Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = PIN–PMN–PT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4696 KiB  
Article
High-Power Characteristics of Piezoelectric Transducers Based on [011] Poled Relaxor-PT Single Crystals
by Soohyun Lim, Yub Je, Min-Jung Sim, Hwang-Pill Kim, Yohan Cho, Yoonsang Jeong and Hee-Seon Seo
Sensors 2025, 25(3), 936; https://doi.org/10.3390/s25030936 - 4 Feb 2025
Viewed by 994
Abstract
[011] poled relaxor-PT single crystals provide superior piezoelectric constants and electromechanical coupling factors in the 32 crystal directions, and also exhibit high electrical stability under compressive stresses and temperature changes. In particular, Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3 [...] Read more.
[011] poled relaxor-PT single crystals provide superior piezoelectric constants and electromechanical coupling factors in the 32 crystal directions, and also exhibit high electrical stability under compressive stresses and temperature changes. In particular, Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals show a superior coercive field (EC ≥ 8.0 kV/cm) and mechanical quality factor (Qm ≥ 1030), making them suitable for high-power transducers. The high-power characteristics of [011] poled single crystals have been verified from a material perspective; thus, further investigation is required from a transducer perspective. In this study, the high-power characteristics of piezoelectric transducers based on [011] poled PIN-PMN-PT and [011] poled Mn:PIN-PMN-PT single crystals were investigated. To analyze the driving limits of the single crystals, the polarization–electric field (P–E) curves, as a function of the driving electric field, were measured. The results showed that [011] poled Mn:PIN-PMN-PT single crystals demonstrate lower energy loss and THD (Total Harmonic Distortion), directly relating to the driving efficiency and linearity of the transducer. Additionally, [011] poled Mn:PIN-PMN-PT crystals provide excellent stability under the compressive stress and temperature changes. To analyze the high-power characteristics of [011] poled single-crystal transducers, two types of barrel-stave transducers, based on [011] poled PIN-PMN-PT and [011] poled Mn:PIN-PMN-PT, were designed and fabricated. The changes in the impedance and transmitting voltage response with respect to the driving electric fields were measured, and the energy loss and THD of the transducers with respect to the driving electric fields were examined to assess the driving limit of the [011] poled single-crystal transducer. The high-power characteristic tests confirmed the stability of [011] poled Mn:PIN-PMN-PT single crystals and verified their potential for high-power transducer applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 1675 KiB  
Article
Derivation of Equivalent Material Coefficients of 2-2 Piezoelectric Single Crystal Composite
by Minseop Sim, Yub Je, Yohan Cho, Hee-Seon Seo and Moo-Joon Kim
Micromachines 2024, 15(7), 917; https://doi.org/10.3390/mi15070917 - 16 Jul 2024
Cited by 2 | Viewed by 1485
Abstract
Piezoelectric composites, which consist of piezoelectric materials and polymers, are widely employed in various applications such as underwater sonar transducers and medical diagnostic ultrasonic transducers. Acoustic transducers based on piezoelectric composites can have high sensitivity with broad bandwidth. In recent studies, it is [...] Read more.
Piezoelectric composites, which consist of piezoelectric materials and polymers, are widely employed in various applications such as underwater sonar transducers and medical diagnostic ultrasonic transducers. Acoustic transducers based on piezoelectric composites can have high sensitivity with broad bandwidth. In recent studies, it is demonstrated that 2-2 composites based on single crystals provide further increased sensitivity and wide bandwidth. In order to utilize a 2-2 composite in acoustic sensors, it is required to demonstrate the full material coefficients of the 2-2 composite. In this study, we investigated an analytic solution for determining equivalent material coefficients of a 2-2 composite. Impedance spectrums of the single-phase resonators with equivalent material coefficients and 2-2 composite resonators were compared by the finite element method in order to verify the analytic solutions. Furthermore, the equivalent material coefficients derived from the analytic solution were also verified by comparing the measured and the simulated impedance spectrums. The difference in resonance and anti-resonance frequencies between the measured and simulated impedance spectrums was around 0.5% and 1.2%. By utilizing the analytic solutions in this study, it is possible to accurately derive full equivalent material coefficients of a 2-2 composite, which are essential for the development of acoustic sensors. Full article
(This article belongs to the Special Issue Piezoelectric Materials, Devices and Systems)
Show Figures

