wang, Yonghe Hong and Wei Tang
J. Fungi 2025, 11(3), 231; https://doi.org/10.3390/jof11030231 - 18 Mar 2025
Viewed by 503
Abstract
Protein phosphatases are crucial enzymes that regulate key cellular processes such as the cell cycle, gene transcription, and translation in eukaryotes. Seven PP2C protein phosphatases have been identified in Magnaporthe oryzae. However, their synergistic roles in the pathology and physiology of M. [...] Read more.
Protein phosphatases are crucial enzymes that regulate key cellular processes such as the cell cycle, gene transcription, and translation in eukaryotes. Seven PP2C protein phosphatases have been identified in Magnaporthe oryzae. However, their synergistic roles in the pathology and physiology of M. oryzae remain poorly investigated. By qRT-PCR analysis, we found that PTC1 and PTC2 are significantly upregulated in the PTC5 deletion mutant. The double deletion of the MoPTC5/MoPTC1 and MoPTC5/MoPTC2 genes significantly reduced hyphal growth, conidiophore formation, sporulation, and virulence in M. oryzae. In addition, the double-knockout mutants were increasingly sensitive to different osmotic, oxidative, and cell wall stresses. Western blot analysis revealed that MoPtc5 plays a synergistic function with MoPtc1 and MoPtc2 in the regulation of MoMps1 and MoOsm1 phosphorylation levels. Lastly, appressorium formation and turgor generation were remarkably affected in the ΔMoptc5ΔMoptc1 and ΔMoptc5ΔMoptc2 double-deletion mutants. These findings demonstrate the overlapping roles of PP2c protein phosphatase in the fungal development and pathogenesis of M. oryzae. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

17 pages, 3189 KiB  
Article
Transition Metal Oxides (WO3-ZrO2) as Promoters and Hydrogen Adsorption Modulators in Pt/WO3-ZrO2-C Electrocatalyst for the Reduction of NOx
by Claudia R. Santiago-Ramírez, Martha L. Hernández-Pichardo, Arturo Manzo-Robledo, Daniel A. Acuña-Leal and Miguel A. Gracia-Pinilla
Electrochem 2025, 6(1), 7; https://doi.org/10.3390/electrochem6010007 - 5 Mar 2025
Viewed by 2033
Abstract
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3 [...] Read more.
The electrocatalytic reduction of nitric oxide and nitrogen dioxide (NOx) remains a significant challenge due to the need for stable, efficient, and cost-effective materials. This study presents a novel support system for NOx reduction in alkaline media, composed of ZrO2-WO3-C (ZWC), synthesized via coprecipitation. Platinum nanoparticles (10 wt.%) were loaded onto ZWC and Vulcan carbon support, using similar methods for comparison. Comprehensive physicochemical and electrochemical analyses (N2 physisorption, XRD, XPS, SEM, TEM, and cyclic and linear voltammetry) revealed that PtZWC outperformed PtC and commercial PtEtek in NOx electrocatalysis. Notably, PtZWC exhibited the highest total electric charge for NOx reduction. At the same time, the hydrogen evolution reaction (HER) was shifted to more negative cathodic potentials, indicating reduced hydrogen coverage and a modified dissociative Tafel mechanism on platinum. Additionally, the combination of WO3 and ZrO2 in ZWC enhanced electron transfer and suppressed HER by reducing NO and hydrogen atom adsorption competition. While the incorporation of WO3 and ZrO2 lowered the surface area to 96 m2/g, it significantly improved pore properties, facilitating better Pt nanoparticle dispersion (3.06 ± 0.85 nm, as confirmed by SEM and TEM). XRD analysis identified graphite and Pt phases, with monoclinic WO3 broadening PtZWC peaks (20–25°). At the same time, XPS confirmed oxidation states of Pt, W, and Zr and tungsten-related oxygen vacancies, ensuring chemical stability and enhanced catalytic activity. Full article
Show Figures

