Ternary MoWNi Alloy as a Bifunctional Catalyst for Alkaline Hydrogen Oxidation and Evolution Reactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Compositional Analyses
2.2. Electrocatalytic Activities of MoWNi for HOR and HER
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of MoWNi
3.3. Synthesis of MoNi, WNi
3.4. Physical Characterization
3.5. Electrochemical Characterizations
3.6. Preparation of Working Electrode
3.7. Electrochemical Measurements for HOR
3.8. Electrochemical Measurements for HER
3.9. Calculation of jk, j0, and ECSA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Li, Z.; Liu, T.; Zhao, S.; Guan, D.; Chen, D.; Shao, Z.; Ni, M. Morphology control and electronic tailoring of CoxAy (A = P, S, Se) electrocatalysts for water splitting. Chem. Eng. J. 2023, 460, 141674. [Google Scholar] [CrossRef]
- Cheshideh, H.; Chen, G.; Huang, H.; Wang, C. Electronic structure and defect density co-modulation of CoSe2/CeO2 nanocomposite for bifunctional hydrogen oxidation and reduction reactions. Mater. Today Sustain. 2024, 26, 100695. [Google Scholar] [CrossRef]
- Cong, Y.; Dou, D.; Zhang, L.; Wang, H.; Liu, M.; Chen, L.; Zhao, Q.; Li, C. Synergistic interactions of electronic modulation and low crystallization in Ru-RuO2/C heterostructure for highly efficient multifunctional electrocatalysis. Fuel 2024, 367, 131472. [Google Scholar] [CrossRef]
- Razzaq, S.; Exner, K.S. Why efficient bifunctional hydrogen electrocatalysis requires a change in the reaction mechanism. iScience 2024, 27, 108848. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Zhang, X.; Wang, L.; Fu, H. Alloying Ni4Mo for efficient alkaline hydrogen oxidation and hydrogen evolution reactions. Sustain. Energy Fuels 2024, 8, 1619–1625. [Google Scholar] [CrossRef]
- Ren, J.; Wang, L.; Chen, L.; Song, X.; Kong, Q.; Wang, H.; Yuan, Z. Interface Metal Oxides Regulating Electronic State around Nickel Species for Efficient Alkaline Hydrogen Electrocatalysis. Small 2023, 19, 2206196. [Google Scholar] [CrossRef]
- Saji, V.S.; Pillai, V.K. (Eds.) Multi-Functional Electrocatalysts: Fundamentals and Applications; Royal Society of Chemistry: London, UK, 2024. [Google Scholar] [CrossRef]
- Samanta, R.; Mishra, R.; Manna, B.K.; Barman, S. IrO2 modified Crystalline-PdO nanowires based bi-functional electro-catalyst for HOR/HER in acid and base. Renew. Energy 2022, 191, 151–160. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Shen, P.K.; Yang, C.; Zhu, J. High-Performance MoP-Mo2C/C Heterogeneous Nanoparticle Catalysts for Alkaline Hydrogen Evolution and Oxidation Reactions. ACS Mater. Lett. 2024, 6, 1678–1685. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, X.; Chen, Z.; Gao, Y.; Yu, M.; Chen, D.; Pan, H.; Liu, S.; Wang, D.; Mu, S. Constructing Symmetry-Mismatched RuxFe3–xO4 Heterointerface-Supported Ru Clusters for Efficient Hydrogen Evolution and Oxidation Reactions. Nano Lett. 2024, 24, 1015–1023. [Google Scholar] [CrossRef]
- Zheng, T.; Chen, S.; Qin, J.; Yang, F.; Shi, J.; Hu, Y.; Song, Y.; Shi, X.; Gu, M.D.; Wang, M.; et al. Pd/CeO2 Interface with Abundant Oxygen Vacancies for Alkaline Hydrogen Evolution/Oxidation Reaction. ACS Appl. Nano Mater. 2024, 7, 19502–19513. [Google Scholar] [CrossRef]
- Pan, H.; Tang, T.; Jiang, Z.; Ding, L.; Xu, C.; Hu, J.-S. CO-Tolerant Hydrogen Oxidation Electrocatalysts for Low-Temperature Hydrogen Fuel Cells. J. Phys. Chem. Lett. 2024, 15, 3011–3022. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Chen, X.; Wang, L.; Fu, H. Advanced Progress for Promoting Anodic Hydrogen Oxidation Activity and Anti-CO Poisoning in Fuel Cells. ACS Catal. 2024, 14, 13602–13629. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, C.; Zhao, Y.; Wang, Q.; Zhao, J.; Waterhouse, G.I.N.; Qin, Y.; Shang, L.; Zhang, T. Pt Single Atoms on CrN Nanoparticles Deliver Outstanding Activity and CO Tolerance in the Hydrogen Oxidation Reaction. Adv. Mater. 2023, 35, 2208799. [Google Scholar] [CrossRef]