Figure 1

18 pages, 4769 KiB  
Article
Potentials and Limits of PMN-PT and PIN-PMN-PT Single Crystals for Pyroelectric Energy Harvesting
by Mohammed Es-Souni
Crystals 2024, 14(3), 236; https://doi.org/10.3390/cryst14030236 - 28 Feb 2024
Cited by 1 | Viewed by 2505
Abstract
Waste heat is inherent to industrial activities, IT services (e.g., data centers and microprocessors), human mobility, and many other common processes. The power lost each year in this way has been estimated in the 1000 TWh in the EU which, owing to skyrocketing [...] Read more.
Waste heat is inherent to industrial activities, IT services (e.g., data centers and microprocessors), human mobility, and many other common processes. The power lost each year in this way has been estimated in the 1000 TWh in the EU which, owing to skyrocketing energy prices and not least the urgent need for decarbonizing the economy, has engendered tremendous research efforts among scientists and engineers to recover/recycle this waste energy. Beyond established thermal engineering solutions for waste heat, advances in multifunctional materials open new paradigms for waste heat harvesting. Two smart material types are of particular focus and interest at present; these are thermoelectric and pyroelectric materials, which can both transform heat to electrical power, though via different effects. The present paper summarizes our research work on a new class of pyroelectric materials, namely <111> oriented (1 − x)(Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN-PT) and x-Pb(In1/2 Nb1/2)O3-y-Pb(Mg1/3 Nb2/3)O3-(1 − x − y)-PbTiO3 (PIN-PMN-PT) single crystals that exhibit some of the highest pyroelectric properties ever measured. First, a figure of merit for pyroelectric energy harvesting is derived, followed by a detailed assessment of the properties of the said crystals and how they depend on structure, poling, thickness, and temperature. The properties are further contrasted with those of conventional pyroelectric crystals. It is concluded that the PMN-PT-base single crystals are best suited for harvesting devices with a working temperature range from 40 to 100 °C, which encompasses waste heat generated by data centers and some chemical and industrial processes, affording the highest figure of merit among pyroelectric materials. Full article
(This article belongs to the Special Issue Advanced Ferroelectric, Piezoelectric and Dielectric Ceramics)
Show Figures

Figure 1

16 pages, 4690 KiB  
Article
Phase Transitions under the Electric Field in Ternary Ferroelectric Solid Solutions of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 near the Morphotropic Phase Boundary: Electric Approach
by Makoto Iwata, Soma Suzuki, Yoshinori Takikawa, Keiichiro Nakamura and Kazuhiko Echizenya
Crystals 2024, 14(2), 121; https://doi.org/10.3390/cryst14020121 - 26 Jan 2024
Cited by 1 | Viewed by 1595
Abstract
Temperature–field phase diagrams in the [001]c and [011]c directions in the cubic coordinate in 24%Pb(In1/2Nb1/2)O3–46%Pb(Mg1/3Nb2/3)O3–30%PbTiO3 (24PIN–46PMN–30PT) and 31PIN–43PMN–26PT near the morphotropic phase boundary have been clarified by measuring [...] Read more.
Temperature–field phase diagrams in the [001]c and [011]c directions in the cubic coordinate in 24%Pb(In1/2Nb1/2)O3–46%Pb(Mg1/3Nb2/3)O3–30%PbTiO3 (24PIN–46PMN–30PT) and 31PIN–43PMN–26PT near the morphotropic phase boundary have been clarified by measuring the temperature dependences of permittivity under an electric field. Field-induced intermediate orthorhombic and tetragonal phases have been newly found in 24PIN–46PMN–30PT and 31PIN–43PMN–26PT, respectively. The temperature dependences of the remanent polarization have also been determined by polarization–electric field (P–E) hysteresis loop evaluation. On the basis of our experimental results, the phase transition and dielectric anisotropy in PIN–PMN–PT have been discussed. Full article
(This article belongs to the Special Issue Research Progress of Perovskite Ferroelectric Materials)
Show Figures

