Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,428)

Search Parameters:
Keywords = PPBs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10899 KiB  
Article
Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter
by Jingbin Yan, Tao Wang, Feiruo Qin and Haoxuan Hu
Symmetry 2025, 17(8), 1247; https://doi.org/10.3390/sym17081247 - 6 Aug 2025
Abstract
To address the issues of DC-side voltage fluctuation and three-phase current distortion in rectifier systems under pulsed load conditions, this paper proposes a control strategy that integrates Model Predictive Control (MPC) with a Luenberger observer for the Power Pulsation Buffer (PPB). The observer [...] Read more.
To address the issues of DC-side voltage fluctuation and three-phase current distortion in rectifier systems under pulsed load conditions, this paper proposes a control strategy that integrates Model Predictive Control (MPC) with a Luenberger observer for the Power Pulsation Buffer (PPB). The observer parameters are adaptively tuned using a gradient descent method. First, the pulsed current generated by the load is decomposed into dynamic and average components, and a mathematical model of the PPB is established. Considering the negative impact of DC voltage ripple and lumped disturbances such as parasitic parameters on model accuracy, a Luenberger observer is designed to estimate these disturbances. To overcome the dependence of traditional Luenberger observers on empirically tuned gains, an adaptive gradient descent algorithm based on gradient direction consistency is introduced for online gain adjustment. Simulation and experimental results demonstrate that the proposed control strategy—combining the Luenberger observer with gradient descent and MPC—effectively reduces current tracking overshoot and improves tracking accuracy. Furthermore, it enables sustained decoupling of the PPB from the system, significantly mitigating DC-side voltage ripple and three-phase current distortion under pulsed load conditions, thereby validating the effectiveness of the proposed approach. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 16139 KiB  
Article
XCH4 Spatiotemporal Variations in a Natural-Gas-Exploiting Basin with Intensive Agriculture Activities Using Multiple Remote Sensing Datasets: Case from Sichuan Basin, China
by Tengnan Wang and Yunpeng Wang
Remote Sens. 2025, 17(15), 2695; https://doi.org/10.3390/rs17152695 - 4 Aug 2025
Viewed by 108
Abstract
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset [...] Read more.
The Sichuan Basin is a natural-gas-exploiting area with intensive agriculture activities. However, the spatial and temporal distribution of atmospheric methane concentration and the relationships with intensive agriculture and natural gas extraction activities are not well investigated. In this study, a long-term (2003–2021) dataset of column-averaged dry-air mole fraction of methane (XCH4) over the Sichuan Basin and adjacent regions was built by integrating multi-satellite remote sensing data (SCIAMACHY, GOSAT, Sentinel-5P), which was calibrated using ground station data. The results show a strong correlation and consistency (R = 0.88) between the ground station and satellite observations. The atmospheric CH4 concentration of the Sichuan Basin showed an overall higher level (around 20 ppb) than that of the whole of China and an increasing trend in the rates, from around 2.27 ppb to 10.44 ppb per year between 2003 and 2021. The atmospheric CH4 concentration of the Sichuan Basin also exhibits clear seasonal changes (higher in the summer and autumn and lower in the winter and spring) with a clustered geographical distribution. Agricultural activities and natural gas extraction contribute significantly to atmospheric methane concentrations in the study area, which should be considered in carbon emission management. This study provides an effective way to investigate the spatiotemporal distribution of atmospheric CH4 concentration and related factors at a regional scale with natural and human influences using multi-source satellite remote sensing data. Full article
Show Figures

