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Abstract: The present study aimed to experimentally evaluate the mechanical properties of
Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) bulk single crystals with different
crystallographic directions using the nanoindentation technique. The load–indentation depth
curves, elastic and plastic deformations, hardnesses, and Young’s moduli of [100]- and [110]-oriented
0.28PIN–0.43PMN–0.29PT bulk single crystals were investigated. Our results show that with an
increase in the maximum indentation depth hmax, the plastic residual percentage increased for both
the [100]- and the [110]-oriented single crystals. At each hmax, the plastic residual percentage of the
[100]-oriented PIN–PMN–PT single crystals was less than that of the [110]-oriented PIN–PMN–PT
single crystals. At hmax from 500 nm to 2000 nm, the plastic deformation was larger than the
elastic deformation, and the plastic residual percentage was larger than 50% for both the [100]-
and the [110]-oriented single crystals. This means that the plastic deformation dominated in the
indentation process of PIN–PMN–PT single crystals. The indentation size effect on the hardness of
the PIN–PMN–PT single crystals was apparent in the nanoindentation process. Both the hardness
and the Young’s modulus of the [100]-PIN–PMN–PT single crystals were greater than those of
the [110]-PIN–PMN–PT single crystals, which indicates that the PIN–PMN–PT single crystals had
anisotropic mechanical characteristics.

Keywords: relaxor-based ferroelectric PIN–PMN–PT single crystal; nanoindentation; load–depth
curves; elastic and plastic deformation; hardness; Young’s modulus

1. Introduction

In the last 15 years, because of their excellent piezoelectric properties, relaxor-based ferroelectric
single crystals such as binary Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) and ternary
Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) have attracted extensive attention and
become important materials in the fabrication of new-generation high-performance electromechanical
devices including ultrasound transducers, actuators, sensors, and other electromechanical devices [1–9].
It is worth noting that due to the high toxicity of lead, the traditional lead-containing ferro-piezoelectric
materials are very harmful to the environment and human health. Lead-free materials are therefore the
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future developmental direction of ferro-piezoelectric materials [10–13]. However, current lead-free
piezoelectric materials have some defects which limit their applications, and so lead-containing
materials continue to dominate in a number of applications. With its concentration of PT near the
morphotropic phase boundary region, the ternary PIN–PMN–PT single crystal not only has similar
piezoelectric performance to that of the binary PMN–PT single crystal but also possesses higher phase
transition temperature (>120 ◦C) and coercive field (~6 kV/cm) than the binary PMN–PT single crystal.
These properties are very crucial to many electromechanical devices, especially when applied to
high-drive and high-temperature environments [14–16].

In practical applications, relaxor-based ferroelectric single crystals are expected to endure
mechanical loading [17–20]. Moreover, mechanical loading may also degrade the performance
of ferroelectric single-crystal devices, eventually leading to device failure during fabrication or
service [21–24]. Understanding the mechanical properties of relaxor-based ferroelectric PIN–PMN–PT
single crystals is therefore key to improving the performance and optimizing the design of these devices.

Nanoindentation is a convenient and reliable examination method to investigate mechanical
properties with small volumes and has been widely used to examine various materials [25–29].
Nanoindentation is a continuous measurement of the load and displacement. Then,
nano-mechanical properties such as hardness, Young’s modulus, indentation strain-rate sensitivity,
and creep can be measured from the load–displacement curve. The mechanical behavior of the
relaxor-based ferroelectric single crystals has been studied by some researchers. Gailard et al. presented
a study of the deformation mechanisms of BaTiO3 giant single crystals with known orientations using
nanoindentation and an atomic force microscope [30]. Fang et al. investigated the interactions between
the crack propagation and domain switching in poled BaTiO3 single crystals under a mechanical
load [31]. Babu et al. performed the Vickers microhardness test on a <001>-cut Na1/2Bi1/2TiO3

single crystal and calculated its fracture toughness and brittleness index from the R-curve [32].
Zhou et al. investigated the electric field-dependent mechanical properties of the PMN–PT single
crystal by electromechanical-coupled nanoindentation [33]. Zeng et al. investigated the deformation
and mechanical properties of a (001)-oriented single crystal of PZN–0.07PT using a combination of
nanoindentation, micro-indentation, and three-point bending tests [34]. These studies examined in
part the mechanical behavior of the relaxor-based ferroelectric single crystals, but there has been
little investigation into the mechanical properties of ternary PIN–PMN–PT single crystals using the
nanoindentation technique.