Figure 1

12 pages, 36981 KiB  
Article
Observation of Micro-Scale Domain Structure Evolution under Electric Bias in Relaxor-Based PIN-PMN-PT Single Crystals
by Kai Li, Huashan Zheng, Xudong Qi, Shan Cong, Zhenting Zhao, Junfeng Zhao, Haijuan Mei, Duoduo Zhang, Enwei Sun, Limei Zheng, Weiping Gong and Bin Yang
Crystals 2023, 13(11), 1599; https://doi.org/10.3390/cryst13111599 - 19 Nov 2023
Cited by 2 | Viewed by 1767
Abstract
Relaxor ferroelectrics play a vital role as functional components in electromechanical devices. The observation of micro-scale domain structure evolution under electric bias in relaxor ferroelectrics has posed challenges due to their complex domain morphology characterized by small-sized domains. The present study aims to [...] Read more.
Relaxor ferroelectrics play a vital role as functional components in electromechanical devices. The observation of micro-scale domain structure evolution under electric bias in relaxor ferroelectrics has posed challenges due to their complex domain morphology characterized by small-sized domains. The present study aims to investigate the dielectric diffusion–relaxation characteristics, domain structure, and domain switching evolution under electric bias in high-performance single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-33PbTiO3. The findings reveal the presence of strip-like domain patterns that interlock irregular small-sized nanodomains in PIN-PMN-33PT single crystals. Furthermore, the sample undergoes three distinct stages under electric bias, including the nucleation of new domains, the gradual forward expansion of domains, and the lateral expansion of domains. These observations provide valuable insights for understanding and exploring domain engineering techniques in relaxor ferroelectrics. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

14 pages, 4490 KiB  
Article
Theoretical and Experimental Studies on Sensitivity and Bandwidth of Thickness-Mode Driving Hydrophone Utilizing A 2-2 Piezoelectric Single Crystal Composite
by Yub Je, Minseop Sim, Yohan Cho, Sang-Goo Lee and Hee-Seon Seo
Sensors 2023, 23(7), 3445; https://doi.org/10.3390/s23073445 - 24 Mar 2023
Cited by 7 | Viewed by 3192
Abstract
Piezoelectric composites, which consist of a piezoelectric material and a polymer, have been extensively studied for the applications of underwater sonar sensors and medical diagnostic ultrasonic transducers. Acoustic sensors utilizing piezoelectric composites can have a high sensitivity and wide bandwidth because of their [...] Read more.
Piezoelectric composites, which consist of a piezoelectric material and a polymer, have been extensively studied for the applications of underwater sonar sensors and medical diagnostic ultrasonic transducers. Acoustic sensors utilizing piezoelectric composites can have a high sensitivity and wide bandwidth because of their high piezoelectric coefficient and low acoustic impedance compared to single-phase piezoelectric materials. In this study, a thickness-mode driving hydrophone utilizing a 2-2 piezoelectric single crystal composite was examined. From the theoretical and numerical analysis, material properties that determine the bandwidth and sensitivity of the thickness-mode piezoelectric plate were derived, and the voltage sensitivity of piezoelectric plates with various configurations was compared. It was shown that the 2-2 composite with [011] poled single crystals and epoxy polymers can provide high sensitivity and wide bandwidth when used for hydrophones with a thickness resonance mode. The hydrophone element was designed and fabricated to have a thickness mode at a frequency around 220 kHz by attaching a composite plate of quarter-wavelength thickness to a hard baffle. The fabricated hydrophone demonstrated an open circuit voltage sensitivity of more than −180 dB re 1 V/μPa at the resonance frequency and a −3 dB bandwidth of more than 55 kHz. The theoretical and experimental studies show that the 2-2 single crystal composite can have a high sensitivity and wide bandwidth compared to other configurations of piezoelectric elements when they are used for thickness-mode hydrophones. Full article
Show Figures