Figure 1

29 pages, 49444 KiB  
Article
Advanced Pt/Ti(1−x)SnxO2–C Composite Supported Electrocatalyst with Functionalized Carbon for Sustainable Energy Conversion Technologies
by Cristina Silva, Zoltán Pászti, Khirdakhanim Salmanzade, Dániel Olasz, Erzsébet Dodony, György Sáfrán, Ágnes Szegedi, Zoltán Sebestyén, András Tompos and Irina Borbáth
Nanomaterials 2025, 15(5), 342; https://doi.org/10.3390/nano15050342 - 22 Feb 2025
Viewed by 886
Abstract
Sn-doped TiO2–carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal–support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to [...] Read more.
Sn-doped TiO2–carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal–support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/Ti0.9Sn0.1O2–C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements. The presence of oxygen-containing functional groups on carbon treated with HNO3 and glucose leads to the formation of a homogeneous coating of the carbon with dispersed crystallites of mixed oxide. Elemental mapping revealed the proximity of Sn species with highly dispersed (2–3 nm) Pt particles. Notably, the electrochemical results indicated enhanced activity in CO electrooxidation for both functionalized and unmodified carbon-containing catalysts. An improvement in the 10,000-cycle long-term stability of the catalyst prepared using functionalized carbon was evident compared to the catalyst with untreated carbon or reference Pt/C. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Graphical abstract

13 pages, 1568 KiB  
Article
Methanol-Tolerant Pd-Co Alloy Nanoparticles on Reduced Graphene Oxide as Cathode Catalyst for Oxygen Reduction in Fuel Cells
by Chandra Sekhar Yellatur, Venkatachalam Vinothkumar, Poshan Kumar Reddy Kuppam, Juwon Oh and Tae Hyun Kim
Catalysts 2025, 15(2), 128; https://doi.org/10.3390/catal15020128 - 29 Jan 2025
Viewed by 1195
Abstract
The design of efficient and cost-effective electrocatalysts to replace Pt in an oxygen reduction reaction (ORR) is crucial for advancing proton exchange membrane fuel cell (PEMFC) technologies. This study synthesized Pd-Co bimetallic alloy nanoparticles supported on reduced graphene oxide (rGO) through a simple [...] Read more.
The design of efficient and cost-effective electrocatalysts to replace Pt in an oxygen reduction reaction (ORR) is crucial for advancing proton exchange membrane fuel cell (PEMFC) technologies. This study synthesized Pd-Co bimetallic alloy nanoparticles supported on reduced graphene oxide (rGO) through a simple chemical-reduction method, making it suitable for low-cost, large-scale fabrication and significantly reducing the need for Pt. The nanostructures were systematically characterized using various analytical techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV). Electrochemical investigations revealed that the Pd-Co/rGO catalyst exhibits remarkable ORR performance in an alkaline environment, with an electrode-area-normalized activity rivaling that of the commercial Pt/C catalyst. Remarkably, Pd-Co/rGO demonstrated an onset potential (Eonset) of 0.944 V (vs. RHE) and a half-wave potential (E1/2) of 0.782 V (vs. RHE), highlighting its excellent ORR activity. Furthermore, the Pd-Co/rGO catalyst displayed superior methanol-tolerant ORR activity, outperforming Pt/C and monometallic Pd/rGO and Co/rGO systems. The enhanced electrocatalytic performance is attributed to the smallest size, consistent shape, and good dispersion of the alloy structure on the RGO surface. These findings establish Pd-Co/rGO as a promising alternative to Pt-based catalysts, addressing key challenges such as methanol crossover while advancing PEMFC technology in alkaline media. Full article
(This article belongs to the Special Issue Insight into Electrocatalysts for Oxygen Reduction Reaction)
Show Figures