Figure 1

14 pages, 4489 KiB  
Article
Numerical Simulation Analysis of Cu2+ Concentration for Marine Biological Control Based on Seawater Lifting Pump
by Zhishu Zhang, Jie Liu, Lei Li, Qingmiao Yang, Longqi Meng and Zhaoxuan Li
Processes 2025, 13(8), 2440; https://doi.org/10.3390/pr13082440 - 1 Aug 2025
Viewed by 195
Abstract
To prevent marine biofouling in seawater lift pumps, electrolyzed seawater containing Cu2+ needs to be injected into the pumps. This study employs Computational Fluid Dynamics (CFD) to simulate the variation in Cu2+ injection concentration required to achieve a Cu2+ concentration [...] Read more.
To prevent marine biofouling in seawater lift pumps, electrolyzed seawater containing Cu2+ needs to be injected into the pumps. This study employs Computational Fluid Dynamics (CFD) to simulate the variation in Cu2+ injection concentration required to achieve a Cu2+ concentration of 3 ppb within a 10 cm range around the pump under different operating conditions, including the installation of baffles and varying seawater flow rates. The simulation results demonstrate that CFD can accurately predict the distribution of Cu2+ concentration in electrolyzed seawater, with the distribution significantly influenced by seawater flow direction, necessitating reference to upstream data. When the lift pumps are idle, the required Cu2+ injection concentration increases with rising seawater flow rates, reaching 41.9 μg/L at the maximum flow rate of 1.9 m/s. During alternating pump operation, the required Cu2+ injection concentration also increases with the flow rate, significantly affected by the pump’s operational position: lower concentrations are required when the upstream pump is active compared to the downstream pump. Additionally, installing baffles around the pumps effectively mitigates the impact of seawater flow on Cu2+ distribution, significantly reducing the required injection concentration. This study provides theoretical and data-driven insights for optimising marine biofouling prevention in seawater lift pumps. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 1717 KiB  
Article
High-Performance Hydrogen Gas Sensor Based on Pd-Doped MoS2/Si Heterojunction
by Enyu Ma, Zihao Xu, Ankai Sun, Shuo Yang and Jianyu Jiang
Sensors 2025, 25(15), 4753; https://doi.org/10.3390/s25154753 - 1 Aug 2025
Viewed by 209
Abstract
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. [...] Read more.
High-performance hydrogen gas sensors have gained considerable interest for their crucial function in reducing H2 explosion risk. Although MoS2 has good potential for chemical sensing, its application in hydrogen detection at room temperature is limited by slow response and incomplete recovery. In this work, Pd-doped MoS2 thin films are deposited on a Si substrate, forming Pd-doped MoS2/Si heterojunctions via magnetron co-sputtering. The incorporation of Pd nanoparticles significantly enhances the catalytic activity for hydrogen adsorption and facilitates more efficient electron transfer. Owing to its distinct structural characteristics and sharp interface properties, the fabricated Pd-doped MoS2/Si heterojunction device exhibits excellent H2 sensing performance under room temperature conditions. The gas sensor device achieves an impressive sensing response of ~6.4 × 103% under 10,000 ppm H2 concentration, representing a 110% improvement compared to pristine MoS2. Furthermore, the fabricated heterojunction device demonstrates rapid response and recovery times (24.6/12.2 s), excellent repeatability, strong humidity resistance, and a ppb-level detection limit. These results demonstrate the promising application prospects of Pd-doped MoS2/Si heterojunctions in the development of advanced gas sensing devices. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensing Technology)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Quantifying Ozone-Driven Forest Losses in Southwestern China (2019–2023)
by Qibing Xia, Jingwei Zhang, Zongxin Lv, Duojun Wu, Xiao Tang and Huizhi Liu
Atmosphere 2025, 16(8), 927; https://doi.org/10.3390/atmos16080927 (registering DOI) - 31 Jul 2025
Viewed by 206
Abstract
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3 [...] Read more.
As a key tropospheric photochemical pollutant, ground-level ozone (O3) poses significant threats to ecosystems through its strong oxidative capacity. With China’s rapid industrialization and urbanization, worsening O3 pollution has emerged as a critical environmental concern. This study examines O3’s impacts on forest ecosystems in Southwestern China (Yunnan, Guizhou, Sichuan, and Chongqing), which harbors crucial forest resources. We analyzed high-resolution monitoring data from over 200 stations (2019–2023), employing spatial interpolation to derive the regional maximum daily 8 h average O3 (MDA8-O3, ppb) and accumulated O3 exposure over 40 ppb (AOT40) metrics. Through AOT40-based exposure–response modeling, we quantified the forest relative yield losses (RYL), economic losses (ECL) and ECL/GDP (GDP: gross domestic product) ratios in this region. Our findings reveal alarming O3 increases across the region, with a mean annual MDA8-O3 anomaly trend of 2.4% year−1 (p < 0.05). Provincial MDA8-O3 anomaly trends varied from 1.4% year−1 (Yunnan, p = 0.059) to 4.3% year−1 (Guizhou, p < 0.001). Strong correlations (r > 0.85) between annual RYL and annual MDA8-O3 anomalies demonstrate the detrimental effects of O3 on forest biomass. The RYL trajectory showed an initial decline during 2019–2020 and accelerated losses during 2020–2023, peaking at 13.8 ± 6.4% in 2023. Provincial variations showed a 5-year averaged RYL ranging from 7.10% (Chongqing) to 15.85% (Yunnan). O3 exposure caused annual ECL/GDP averaging 4.44% for Southwestern China, with Yunnan suffering the most severe consequences (ECL/GDP averaging 8.20%, ECL averaging CNY 29.8 billion). These results suggest that O3-driven forest degradation may intensify, potentially undermining the regional carbon sequestration capacity, highlighting the urgent need for policy interventions. We recommend enhanced monitoring networks and stricter control methods to address these challenges. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