Figure 1

9 pages, 2066 KiB  
Article
Misfit-Strain Phase Diagram, Electromechanical and Electrocaloric Responses in Epitaxial PIN–PMN–PT Thin Films
by Yun Ou, Yingying Wu and Jinlin Peng
Materials 2022, 15(21), 7660; https://doi.org/10.3390/ma15217660 - 31 Oct 2022
Cited by 1 | Viewed by 1765
Abstract
xPb(In1/2Nb1/2)O3-(1−xy)Pb(Mg1/3Nb2/3)O3yPbTiO3 (PIN–PMN–PT) bulks possess excellent electromechanical coupling and dielectric properties, but the corresponding epitaxial PIN–PMN–PT thin films have not yet been explored. This [...] Read more.
xPb(In1/2Nb1/2)O3-(1−xy)Pb(Mg1/3Nb2/3)O3yPbTiO3 (PIN–PMN–PT) bulks possess excellent electromechanical coupling and dielectric properties, but the corresponding epitaxial PIN–PMN–PT thin films have not yet been explored. This paper adopts a nonlinear thermodynamics analysis to investigate the influences of misfit strains on the phase structures, electromechanical properties, and electrocaloric responses in epitaxial PIN–PMN–PT thin films. The misfit strain–temperature phase diagram was constructed. The results reveal that the PIN–PMN–PT thin films may exist in tetragonal c-, orthorhombic aa-, monoclinic M-, and paraelectric PE phases. It is also found that the c-M and aa-PE phase boundaries exhibit a superior dielectric constant ε11 which reached 1.979 × 106 with um = −0.494%, as well as the c-M phase boundary showing a large piezoelectric response d15 which reached 1.64 × 105 pm/V. In comparison, the c-PE and M-aa phase boundaries exhibit a superior dielectric constant ε33 over 1 × 105 around um = 0.316% and the piezoelectric response d33 reached 7235 pm/V. The large electrocaloric responses appear near the paraelectric- ferroelectric phase boundary. These insights offer a guidance for experiments in epitaxial PIN–PMN–PT thin films. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

8 pages, 1862 KiB  
Article
Characterization of Mn-Doped PIN-PMN-PT Single Crystal Grown by Continuous-Feeding Bridgman Method
by Kazuhiko Echizenya, Naoki Noda and Hisato Noro
Crystals 2022, 12(9), 1183; https://doi.org/10.3390/cryst12091183 - 23 Aug 2022
Cited by 5 | Viewed by 3525
Abstract
Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals are attractive piezoelectric materials owing to their high mechanical quality factor. However, the single crystal boules grown by the conventional Bridgman method show compositional variation [...] Read more.
Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (Mn:PIN-PMN-PT) single crystals are attractive piezoelectric materials owing to their high mechanical quality factor. However, the single crystal boules grown by the conventional Bridgman method show compositional variation along the growth direction. In particular, the Mn content exhibits large variation due to its severe segregation. To improve the compositional uniformity, we applied the continuous-feeding Bridgman method to the growth of a Mn:PIN-PMN-PT single crystal boule. Then, the composition and property distributions of the boule along the growth direction were evaluated. The results showed that excellent composition and property uniformity were carried out over 80mm in boule length. The ranges of the electromechanical coupling coefficient (k33) and the piezoelectric coefficient (d33) were 0.931–0.934 and 1352–1517 pC/N, respectively. The ranges of the mechanical quality factor (Qm31) and the depolarization field (Ed) were 417–535 and 785–859 V/mm, respectively. The Qm31 and the Ed values were higher than those of the non-doped PIN-PMN-PT single crystals. The continuous-feeding Bridgman method is therefore an effective technique for improving the uniformity of the Mn content. As a result, the Mn:PIN-PMN-PT single crystal grown by the continuous-feeding Bridgman method possesses excellent property uniformity with characteristics suitable for high power piezoelectric applications. Full article
Show Figures