In the present work, the anisotropic nano-mechanical properties of relaxor-based ferroelectric
PIN–PMN–PT bulk single crystals with different crystallographic directions were experimentally
investigated using nanoindentation testing. The load–indentation depth curves, elastic and plastic
deformations, hardnesses. and Young’s moduli of the [100]- and [110]-oriented PIN–PMN–PT bulk
single crystals were evaluated.

2. Experimental Method

The ferroelectric 0.28PIN-0.43PMN-0.29PT single crystals used in this study were grown
using a modified Bridgeman method and were provided by the Shanghai Institute of Ceramics,
Chinese Academy of Sciences. High-purity (99.99%) oxide powders of PbO, In2O3, Nb2O5, MgO,
and TiO2 were mixed stoichiometrically and ground to reduce the particle size. The resulting powder
was sintered for 8 hours at 1000 ◦C. The sintered material was put into a platinum crucible, and the
crucible was sealed and placed inside a furnace. The sintered material was heated up to 1400 ◦C, and the
melt was equilibrated for 10 hours. Lastly, the crucible was lowered at 0.5 mm/hour, and the crystal
was grown. The PIN–PMN–PT single crystal was cut into a rectangular specimen with dimensions
of 6 × 4 × 0.5 mm3. The crystallographic direction of the main plane (6 × 4 mm) was either the [100]
direction (termed the [100]-oriented PIN–PMN–PT single crystal) or the [110] direction (termed the
[110]-oriented PIN–PMN–PT single crystal).
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For the purpose of consistency and accuracy of the nanoindentation testing results, the main
planes (6 × 4 mm) of the PIN–PMN–PT single-crystal specimens were ground and mechanically
and electrolytically polished to a near-mirror finish. Figure 1 shows the X-ray diffraction (XRD)
patterns from the main planes of [100]- and [110]-oriented PIN–PMN–PT single crystals by using X-ray
diffractometer SmartLab 9KW (Rigaku, Akishima, Tokyo, Japan). It reveals that the PIN–PMN–PT
single crystals with two different crystallographic directions in this study were exactly in the [100] and
[110] directions and additionally had good phase purity.
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Figure 1. XRD patterns from the main planes of (a) [100]- and (b) [110]-oriented
Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN–PMN–PT) single crystals.

The mechanical properties of the PIN–PMN–PT single crystals were characterized using a Nano
indenter G200 (Agilent Technologies, Santa Clara, CA, USA) with a standard diamond Berkovich
indenter (Agilent Technologies, Santa Clara, CA, USA) at room temperature. For the Berkovich
indenter, the centerline-to-face angle, centerline-to-edge angle, and radius at the tip were 65.3◦, 77.05◦,
and 50 nm, respectively. The Nano indenter G200 had a maximum load of 500 mN and a maximum
indentation depth greater than 500 µm. With a load resolution of 50 nN and displacement resolution
less than 0.01 nm, it could accurately test the mechanical behavior of the material at both the micro-
and the nano-scale. The nanoindentation measurements were conducted under continuous stiffness
measurement (CSM) procedures [35–37]. The indentation loads acted on the main planes (6 × 4 mm)
of the [100]- and [110]-oriented PIN–PMN–PT single crystal samples at a constant strain rate of 0.05
s−1 with four maximum indentation depths of 500 nm, 1000nm, 1500nm, and 2000 nm. When the
indentation depth reached the maximum value, the corresponding peak load was held for 10 s and
then unloaded at the same strain rate. More than five indents at each maximum indentation depth
were performed on the samples to confirm the reliability and repeatability of the nanoindentation tests.
For the sake of eliminating interactions among the indentation points, the spacing between each two
neighboring indentation points was set to 100 µm.