Graphical abstract

12 pages, 2231 KiB  
Article
An In-Plane Heterostructure Ni3N/MoSe2 Loaded on Nitrogen-Doped Reduced Graphene Oxide Enhances the Catalyst Performance for Hydrogen Oxidation Reaction
by Abrar Qadir, Peng-Peng Guo, Yong-Zhi Su, Kun-Zu Yang, Xin Liu, Ping-Jie Wei and Jin-Gang Liu
Molecules 2025, 30(3), 488; https://doi.org/10.3390/molecules30030488 - 22 Jan 2025
Viewed by 1130
Abstract
Non-noble metal electrocatalysts for the hydrogen oxidation reaction (HOR) that are both highly active and low-cost are essential for the widespread use of fuel cells. Herein, a simple two-step method for creating an in-plane heterostructure of Ni3N/MoSe2 loaded on N-doped [...] Read more.
Non-noble metal electrocatalysts for the hydrogen oxidation reaction (HOR) that are both highly active and low-cost are essential for the widespread use of fuel cells. Herein, a simple two-step method for creating an in-plane heterostructure of Ni3N/MoSe2 loaded on N-doped reduced graphene oxide (Ni3N/MoSe2@N-rGO) as an effective electrocatalyst for the HOR is described. The process involves hydrothermal treatment of the Ni and Mo precursors with N-doped reduced graphene oxide, followed by the annealing with urea. The Ni3N/MoSe2@N-rGO catalyst exhibits high activities for the HOR, with current densities of 2.15 and 3.06 mA cm−2 at 0.5 V vs. the reversible hydrogen electrode (RHE) in H2-saturated 0.1 M KOH and 0.1 M HClO4 electrolytes, respectively, which is comparable to a commercial 20% Pt/C catalyst under similar experimental conditions. Furthermore, the catalyst demonstrates excellent durability, maintaining its performance during accelerated degradation tests for 5000 cycles. This work offers a practical framework for the designing and preparing of non-precious metal electrocatalysts for the HOR in fuel cells. Full article
Show Figures

Graphical abstract

14 pages, 10281 KiB  
Article
Electro-Oxidation of Glycerol on Core–Shell M@Pt/C (M = Co, Ni, Sn) Catalysts in Alkaline Medium
by Rudyere Nascimento Silva, Leandro Aparecido Pocrifka, Ermete Antolini and Raimundo Ribeiro Passos
Energies 2025, 18(2), 305; https://doi.org/10.3390/en18020305 - 11 Jan 2025
Viewed by 1341
Abstract
This study explores the development of core–shell electrocatalysts for efficient glycerol oxidation in alkaline media. Carbon-supported M@Pt/C (M = Co, Ni, Sn) catalysts with a 1:1 atomic ratio of metal (M) to platinum (Pt) were synthesized using a facile sodium borohydride reduction method. [...] Read more.
This study explores the development of core–shell electrocatalysts for efficient glycerol oxidation in alkaline media. Carbon-supported M@Pt/C (M = Co, Ni, Sn) catalysts with a 1:1 atomic ratio of metal (M) to platinum (Pt) were synthesized using a facile sodium borohydride reduction method. The analysis confirmed the formation of the desired core–shell structure, with Pt dominating the surface as evidenced by energy-dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) revealed the presence of a face-centered cubic (fcc) Pt structure for Co@Pt/C and Ni@Pt/C. Interestingly, Sn@Pt/C displayed a PtSn alloy formation indicated by shifted Pt peaks and the presence of minor Sn oxide peaks. Notably, no diffraction peaks were observed for the core metals, suggesting their amorphous nature. Electrocatalytic evaluation through cyclic voltammetry (CV) revealed superior glycerol oxidation activity for Co@Pt/C compared to all other catalysts. The maximum current density followed the order Co@Pt/C > Ni@Pt/C > Sn@Pt/C > Pt/C. This highlights the effectiveness of the core–shell design in enhancing activity. Furthermore, Sn@Pt/C displayed remarkable poisoning tolerance attributed to a combined effect: a bifunctional mechanism driven by Sn oxides and an electronic effect within the PtSn alloy. These findings demonstrate the significant potential of core–shell M@Pt/C structures for designing highly active and poisoning-resistant electrocatalysts for glycerol oxidation. The presented approach paves the way for further development of optimized catalysts with enhanced performance and stability aiming at future applications in direct glycerol fuel cells. Full article
(This article belongs to the Special Issue Advances in Materials for Electrochemical Energy Applications 2024)
Show Figures