19 pages, 5269 KiB  
Article
Three-Dimensional Ordered Porous SnO2 Nanostructures Derived from Polystyrene Sphere Templates for Ethyl Methyl Carbonate Detection in Battery Safety Applications
by Peijiang Cao, Linlong Qu, Fang Jia, Yuxiang Zeng, Deliang Zhu, Chunfeng Wang, Shun Han, Ming Fang, Xinke Liu, Wenjun Liu and Sachin T. Navale
Nanomaterials 2025, 15(15), 1150; https://doi.org/10.3390/nano15151150 - 25 Jul 2025
Viewed by 318
Abstract
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling [...] Read more.
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling rapid detection of various gas-phase indicators of battery failure. Utilizing this approach, 3D ordered tin oxide (SnO2) nanostructures were synthesized using polystyrene sphere (PS) templates of varied diameters (200–1500 nm) and precursor concentrations (0.2–0.6 mol/L) to detect key electrolyte–vapors, especially ethyl methyl carbonate (EMC), released in the early stages of TR. The 3D ordered SnO2 nanostructures with ring- and nanonet-like morphologies, formed after PS template removal, were characterized, and the effects of template size and precursor concentration on their structure and sensing performance were investigated. Among various nanostructures of SnO2, nanonets achieved by a 1000 nm PS template and 0.4 mol/L precursor showed higher mesoporosity (~28 nm) and optimal EMC detection. At 210 °C, it detected 10 ppm EMC with a response of ~7.95 and response/recovery times of 14/17 s, achieving a 500 ppb detection limit alongside excellent reproducibility/stability. This study demonstrates that precise structural control of SnO2 nanostructures using templates enables sensitive EMC detection, providing an effective sensor-based strategy to enhance LIB safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Gas-Sensitive Nanomaterials)
Show Figures