During indenting, loads and displacements were recorded to generate load–indentation depth
curves. The Oliber–Pharr method was applied to determine the hardness (H) as well as the Young’s
modulus (E) [38,39]. The H and E were calculated using the following relationships:
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A(hc)
, (1)

A(hc) = 24.5h2
c , (2)

Er =
S
√
π

2β
√

A
, (3)



Crystals 2020, 10, 28 4 of 11

E = (1− ν2)

 1
Er
−
(1− ν2

i )

Ei

−1

, (4)

where Pmax is the maximum applied load, and A is the projected contact area between the indenter
tip and the specimen at the maximum load; hc is the contact indentation depth determined from
load–indentation depth curves; Er is the reduced modulus; Ei and νi are Young’s modulus and Poisson’s
ratio for the diamond indenter, with Ei = 1141 GPa, and νi = 0.07; S is the initial unloading stiffness
determined by the slope of the unloading curve dP/dh at the maximum load, and β is the correction
factor that depends on the geometry of the indenter (for the Berkovich tip, β is 1.034).

3. Results and Discussion

3.1. Load–Indentation Depth Curves

Figure 2 shows the representative load–indentation depth curves at different maximum indentation
depths for the [100]- and [110]-oriented PIN–PMN–PT bulk single crystals. It is observed that the
load–indentation depth curves for each maximum indentation depth closely overlap when the
maximum indentation depth hmax is below 1500 nm. The difference between the load–indentation
depth curves at the hmax of 2000 nm is very small. Thus, the load–indentation depth curves exhibit a
low noise level and small variation in the data. These features reflect the good phase purity and crystal
uniformity of the PIN–PMN–PT bulk single crystal, which is consistent with the XRD results above.
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Figure 2. Load–indentation depth curves at different maximum depths for (a) the [100]-oriented
PIN–PMN–PT bulk single crystal and (b) the [110]-oriented PIN–PMN–PT bulk single crystal during
the nanoindentation test.

With the indentation depth increasing, the load increased gradually at each hmax during the
loading process, and with the hmax increasing, the corresponding peak load also gradually increased.
It can be seen that when the hmax increased from 500 nm to 2000 nm, the corresponding peak load
increased from 34.22 mN to 436.54 mN for the [100]-oriented PIN–PMN–PT bulk single crystal and
from 31.33 mN to 428.68 mN for the [110]-oriented PIN–PMN–PT bulk single crystal.

When the indentation depth reached the hmax, the corresponding peak load was held for 10 s and
then unloaded. Only the elastic indentation depth recovered in the unloading process. After unloading,
the indentation depth did not fully recover, and residual indentation depth remained, which indicated
irreversible plastic deformation in the PIN–PMN–PT bulk single crystal during the loading process.
In our experiment, there was no discontinuity in the load–indentation depth curves within an
indentation depth of 2000 nm, which indicated that large cracks were not formed in the PIN–PMN–PT
single crystal during the loading and unloading process.
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3.2. Elastic and Plastic Deformations

Figure 3 shows the elastic and plastic deformations versus the maximum indentation depth
hmax for the [100]- and [110]-oriented PIN–PMN–PT single crystals. It can be seen that when the
hmax increased from 500 nm to 2000 nm, the elastic deformation increased from 181.88 nm to 630.27
nm for the [100]-oriented PIN–PMN–PT bulk single crystal and from 155.78 nm to 547.47 nm for
the [110]-oriented PIN–PMN–PT bulk single crystal. At each hmax, the elastic deformation of the
[100]-oriented PIN–PMN–PT bulk single crystal was larger than that of the [110]-oriented PIN–PMN–PT
bulk single crystal. A similar relationship was observed in the plastic deformation results. With
increasing the hmax from 500 to 2000 nm, the plastic deformation increased from 334.67 nm to 1436.96
nm for the [100]-oriented PIN–PMN–PT bulk single crystal and from 354.94 nm to 1499.36 nm for
the [110]-oriented PIN–PMN–PT bulk single crystal. At each hmax, the plastic deformation of the
[100]-oriented PIN–PMN–PT bulk single crystal was less than that of the [110]-oriented PIN–PMN–PT
bulk single crystal.
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the [100]- and [110]-oriented PIN–PMN–PT single crystals.