Figure 1

13 pages, 5797 KiB  
Communication
Highly Linear and Wide Non-Resonant Two-Degree-of-Freedom Piezoelectric Laser Scanner
by Takashi Ozaki, Norikazu Ohta and Motohiro Fujiyoshi
Sensors 2022, 22(11), 4215; https://doi.org/10.3390/s22114215 - 1 Jun 2022
Cited by 10 | Viewed by 2636
Abstract
Laser scanners with mechanically driven mirrors have exhibited increasing potential for various applications, such as displays and laser radar. Resonant scanners are the predominantly used scanners; however, non-resonant scanners are required for applications where point-to-point driving is desirable. Because a non-resonant drive cannot [...] Read more.
Laser scanners with mechanically driven mirrors have exhibited increasing potential for various applications, such as displays and laser radar. Resonant scanners are the predominantly used scanners; however, non-resonant scanners are required for applications where point-to-point driving is desirable. Because a non-resonant drive cannot amplify the drive angle owing to the resonance phenomenon, high values are difficult to achieve for the main performance metrics of the scanners: mirror area, drive angle, and operating frequency. In this paper, we present a two-axis scanner with a piezoelectric actuator made of a piezoelectric single-crystal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 as the actuation force source. The scanner contains a circular mirror with a diameter of 7 mm and achieves an average static mechanical deflection angle amplitude of 20.8° in two axes with a resonant frequency of 559 Hz. It is equipped with a transmission mechanism that can decouple each axis to achieve high linearity; in our study, the nonlinearity error was less than 1°. Full article
(This article belongs to the Special Issue MEMS Actuators and Sensors 2022)
Show Figures

Figure 1

22 pages, 5487 KiB  
Article
Multiphysics Modeling and Material Selection Methods to Develop Optimal Piezoelectric Plate Actuators for Active Noise Cancellation
by Dessalew Molla, Marek Płaczek and Andrzej Wróbel
Appl. Sci. 2021, 11(24), 11746; https://doi.org/10.3390/app112411746 - 10 Dec 2021
Cited by 5 | Viewed by 3013
Abstract
The performance of a piezoelectric actuator for active noise cancellation depends primarily on the quality of the actuator material and its design approach, i.e., single-layer or multi-layer actuators, stacks, benders, or amplified actuators. In this paper, material selection and multiphysics modeling were performed [...] Read more.
The performance of a piezoelectric actuator for active noise cancellation depends primarily on the quality of the actuator material and its design approach, i.e., single-layer or multi-layer actuators, stacks, benders, or amplified actuators. In this paper, material selection and multiphysics modeling were performed to develop an optimal piezoelectric plate actuator for active noise cancellation. The material selection process was analyzed using two multi-criteria decision making (MCDM) approaches for material selection, i.e., figure of merit (FOM) for actuators and the technique for order of performance by similarity to ideal solution (TOPSIS). Of the 12 state-of-the-art piezoelectric actuator materials considered in this article, PMN–28% PT is the best material according to TOPSIS analysis, while PbIn12Nb12O324%PbMg13Nb13O3PbTiO3 (PIN24%-PMN-PT) is the best material according to FOM analysis. The ranking of state-of-the-art piezoelectric material categories for actuators according to the two analysis is consistent and the category of monocrystalline piezoelectric materials has the highest actuation performance. The multiphysics modeling was performed using ANSYS Mechanical using two different approaches: one using Ansys Parametric Design Language (APDL) command fragments, the other installing the PiezoAndMEMS ACT extension in ANSYS. Static structure, modal, and harmonic response analyses were performed to determine an optimal pair of piezoelectric plates to be used as an actuator for active noise cancellation. A pair of plates of the same materials, but of different dimensions turns out to be the optimal piezoelectric plate actuator for active noise reduction, according to the two multiphysics modeling methods. Full article
(This article belongs to the Special Issue Smart Manufacturing and Materials)
Show Figures