Figure 1

16 pages, 2520 KiB  
Article
Infrared Spectroscopic Determination of Strongly Bound Cyanides in Water
by Rihab Masmoudi and Carl P. Tripp
Spectrosc. J. 2025, 3(3), 21; https://doi.org/10.3390/spectroscj3030021 - 17 Jul 2025
Viewed by 204
Abstract
Cyanide species pose an environmental concern as they inhibit important biological processes in humans and aquatic systems. There is more focus on free-CN and weak acid dissociables cyanide as hazardous species compared to strong acid dissociables due to their higher reactivity and toxicity. [...] Read more.
Cyanide species pose an environmental concern as they inhibit important biological processes in humans and aquatic systems. There is more focus on free-CN and weak acid dissociables cyanide as hazardous species compared to strong acid dissociables due to their higher reactivity and toxicity. However, the strong acid dissociables cyanide also poses health concerns as it liberates free-CN under ultraviolet irradiation or when present in acidic solutions. Detection of strongly acid dissociables cyanide typically requires its digestion in acidic solutions and measurement of the gaseous HCN produced. A simple infrared spectroscopic method is described here to speciate and quantify three strong acid dissociables cyanide: [Fe(CN)6]3−, [Co(CN)6]3−, and [Au(CN)2]. The strategy involves precipitating the strongly acid dissociables cyanide using cetyltrimethylethylammonium bromide, capturing the precipitate on a polyethylene membrane, and quantifying the individual strongly acid dissociables cyanide from the IR spectrum recorded in transmission mode through the membrane. Controlling the particle diameter to be in the range of 0.2–2 µm is important. Particles less than 0.2 µm pass through the membrane, whereas particles larger than about 2 µm lead to nonlinearity in quantification. The average %recoveries for [Fe(CN)6]3−, [Co(CN)6]3−, and [Au(CN)2] were 100% (%RSD = 7), 91% (%RSD = 7), and 101% (%RSD = 8), respectively. The detection limit for [Fe(CN)6]3− and [Co(CN)6]3− were both 20 ppb CN, whereas [Au(CN)2] was 100 ppb CN. The detection range was 20–750 ppb CN for [Fe(CN)6]3− and [Co(CN)6]3− and 100–750 ppb CN for [Au(CN)2] with a linear regression of R2 = 0.999–1.000. Full article
Show Figures

Figure 1

12 pages, 2650 KiB  
Article
Calibration and Detection of Phosphine Using a Corrosion-Resistant Ion Trap Mass Spectrometer
by Dragan Nikolić and Xu Zhang
Biophysica 2025, 5(3), 28; https://doi.org/10.3390/biophysica5030028 - 17 Jul 2025
Viewed by 211
Abstract
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified [...] Read more.
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified ppb-level PH3/H2S/CO2 mixtures, and report results from mass spectra with sufficient resolution to distinguish isotopic envelopes that validate the detection of PH3 at a concentration of 62 ppb. Fragmentation patterns for PH3 and H2S agree with NIST data, and signal-to-noise performance confirms ppb sensitivity over 2.6 h acquisition periods. We further assess spectral interferences from oxygen isotopes and propose a detection scheme based on isolated phosphorus ions (P+) to enable specific and interference-resistant identification of PH3 and other reduced phosphorus species of astrobiological interest in Venus-like environments. This work extends the capabilities of QIT-MS for trace gas analysis in chemically aggressive atmospheric conditions. Full article
(This article belongs to the Special Issue Mass Spectrometry Applications in Biology Research)
Show Figures

Figure 1

10 pages, 1296 KiB  
Article
High-Sensitivity Dynamic Detection of Dissolved Acetylene in Transformer Oil Based on High-Power Quartz-Enhanced Photoacoustic Spectroscopy Sensing System
by Yuxiang Wu, Tiehua Ma, Chenhua Liu, Yashan Fan, Shuai Shi, Songjie Guo, Yu Wang, Xiangjun Xu, Guqing Guo, Xuanbing Qiu, Zhijin Shang and Chuanliang Li
Photonics 2025, 12(7), 713; https://doi.org/10.3390/photonics12070713 - 16 Jul 2025
Viewed by 275
Abstract
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with [...] Read more.
To enable the highly sensitive detection of acetylene (C2H2) dissolved in transformer oil, a high-power quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing system is proposed. A standard 32.7 kHz quartz tuning fork (QTF) was employed as an acoustic transducer, coupled with an optimized acoustic resonator to enhance the acoustic signal. The laser power was boosted to 150 mW using a C-band erbium-doped fiber amplifier (EDFA), achieving a detection limit of 469 ppb for C2H2 with an integration time of 1 s. The headspace degassing method was utilized to extract dissolved gases from the transformer oil, and the equilibrium process for the release of dissolved C2H2 was successfully monitored using the developed high-power QEPAS system. This approach provides reliable technical support for the real-time monitoring of the operational safety of power transformers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