Figure 1

8 pages, 1652 KiB  
Article
Significantly Enhanced Acidic Oxygen Evolution Reaction Performance of RuO2 Nanoparticles by Introducing Oxygen Vacancy with Polytetrafluoroethylene
by Jinyang Zhang, Xinru Wang, Xinyue Zhao, Honglei Chen and Peng Jia
Polymers 2025, 17(1), 59; https://doi.org/10.3390/polym17010059 - 29 Dec 2024
Viewed by 1219
Abstract
The supported RuO2 catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO2 catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized [...] Read more.
The supported RuO2 catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO2 catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO2-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process. The optimized nucleation and growth strategies enable the formation of RuO2 particles (~13.4 nm) encapsulating PTFE, establishing a conductive network that effectively addresses the conductivity issue. Additionally, PTFE induces the generation of oxygen vacancies and the formation of stable RuO2/PTFE interfaces, which further enhance the acidic OER activity and the stability of RuO2. As a result, the RuO2-PTFE catalyst exhibits a low overpotential of 219 mV at 10 mA cm⁻2 in the three-electrode system, and the voltage of the RuO2-PTFE||commercial Pt/C system can keep 1.50 V for 800 h at 10 mA cm−2. This work underscores the versatility of PTFE as a substrate for fine-tuning the catalyst morphology, the crystal defect, and the stable interface outerwear. This work not only broadens the application scope of PTFE in catalyst synthesis but also provides a novel approach to the design of high-performance metallic oxide catalysts with tailored oxygen vacancy concentration and stable polymer outerwear. Full article
(This article belongs to the Special Issue Polymer-Based Smart Materials: Preparation and Applications)
Show Figures

Figure 1

14 pages, 2763 KiB  
Article
Ternary MoWNi Alloy as a Bifunctional Catalyst for Alkaline Hydrogen Oxidation and Evolution Reactions
by Yongxin Zhao, Chaofan Tian, Yuzhu Zhai, Xinyue Li, Jingbei Li, Huishan Chen, Longzhen Cheng, Hui Zhao and Pengcheng Dai
Catalysts 2025, 15(1), 15; https://doi.org/10.3390/catal15010015 - 27 Dec 2024
Cited by 1 | Viewed by 954
Abstract
The hydrogen economy, as an emerging paradigm for sustainable energy, relies on efficient hydrogen oxidation (HOR) and hydrogen evolution reactions (HER). These reactions require effective catalysts to enhance reaction kinetics and reduce costs. Platinum (Pt) is widely used but faces issues such as [...] Read more.
The hydrogen economy, as an emerging paradigm for sustainable energy, relies on efficient hydrogen oxidation (HOR) and hydrogen evolution reactions (HER). These reactions require effective catalysts to enhance reaction kinetics and reduce costs. Platinum (Pt) is widely used but faces issues such as high cost and CO poisoning. Non-precious metal catalysts, particularly Ni-based alloys, are being explored as viable alternatives. This study introduces a ternary MoWNi alloy catalyst synthesized via microwave-assisted methods and annealing. The MoWNi alloy catalyst achieves a current density of 3.5 mA·cm−2 at an overpotential of 100 mV in HOR and requires only 25 mV overpotential to reach a current density of 10 mA·cm−2 in HER, making it comparable to commercial 20% Pt/C catalysts. Notably, the catalyst also exhibits superior stability and resistance to CO toxicity. These findings underscore the potential of MoWNi alloy catalysts in advancing hydrogen-based energy systems. Full article
(This article belongs to the Special Issue Advances in Catalyst Design and Application for Fuel Cells)
Show Figures