The elastic recovery and the plastic residual percentages versus the maximum indentation depth
hmax for the [100]- and [110]-oriented PIN–PMN–PT single crystals are shown in Figure 4. It can be seen
that with increasing the hmax, the elastic recovery percentage decreased from 35.21% to 30.49% for the
[100]-oriented PIN–PMN–PT crystal and from 30.50% to 26.75% for the [110]-oriented PIN–PMN–PT
crystal. At each hmax, the elastic recovery percentage of the [100]-oriented PIN–PMN–PT crystal was
larger than that of the [110]-oriented PIN–PMN–PT crystal. Conversely, with increasing the hmax,
the plastic residual percentage increased from 64.79% to 69.51% for the [100]-oriented PIN–PMN–PT
crystal and from 69.50% to 73.25% for the [110]-oriented PIN–PMN–PT bulk single crystal. At each
hmax, the plastic residual percentage of the [100]-oriented PIN–PMN–PT bulk single crystal was less
than that of the [110]-oriented PIN–PMN–PT bulk single crystal. This indicated that the higher the
maximum indentation depth hmax or peak load, the lower the elastic recovery percentage and the
higher the plastic residual percentage in the PIN–PMN–PT bulk single crystals. Under indentation
stress, some of the domains of the PIN–PMN–PT bulk single crystals tend to switch, forming non-180
domain walls to minimize elastic energy [40]. The formation of these non-180 domain walls may
cause irreversible depolarization, relieving the internal stress built up in the PIN–PMN–PT bulk single
crystals [41]. This reduces the driving force for the recovery of the PIN–PMN–PT bulk single crystal.
Therefore, at the maximum indentation depth of 500 nm to 2000 nm, the plastic deformation is larger
than the elastic deformation, and the plastic residual percentage is larger than 50%, which means that
the plastic deformation dominated in the indentation process of the PIN–PMN–PT bulk single crystal.
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3.3. Hardness and Young’s Modulus

Figures 5 and 6 show the hardness–indentation depth curves and Young’s modulus –indentation
depth curves, respectively, of the [100]- and [110]-oriented PIN–PMN–PT single crystals at the maximum
indentation depths from 500 nm to 2000 nm. It can be seen that when the indentation depth was less
than 30 nm, the fluctuation of the data was somewhat large, which may be related to the resolution of
the nano-indenter, the smoothness of the specimen surface, and environmental noise when searching
for the initial contact position during the nanoindentation test. However, when the indentation depth
was more than 30 nm, the hardness–indentation depth curves and Young’s modulus–indentation depth
curves featured small variation in the data at the same range of indentation depth.
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Figure 5. Hardness–indentation depth curves of the (a) [100]- and (b) [110]-oriented PIN–PMN–PT
single crystals at the maximum indentation depths from 500 nm to 2000 nm.

To compare the hardnesses and Young’s moduli of the [100]-and [110]-oriented PIN–PMN–PT
bulk single crystals, the hardness and Young’s modulus were determined as the average of the values
of four indentations at every indentation depth, with maximum indentation depth of 2000 nm.
The corresponding hardness–indentation depth curves and the Young’s modulus–indentation depth
curves of the [100]- and [110]-oriented PIN–PMN–PT bulk single crystals are shown in Figures 7
and 8, respectively.
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Figure 8. Young’s modulus–indentation depth curves of the [100]- and [110]-oriented PIN–PMN–PT
bulk single crystals.

From Figure 7, it can be seen that with increasing indentation depth from 30 nm to 500 nm,
the hardness decreased from 16.92 GPa to 7.50 GPa for the [100]-oriented PIN–PMN–PT bulk single
crystal and from 8.46 GPa to 6.47 GPa for the [110]-oriented PIN–PMN–PT bulk single crystal. This
indicated that the hardness decreased dramatically with the increase of the indentation depth from 30
nm to 500 nm. When the indentation depth exceeded 500 nm, the decreasing tendencies gradually
slowed. When the indentation depth was more than 1300 nm, the hardness tended to be stable.
Therefore, the indentation size effect on the hardness of the PIN–PMN–PT bulk single crystal appeared
during the nanoindentation process. This indentation size effect is usually attributed to the large
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surface strain gradient and work hardening [42,43]. From Figure 8, it can be seen that the Young’s
modulus was almost independent of the indentation depth in the nanoindentation process.