11 pages, 434 KiB  
Article
The Effects of Endophyte-Infected Tall Fescue on the Production and Reproductive Performance Parameters of Beef Cattle and Calves
by Amber A. Taylor, John H. Fike, Vitor R. G. Mercadante and Gabriel J. Pent
Grasses 2025, 4(3), 29; https://doi.org/10.3390/grasses4030029 - 15 Jul 2025
Viewed by 210
Abstract
Records from 2012 to 2019 for two herds were analyzed to determine how tall fescue (Schedonorus arundinaceus (Schreb.) Dumont) endophyte (Epichloë coenophialum) status affected the productivity of spring-calving cows and calves. Pastures either contained tall fescue with wildtype endophyte (high [...] Read more.
Records from 2012 to 2019 for two herds were analyzed to determine how tall fescue (Schedonorus arundinaceus (Schreb.) Dumont) endophyte (Epichloë coenophialum) status affected the productivity of spring-calving cows and calves. Pastures either contained tall fescue with wildtype endophyte (high levels of ergot alkaloids) or novel- or endophyte-free tall fescue (largely ergot alkaloid free). The experimental design was a randomized complete block with year as the replication unit. Forage samples from the farm with toxic endophyte-infected tall fescue contained 1136 ± 413 ppb total ergot alkaloids, while forage from the non-toxic pastures on the second farm contained 118 ± 83 ppb total ergot alkaloids. Artificial insemination pregnancy rates and calving rates were greater (p < 0.05) for cows that grazed non-toxic tall fescue (51.2 ± 2.8% and 93.5 ± 1.4%, respectively) than for cows on toxic endophyte-infected tall fescue (43.3 ± 2.8% and 88.8 ± 1.4%, respectively). Birth weights and weaning weights were greater (p < 0.05) for calves from the non-toxic tall fescue system (37 ± 1 kg and 278 ± 8 kg, respectively) than for calves from the toxic endophyte-infected tall fescue system (33 ± 1 kg and 254 ± 8 kg, respectively). Raising cattle on tall fescue without the toxic endophyte improved cow and calf productivity. Full article
Show Figures

Figure 1

16 pages, 4139 KiB  
Article
Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level
by Peishuo Wang and Xueli Yang
Chemosensors 2025, 13(7), 250; https://doi.org/10.3390/chemosensors13070250 - 11 Jul 2025
Viewed by 359
Abstract
Highly sensitive real-time detection of hydrogen sulfide (H2S) is important for human health and environmental protection due to its highly toxic properties. The development of high-performance H2S sensors remains challenging for poor selectivity, high limit detection and slow recovery [...] Read more.
Highly sensitive real-time detection of hydrogen sulfide (H2S) is important for human health and environmental protection due to its highly toxic properties. The development of high-performance H2S sensors remains challenging for poor selectivity, high limit detection and slow recovery from irreversible sulfidation. To solve these problems, we strategically prepared a layered structure of CuO-sensitized WO3 flower-like hollow spheres with CuO as the sensitizing component. A 15 wt% CuO/WO3 exhibits an ultra-high response (Ra/Rg = 571) to 10 ppm H2S (131-times of pure WO3), excellent selectivity (97-times higher than 100 ppm interference gas), and a low detection limit (100 ppb). Notably, its fast response (4 s) is accompanied by full recovery within 236 s. After 30 days of continuous testing, the response of 15 wt% CuO/WO3 decreased slightly but maintained the initial response of 90.5%. The improved performance is attributed to (1) the p-n heterojunction formed between CuO and WO3 optimizes the energy band structure and enriches the chemisorption sites for H2S; (2) the reaction of H2S with CuO generates highly conductive CuS, which significantly reduces the interfacial resistance; and (3) the hierarchical flowery hollow microsphere structure, heterojunction, and oxygen vacancy synergistically promote the desorption. This work provides a high-performance H2S gas sensor that balances response, selectivity, and response/recovery kinetics. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