Figure 1

18 pages, 4892 KiB  
Article
Temperature Dependence of Normalized Sensitivity of Love Wave Sensor of Unidirectional Carbon Fiber Epoxy Composite on Mn-Doped 0.24PIN-0.46PMN-0.30PT Single Crystal Substrate
by Naixing Huang, Enwei Sun, Rui Zhang, Bin Yang, Jian Liu, Tianquan Lü, Lianfu Han and Wenwu Cao
Appl. Sci. 2020, 10(23), 8442; https://doi.org/10.3390/app10238442 - 26 Nov 2020
Cited by 3 | Viewed by 1704
Abstract
Love wave sensors have attracted significant interest due to their high sensitivity and low attenuation. Love mode acoustic dispersion relation, highest normalized mass sensitivity, optimum normalized waveguide layer thickness, and temperature coefficients of frequency (TCF) were theoretically studied for the carbon fiber epoxy [...] Read more.
Love wave sensors have attracted significant interest due to their high sensitivity and low attenuation. Love mode acoustic dispersion relation, highest normalized mass sensitivity, optimum normalized waveguide layer thickness, and temperature coefficients of frequency (TCF) were theoretically studied for the carbon fiber epoxy composites (CFEC)/Mn:0.24PIN-0.46PMN-0.30PT structure sensor. The highest normalized mass sensitivity exhibits a decreasing trend as the temperature increases from 25 °C to 55 °C. TCF can be improved by increasing the normalized layer thickness (h/λ); however, the temperature dependence of normalized mass sensitivity decreases. For the carbon fibers (CFs) in the CFEC waveguide along the propagation direction of Love wave, the device has a relatively small TCF of −10.92 ppm/°C at h/λ = 0.4001, where the normalized mass sensitivity is approximately 1.5 times that of a typical fused quartz/ST-quartz configuration device. The theoretical results imply that good temperature stability and high measurement precision were obtained from the device in the system CFEC/Mn:0.24PIN-0.46PMN-0.30PT with the CFs in the CFEC along the propagation direction of Love wave (x-axis). The ideal waveguide material requires a small elastic constant c44; however, the ideal piezoelectric substrate requires large elastic constants c44E and c66E. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

13 pages, 4198 KiB  
Article
In Situ Electric-Field Study of Surface Effects in Domain Engineered Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Relaxor Crystals by Grazing Incidence Diffraction
by Markys G. Cain, Margo Staruch, Paul Thompson, Christopher Lucas, Didier Wermeille, Yves Kayser, Burkhard Beckhoff, Sam E. Lofland and Peter Finkel
Crystals 2020, 10(9), 728; https://doi.org/10.3390/cryst10090728 - 20 Aug 2020
Cited by 2 | Viewed by 3107
Abstract
In this work, we present a grazing incidence X-ray diffraction study of the surface of a 0.24Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) [011] poled rhombohedral single crystal. The near surface microstructure (the top several [...] Read more.
In this work, we present a grazing incidence X-ray diffraction study of the surface of a 0.24Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) [011] poled rhombohedral single crystal. The near surface microstructure (the top several tens to hundreds of unit cells) was measured in situ under an applied electric field. The strains calculated from the change in lattice parameters have been compared to the macroscopic strain measured with a strain gauge affixed to the sample surface. The depth dependence of the electrostrain at the crystal surface was investigated as a function of temperature. The analysis revealed hidden sweet spots featuring unusually high strains that were observed as a function of depth, temperature and orientation of the lattice planes. Full article
Show Figures

Figure 1

13 pages, 4644 KiB  
Article
PIN-PMN-PT Single Crystal 1-3 Composite-based 20 MHz Ultrasound Phased Array
by Wei Zhou, Tao Zhang, Jun Ou-Yang, Xiaofei Yang, Dawei Wu and Benpeng Zhu
Micromachines 2020, 11(5), 524; https://doi.org/10.3390/mi11050524 - 21 May 2020
Cited by 26 | Viewed by 5491
Abstract
Based on a modified dice-and-fill technique, a PIN-PMN-PT single crystal 1-3 composite with the kerf of 12 μm and pitch of 50 μm was prepared. The as-made piezoelectric composite material behaved with high piezoelectric constant (d33 = 1500 pC/N), high electromechanical coefficient [...] Read more.
Based on a modified dice-and-fill technique, a PIN-PMN-PT single crystal 1-3 composite with the kerf of 12 μm and pitch of 50 μm was prepared. The as-made piezoelectric composite material behaved with high piezoelectric constant (d33 = 1500 pC/N), high electromechanical coefficient (kt = 0.81), and low acoustic impedance (16.2 Mrayls). Using lithography and flexible circuit method, a 48-element phased array was successfully fabricated from such a piezoelectric composite. The array element was measured to have a central frequency of 20 MHz and a fractional bandwidth of approximately 77% at −6 dB. Of particular significance was that this PIN-PMN-PT single crystal 1-3 composite-based phased array exhibits a superior insertion loss compared with PMN-PT single crystal and PZT-5H-based 20 MHz phased arrays. The focusing and steering capabilities of the obtained phased array were demonstrated theoretically and experimentally. These promising results indicate that the PIN-PMN-PT single crystal 1-3 composite-based high frequency phased array is a good candidate for ultrasound imaging applications. Full article
(This article belongs to the Special Issue Piezoelectric Transducers: Materials, Devices and Applications)
Show Figures