- Cui, W.; Gao, F.; Na, G.; Wang, X.; Li, Z.; Yang, Y.; Niu, Z.; Qu, Y.; Wang, D.; Pan, H. Insights into the pH effect on hydrogen electrocatalysis. Chem. Soc. Rev. 2024, 53, 10253–10311. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, H.; Xia, X.; Peng, C. Highly active and robust Ir-Ru electrocatalyst for alkaline HER/HOR: Combined electronic and oxophilic effect. Appl. Catal. B Environ. 2024, 358, 124422. [Google Scholar] [CrossRef]
- Wang, T.; Xie, H.; Chen, M.; D’Aloia, A.; Cho, J.; Wu, G.; Li, Q. Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy 2017, 42, 69–89. [Google Scholar] [CrossRef]
- Li, W.; Liu, K.; Feng, S.; Xiao, Y.; Zhang, L.; Mao, J.; Liu, Q.; Liu, X.; Luo, J.; Han, L. Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J. Colloid Interf. Sci. 2024, 655, 726–735. [Google Scholar] [CrossRef]
- Cheng, B.; Kong, K.; Zhang, L.; Sa, R.; Gu, T.; Rui, Y.; Wang, R. Accelerating water oxidation kinetics via synergistic in-layer modification and interlayer reconstruction over hetero-epitaxial Fe-Mn-O nanosheets. Chem. Eng. J. 2022, 441, 136122. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, J.; Hu, Y.; Yin, J.; Zheng, Y.; Xi, P. Applications of Rare Earth Promoted Transition Metal Sulfides in Electrocatalysis. Chin. J. Chem. 2023, 41, 1740–1752. [Google Scholar] [CrossRef]
- Zhang, L.; Han, L.; Liu, H.; Liu, X.; Luo, J. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angew. Chem. Int. Ed. 2017, 56, 13694–13698. [Google Scholar] [CrossRef]
- Qin, S.; Duan, Y.; Zhang, X.; Zheng, L.; Gao, F.; Yang, P.; Niu, Z.; Liu, R.; Yang, Y.; Zheng, X.; et al. Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat. Commun. 2021, 12, 2686. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Mao, X.; Feng, K.; Xu, J.; Zhong, J.; Wang, L.; Han, N.; Li, Y. Prominent electronic effect in iridium-alloy-skinned nickel nanoparticles boosts alkaline hydrogen electrocatalysis. Energy Environ. Sci. 2023, 16, 6120–6126. [Google Scholar] [CrossRef]
- Wei, N.; Mao, M.; Wu, J.; Long, Y.; Fan, G. Void confinement and doping-modulation of IrNi alloy nanoparticles on hollow carbon spheres for efficient hydrogen oxidation/evolution reactions. Fuel 2022, 319, 123637. [Google Scholar] [CrossRef]
- Nandan, R.; Nara, H.; Nam, H.N.; Phung, Q.M.; Ngo, Q.P.; Na, J.; Henzie, J.; Yamauchi, Y. Tailored Design of Mesoporous Nanospheres with High Entropic Alloy Sites for Efficient Redox Electrocatalysis. Sci. Adv. 2024, 11, 2402518. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Yang, Z.; Yang, J.; Zhang, Y.; Zhang, Q.; Yu, X.; Cai, W. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability. Nano Technol. 2018, 29, 055402. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Griego, C.; Hart, J.L.; Li, Y.; Taheri, M.L.; Keith, J.; Snyder, J.D. Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate. ACS Catal. 2019, 9, 5290–5301. [Google Scholar] [CrossRef]
- González-Hernández, M.; Antolini, E.; Perez, J. Synthesis, Characterization and CO Tolerance Evaluation in PEMFCs of Pt2RuMo Electrocatalysts. Catalysts 2019, 9, 61. [Google Scholar] [CrossRef]
- Du, L.; Xiong, H.; Lu, H.; Yang, L.-M.; Liao, R.-Z.; Xia, B.Y.; You, B. Electroshock synthesis of a bifunctional nonprecious multi-element alloy for alkaline hydrogen oxidation and evolution. Exploration 2022, 2, 20220024. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Y.; Jiang, T.; Jin, S.; Sajid, M.; Zhang, Z.; Xu, J.; Fan, Y.; Wang, X.; Chen, J.; et al. Non-Noble Metal High-Entropy Alloy-Based Catalytic Electrode for Long-Life Hydrogen Gas Batteries. ACS Nano 2024, 18, 4229–4240. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lu, S.; Feng, Y.; Fu, L.; Feng, L. Insights into the Confinement Effect of NiMo Catalysts toward Alkaline Hydrogen Oxidation. ACS Catal. 2024, 14, 2324–2332. [Google Scholar] [CrossRef]