26 pages, 1541 KiB  
Article
Projected Urban Air Pollution in Riyadh Using CMIP6 and Bayesian Modeling
by Khadeijah Yahya Faqeih, Mohamed Nejib El Melki, Somayah Moshrif Alamri, Afaf Rafi AlAmri, Maha Abdullah Aldubehi and Eman Rafi Alamery
Sustainability 2025, 17(14), 6288; https://doi.org/10.3390/su17146288 - 9 Jul 2025
Viewed by 554
Abstract
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach [...] Read more.
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach that combines CMIP6 climate projections with localized air quality data. We analyzed daily concentrations of major pollutants (SO2, NO2) across 15 strategically selected monitoring stations representing diverse urban environments, including traffic corridors, residential areas, healthcare facilities, and semi-natural zones. Climate data from two Earth System Models (CNRM-ESM2-1 and MPI-ESM1.2) were bias-corrected and integrated with historical pollution measurements (2000–2015) using hierarchical Bayesian statistical modeling under SSP2-4.5 and SSP5-8.5 emission scenarios. Our results revealed substantial deterioration in air quality, with projected increases of 80–130% for SO2 and 45–55% for NO2 concentrations by 2070 under high-emission scenarios. Spatial analysis demonstrated pronounced pollution gradients, with traffic corridors (Eastern Ring Road, Northern Ring Road, Southern Ring Road) and densely urbanized areas (King Fahad Road, Makkah Road) experiencing the most severe increases, exceeding WHO guidelines by factors of 2–3. Even semi-natural areas showed significant increases in pollution due to regional transport effects. The hierarchical Bayesian framework effectively quantified uncertainties while revealing consistent degradation trends across both climate models, with the MPI-ESM1.2 model showing a greater sensitivity to anthropogenic forcing. Future concentrations are projected to reach up to 70 μg m−3 for SO2 and exceed 100 μg m−3 for NO2 in heavily trafficked areas by 2070, representing 2–3 times the Traffic corridors showed concentration increases of 21–24% compared to historical baselines, with some stations (R5, R13, and R14) recording projected levels above 4.0 ppb for SO2 under the SSP5-8.5 scenario. These findings highlight the urgent need for comprehensive emission reduction strategies, accelerated renewable energy transition, and reformed urban planning approaches in rapidly developing arid cities. Full article
Show Figures

Figure 1

17 pages, 4340 KiB  
Article
Butylated Hydroxyanisole (BHA) Disrupts Brain Signalling in Embryo–Larval Stage of Zebrafish Leading to Attention Deficit Hyperactivity Disorder (ADHD)
by Kandhasamy Veshaal, Ramasamy Vasantharekha, Usha Rani Balu, Mahesh Vallabi Aayush, Saheshnu Sai Balaji Pillai, Winkins Santosh and Barathi Seetharaman
J. Xenobiot. 2025, 15(4), 116; https://doi.org/10.3390/jox15040116 - 9 Jul 2025
Viewed by 377
Abstract
Background: Butylated hydroxyanisole (BHA) has been extensively used in several commercial industries as a preservative. It causes severe cellular and neurological damage affecting the developing fetus and might induce attention deficit hyperactivity disorder (ADHD). Methods: Zebrafish embryos were subjected to five distinct doses [...] Read more.
Background: Butylated hydroxyanisole (BHA) has been extensively used in several commercial industries as a preservative. It causes severe cellular and neurological damage affecting the developing fetus and might induce attention deficit hyperactivity disorder (ADHD). Methods: Zebrafish embryos were subjected to five distinct doses of BHA—0.5, 1, 2, 4, and 8 ppb up to 96 h post fertilization (hpf). Hatching rate, heart rate, and body malformations were assessed at 48 hpf, 72 hpf, and 48–96 hpf, respectively. After exposure, apoptotic activity, neurobehavioral evaluation, neurotransmitter assay, and antioxidant activity were assessed at 96 hpf. At 120 hpf, the expression of genes DRD4, COMT, 5-HTR1aa, and BDNF was evaluated by real-time PCR. Results: BHA exposure showed a delay in the hatching rate and a decrease in the heart rate of the embryo when compared with the control. Larvae exhibited developmental deformities such as bent spine, yolk sac, and pericardial edema. A higher density of apoptotic cells was observed in BHA-exposed larvae at 96 hpf. There was a decline in catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and superoxide dismutase (SOD) activity, indicating oxidative stress. There was a significant decrease in Acetylcholinesterase (AChE) activity and serotonin levels with an increase in concentration of BHA, leading to a dose-responsive increase in anxiety and impairment in memory. A significant decrease in gene expression was also observed for DRD4, COMT, 5-HTR1aa, and BDNF. Conclusions: Even at lower concentrations of BHA, zebrafish embryos suffered from developmental toxicity, anxiety, and impaired memory due to a decrease in AChE activity and serotonin levels and altered the expression of the mentioned genes. Full article
Show Figures