Figure 1

11 pages, 3276 KiB  
Article
Determination of the Mechanical Properties of PIN–PMN–PT Bulk Single Crystals by Nanoindentation
by Weiguang Zhang, Jijun Li, Yongming Xing, Fengchao Lang, Chunwang Zhao, Xiaohu Hou, Shiting Yang and Guisheng Xu
Crystals 2020, 10(1), 28; https://doi.org/10.3390/cryst10010028 - 8 Jan 2020
Cited by 12 | Viewed by 4633
Abstract
The present study aimed to experimentally evaluate the mechanical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) bulk single crystals with different crystallographic directions using the nanoindentation technique. The loadindentation depth curves, [...] Read more.
The present study aimed to experimentally evaluate the mechanical properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) bulk single crystals with different crystallographic directions using the nanoindentation technique. The loadindentation depth curves, elastic and plastic deformations, hardnesses, and Young’s moduli of [100]- and [110]-oriented 0.28PIN–0.43PMN–0.29PT bulk single crystals were investigated. Our results show that with an increase in the maximum indentation depth hmax, the plastic residual percentage increased for both the [100]- and the [110]-oriented single crystals. At each hmax, the plastic residual percentage of the [100]-oriented PIN–PMN–PT single crystals was less than that of the [110]-oriented PIN–PMN–PT single crystals. At hmax from 500 nm to 2000 nm, the plastic deformation was larger than the elastic deformation, and the plastic residual percentage was larger than 50% for both the [100]- and the [110]-oriented single crystals. This means that the plastic deformation dominated in the indentation process of PIN–PMN–PT single crystals. The indentation size effect on the hardness of the PIN–PMN–PT single crystals was apparent in the nanoindentation process. Both the hardness and the Young’s modulus of the [100]-PIN–PMN–PT single crystals were greater than those of the [110]-PIN–PMN–PT single crystals, which indicates that the PIN–PMN–PT single crystals had anisotropic mechanical characteristics. Full article
Show Figures

Figure 1

11 pages, 2286 KiB  
Article
Dielectric Relaxor and Conductivity Mechanism in Fe-Substituted PMN-32PT Ferroelectric Crystal
by Xiaojuan Li, Xing Fan, Zengzhe Xi, Peng Liu, Wei Long, Pinyang Fang, Feifei Guo and Ruihua Nan
Crystals 2019, 9(5), 241; https://doi.org/10.3390/cryst9050241 - 7 May 2019
Cited by 7 | Viewed by 3474
Abstract
Fe-substituted PMN-32PT relaxor ferroelectric crystals were grown by a high-temperature flux method. The effects of charged defects on the dielectric relaxor and conductivity mechanism were discussed in detail. The Fe-substituted PMN-32PT crystal showed a high coercive field (Ec = 765 V/mm), [...] Read more.
Fe-substituted PMN-32PT relaxor ferroelectric crystals were grown by a high-temperature flux method. The effects of charged defects on the dielectric relaxor and conductivity mechanism were discussed in detail. The Fe-substituted PMN-32PT crystal showed a high coercive field (Ec = 765 V/mm), due to domain wall-pinning, induced by charged defect dipoles. Three dielectric anomaly peaks were observed, and the two dielectric relaxation peaks at low temperature were associated with the diffusion phase transition, while the high temperature one resulted from the short-range hopping of oxygen vacancies. At temperature T ≤ 150 °C, the dominating conduction carriers were electrons coming from the first ionization of oxygen vacancies. For the temperature range from 200 to 500 °C, the conductivity was composed of the bulk and interface between sample and electrode, and the oxygen vacancies were suggested to be the conduction mechanism. Above 550 °C, the trapped electrons from the Ti3+ center were excited and played a major role in electrical conduction. Our results are helpful for better understanding the relationship between dielectric relaxation and the conduction mechanism. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Ferroelectrics)
Show Figures

Figure 1

Back to TopTop