- Jiang, T.; Wei, S.; Li, L.; Zheng, K.; Zheng, X.; Park, S.; Liu, S.; Zhu, Z.; Liu, Z.; Meng, Y.; et al. Solid–Liquid–Gas Management for Low-Cost Hydrogen Gas Batteries. ACS Nano 2023, 17, 7821–7829. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, B.; Yue, X.; Huang, S. Synthesis of NiMoW ternary alloy to boost hydrogen oxidation reaction in alkaline medium. Int. J. Hydrogen Energy 2024, 53, 919–924. [Google Scholar] [CrossRef]
- Wang, T.; Wang, M.; Yang, H.; Xu, M.; Zuo, C.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W.; et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522–3529. [Google Scholar] [CrossRef]
- Wang, X.; Cormier, C.R.; Khosravi, A.; Smyth, C.M.; Shallenberger, J.R.; Addou, R.; Wallace, R.M. In situ exfoliated 2D molybdenum disulfide analyzed by XPS. Surf. Sci. Rep. 2020, 27, 014019. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef]
- Qi, H.; Lee, Y.-L.; Yang, T.; Li, W.; Li, W.; Ma, L.; Hu, S.; Duan, Y.; Hackett, G.A.; Liu, X. Positive Effects of H2O on the Hydrogen Oxidation Reaction on Sr2Fe1.5Mo0.5O6−δ-Based Perovskite Anodes for Solid Oxide Fuel Cells. ACS Catal. 2020, 10, 5567–5578. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.; Alia, S.; Pivovar, B.S.; Xu, W. Single-Molecule Nanocatalysis Shows In Situ Deactivation of Pt/C Electrocatalysts during the Hydrogen-Oxidation Reaction. Angew. Chem. Int. Ed. 2016, 55, 3086–3090. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.-J. Lattice-confined Ru clusters for hydrogen oxidation reaction with high CO-tolerance. Sci. China Chem. 2020, 63, 1169–1170. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Camargo, M.; Commenge, J.-M.; Falk, L.; Gil, I.D. Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review. Int. J. Hydrogen Energy 2019, 44, 9486–9504. [Google Scholar] [CrossRef]
- Huang, Z.; Lu, R.; Zhang, Y.; Chen, W.; Chen, G.; Ma, C.; Wang, Z.; Han, Y.; Huang, W. A Highly Efficient pH-Universal HOR Catalyst with Engineered Electronic Structures of Single Pt Sites by Isolated Co Atoms. Adv. Funct. Mater. 2023, 33, 2306333. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Howell, S.E.L.; Brady, M.; Xu, X.; McNeil, K. Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nat. Commun. 2021, 12, 1. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Tian, C.; Zhai, Y.; Li, X.; Li, J.; Chen, H.; Cheng, L.; Zhao, H.; Dai, P. Ternary MoWNi Alloy as a Bifunctional Catalyst for Alkaline Hydrogen Oxidation and Evolution Reactions. Catalysts 2025, 15, 15. https://doi.org/10.3390/catal15010015
Zhao Y, Tian C, Zhai Y, Li X, Li J, Chen H, Cheng L, Zhao H, Dai P. Ternary MoWNi Alloy as a Bifunctional Catalyst for Alkaline Hydrogen Oxidation and Evolution Reactions. Catalysts. 2025; 15(1):15. https://doi.org/10.3390/catal15010015
Chicago/Turabian StyleZhao, Yongxin, Chaofan Tian, Yuzhu Zhai, Xinyue Li, Jingbei Li, Huishan Chen, Longzhen Cheng, Hui Zhao, and Pengcheng Dai. 2025. "Ternary MoWNi Alloy as a Bifunctional Catalyst for Alkaline Hydrogen Oxidation and Evolution Reactions" Catalysts 15, no. 1: 15. https://doi.org/10.3390/catal15010015
APA StyleZhao, Y., Tian, C., Zhai, Y., Li, X., Li, J., Chen, H., Cheng, L., Zhao, H., & Dai, P. (2025). Ternary MoWNi Alloy as a Bifunctional Catalyst for Alkaline Hydrogen Oxidation and Evolution Reactions. Catalysts, 15(1), 15. https://doi.org/10.3390/catal15010015