The average hardness and Young’s modulus were evaluated in the indentation depth range from
1400 to 1600 nm, as shown in Figures 7 and 8, respectively. The average hardnesses of the [100]- and
[110]-oriented PIN–PMN–PT bulk single crystals were 5.98 GPa and 5.53 GPa, respectively. The average
Young’s modulus of the [100]- and [110]-oriented PIN–PMN–PT bulk single crystals were 136.45 GPa
and 132.74 GPa, respectively. Thus, both the hardness and Young’s modulus of the [100]-oriented
PIN–PMN–PT bulk single crystal were a little larger than those of the [110]-oriented PIN–PMN–PT bulk
single crystal, which indicated anisotropic mechanical characteristics in the PIN–PMN–PT bulk single
crystal. The hardness and Young’s modulus reflect the resistance to plastic and elastic deformations,
respectively. Therefore, the PIN–PMN–PT single crystal can endure more mechanical load and has
higher stiffness and lower friction coefficient and wear rate in the [100] crystallographic direction.
The PIN–PMN–PT single crystal can be more easily polished and subjected to ductile machining in the
[110] crystallographic direction. The anisotropy of its mechanical characteristics is mainly attributed to
the arrangement differences of its atoms, in different crystallographic directions. This anisotropy of
the mechanical properties may also have some effect on the piezoelectric properties of PIN–PMN–PT
single crystals.

4. Conclusions

The load–indentation depth curves, elastic and plastic deformations, hardnesses, and Young’s
moduli of the [100]- and [110]-oriented relaxor-based ferroelectric 0.28PIN–0.43PMN–0.29PT bulk single
crystals were investigated by the nanoindentation technique and continuous stiffness measurements.
The conclusions are as follows:

(1) The load–indentation depth curves for the PIN–PMN–PT bulk single crystals featured a low
noise level and small variation in the data, which reflects the good phase purity and uniformity of the
PIN–PMN–PT bulk single crystals. There was no discontinuity in the load–indentation depth curves
within an indentation depth of 2000 nm, which indicates that large cracks were not formed in the
PIN–PMN–PT single crystals during the loading and unloading processes.

(2) With increasing the maximum indentation depth hmax from 500 nm to 2000 nm, both the
elastic and the plastic deformations increased for both the [100]- and the [110]-oriented single crystals.
However, with the increasing hmax, the elastic recovery percentage decreased, and the plastic residual
percentage increased for both the [100]- and [110]-oriented single crystals. At each hmax, the elastic
recovery percentage of the [100]-oriented PIN–PMN–PT bulk single crystal was larger than that
of the [110]-oriented PIN–PMN–PT bulk single crystal, and the plastic residual percentage of the
[100]-oriented PIN–PMN–PT bulk single crystal was less than that of the [110]-oriented PIN–PMN–PT
bulk single crystal. In the hmax from 500 nm to 2000 nm, the plastic deformation was larger than the
elastic deformation, and the plastic residual percentage was larger than 50% for both the [100]- and
[110]-oriented single crystals, which means that the plastic deformation dominated in the indentation
process of the PIN–PMN–PT bulk single crystals.

(3) The indentation size effect on the hardness of the PIN–PMN–PT bulk single crystals was
apparent, which is usually attributed to the large surface strain gradient and work hardening.
The Young’s modulus was almost independent of the indentation depth in the nanoindentation
process. Both the hardness and the Young’s modulus of the [100] PIN–PMN–PT bulk single crystal
were a little larger than those of the [110] PIN–PMN–PT bulk single crystal, which indicates that the
PIN–PMN–PT bulk single crystal had anisotropic mechanical characteristics. These anisotropic
mechanical characteristics were mainly attributed to the arrangement of atoms in different
crystallographic directions.
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