Figure 1

18 pages, 2395 KiB  
Article
Theoretical Potential of TanSat-2 to Quantify China’s CH4 Emissions
by Sihong Zhu, Dongxu Yang, Liang Feng, Longfei Tian, Yi Liu, Junji Cao, Minqiang Zhou, Zhaonan Cai, Kai Wu and Paul I. Palmer
Remote Sens. 2025, 17(13), 2321; https://doi.org/10.3390/rs17132321 - 7 Jul 2025
Viewed by 424
Abstract
Satellite-based monitoring of atmospheric column-averaged dry-air mole fraction (XCH4) is essential for quantifying methane (CH4) emissions, yet uncharacterized spatially varying biases in XCH4 observations can cause misattribution in flux estimates. This study assesses the potential of the upcoming [...] Read more.
Satellite-based monitoring of atmospheric column-averaged dry-air mole fraction (XCH4) is essential for quantifying methane (CH4) emissions, yet uncharacterized spatially varying biases in XCH4 observations can cause misattribution in flux estimates. This study assesses the potential of the upcoming TanSat-2 satellite mission to estimate China’s CH4 emission using a series of Observing System Simulation Experiments (OSSEs) based on an Ensemble Kalman Filter (EnKF) inversion framework coupled with GEOS-Chem on a 0.5° × 0.625° grid, alongside an evaluation of current TROPOMI-based products against Total Carbon Column Observing Network (TCCON) observations. Assuming a target precision of 8 ppb, TanSat-2 could achieve an annual national emission estimate accuracy of 2.9% ± 4.2%, reducing prior uncertainty by 84%, with regional deviations below 5.0% across Northeast, Central, East, and Southwest China. In contrast, limited coverage in South China due to persistent cloud cover leads to a 26.1% discrepancy—also evident in pseudo TROPOMI OSSEs—highlighting the need for complementary ground-based monitoring strategies. Sensitivity analyses show that satellite retrieval biases strongly affect inversion robustness, reducing the accuracy in China’s total emission estimates by 5.8% for every 1 ppb increase in bias level across scenarios, particularly in Northeast, Central and East China. We recommend expanding ground-based XCH4 observations in these regions to support the correction of satellite-derived biases and improve the reliability of satellite-constrained inversion results. Full article
Show Figures

Figure 1

13 pages, 2602 KiB  
Article
Hollow Mesoporous ZnO/ZnCo2O4 Based on Ostwald Ripening for H2S Detection
by Hongtao Wang, Yang Liu, Yuanchao Xie, Jianan Ma, Dan Han and Shengbo Sang
Chemosensors 2025, 13(7), 239; https://doi.org/10.3390/chemosensors13070239 - 5 Jul 2025
Viewed by 337
Abstract
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not [...] Read more.
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not significantly change the overall size of the ZnO/ZnCo2O4 nanocomposites, but the pore size and specific surface area were noticeably affected. The gas-sensing results showed that ZnO/ZnCo2O4 composites calcined at 500 °C exhibited the highest response to H2S at 200 °C, with a detection limit of 500 ppb. The ZnO/ZnCo2O4 composites also exhibited remarkable selectivity, response/recovery speed, and stability. Their excellent gas-sensing performance might be attributed to their porous structure, large specific surface area, and the heterogeneous interface between ZnO and ZnCo2O4. This work not only represents a new example of the Ostwald ripening-based formation of inorganic hollow structures in a template-free aqueous solution but also provides a novel and efficient sensing material for the detection of H2S gas. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

Back to TopTop