Figure 1

20 pages, 2009 KiB  
Review
Graphene-Based Nanostructured Cathodes for Polymer Electrolyte Membrane Fuel Cells with Increased Resource
by Adriana Marinoiu, Mihaela Iordache, Elena Simona Borta and Anisoara Oubraham
C 2024, 10(4), 105; https://doi.org/10.3390/c10040105 - 14 Dec 2024
Viewed by 1448
Abstract
Pt on carbon black (Pt/C) has been widely used as a catalyst for both ORR and hydrogen oxidation reaction (HOR), but its stability is compromised due to carbon corrosion and catalyst poisoning, leading to low Pt utilization. To address this issue, this study [...] Read more.
Pt on carbon black (Pt/C) has been widely used as a catalyst for both ORR and hydrogen oxidation reaction (HOR), but its stability is compromised due to carbon corrosion and catalyst poisoning, leading to low Pt utilization. To address this issue, this study suggests replacing carbon black with graphene in the catalyst layer. The importance of this work lies in the detailed examination of novel electrocatalysts with high electrocatalytic activity for large-scale power generation. In this paper, we discuss the use of regulatory techniques like structure tuning and composition optimization to construct nanocatalysts impregnated with noble and non-noble metals on graphene supports. Finally, it highlights the limitations and advantages of these nanocatalysts along with some future perspectives. Our objective is that this summary will help in the research and rational design of graphene-based nanostructures for efficient ORR electrocatalysis. The results of this study showed that the performances of graphene-based catalysts show high electrochemical active surface areas for Pt-Fe/GNPs and Pt-Ni/GNPs catalysts (132 and 136 m2 g−1, respectively) at 100 operating cycles. Also, high current densities and power densities were observed for Pt3-Ni/G and Pt-Co/G catalysts used at the cathode. The values for current density were 1.590 and 1.779 A cm−2, respectively, while the corresponding values for power density were 0.57 and 0.785 W cm−2. Full article
(This article belongs to the Topic Application of Graphene-Based Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 3624 KiB  
Article
Rapid Preparation of Platinum Catalyst in Low-Temperature Molten Salt Using Microwave Method for Formic Acid Catalytic Oxidation Reaction
by Haidong Zhao, Xiaoyan Hu, Hongbiao Ling, Ji Li, Weixu Wang, Jingtao Guo, Rui Liu, Chao Lv, Zhen Lu and Yong Guo
Molecules 2024, 29(21), 5128; https://doi.org/10.3390/molecules29215128 - 30 Oct 2024
Cited by 1 | Viewed by 1397
Abstract
In this paper, platinum nanoparticles with a size of less than 50 nm were rapidly and successfully synthesized in low-temperature molten salt using a microwave method. The morphology and structure of the product were characterized by SEM, TEM, EDX, XRD, etc. The TEM [...] Read more.
In this paper, platinum nanoparticles with a size of less than 50 nm were rapidly and successfully synthesized in low-temperature molten salt using a microwave method. The morphology and structure of the product were characterized by SEM, TEM, EDX, XRD, etc. The TEM and SEM results showed that the prepared product was a nanostructure with concave and uniform size. The EDX result indicated that the product was pure Pt, and the XRD pattern showed that the diffraction peaks of the product were consistent with the standard spectrum of platinum. The obtained Pt/C nanoparticles exhibited remarkable electrochemical performance in a formic acid catalytic oxidation reaction (FAOR), with a peak mass current density of 502.00 mA·mg−1Pt and primarily following the direct catalytic oxidation pathway. In addition, in the chronoamperometry test, after 24 h, the mass-specific activity value of the Pt concave NPs/C catalyst (10.91 mA·mg−1Pt) was approximately 4.5 times that of Pt/C (JM) (2.35 mA·mg−1Pt). The Pt/C NPs exhibited much higher formic acid catalytic activity and stability than commercial Pt/C. The microwave method can be extended to the preparation of platinum-based alloys as well as other catalysts. Full article
Show Figures

Graphical abstract

11 pages, 2129 KiB  
Article
Pt Nanoparticles on Multi-Walled Carbon Nanotubes with High CO Tolerance for Methanol Electrooxidation
by Pingping Yang, Shiming Dong, You Shu and Xuejiao Wei
Molecules 2024, 29(21), 5015; https://doi.org/10.3390/molecules29215015 - 23 Oct 2024
Cited by 1 | Viewed by 1130
Abstract
Anode catalysts are important for direct methanol fuel cells (DMFCs) of energy conversion. Herein, we report a novel strategy by ethylene glycol-based deep eutectic solvents (EG-DESs) for the fabrication of a multi-walled carbon nanotubes (MWCNTs)-supported Pt nanoparticles catalyst (referred to as Pt/CNTs-EG-DES). The [...] Read more.
Anode catalysts are important for direct methanol fuel cells (DMFCs) of energy conversion. Herein, we report a novel strategy by ethylene glycol-based deep eutectic solvents (EG-DESs) for the fabrication of a multi-walled carbon nanotubes (MWCNTs)-supported Pt nanoparticles catalyst (referred to as Pt/CNTs-EG-DES). The Pt/CNTs-EG-DES catalyst provides an increased electrochemically active surface area (ECSA) and shows remarkably improved electrocatalytic performance towards methanol oxidation reaction compared to Pt/CNTs-W (fabricated in water) and commercial Pt/C catalysts. The improved performance is attributed to the generation of more Pt–O bonds which change the electronic states of the Pt atoms and the special node structure that obtains more active sites for a high CO resistance. This study suggests an effective synthesis strategy for Pt-based electrocatalysts with high performance for DMFC applications. Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
Show Figures

Figure 1

Back to TopTop