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Abstract: xPb(In1/2Nb1/2)O3-(1−x−y)Pb(Mg1/3Nb2/3)O3−yPbTiO3 (PIN–PMN–PT) bulks possess
excellent electromechanical coupling and dielectric properties, but the corresponding epitaxial PIN–
PMN–PT thin films have not yet been explored. This paper adopts a nonlinear thermodynamics
analysis to investigate the influences of misfit strains on the phase structures, electromechanical
properties, and electrocaloric responses in epitaxial PIN–PMN–PT thin films. The misfit strain–
temperature phase diagram was constructed. The results reveal that the PIN–PMN–PT thin films may
exist in tetragonal c-, orthorhombic aa-, monoclinic M-, and paraelectric PE phases. It is also found
that the c-M and aa-PE phase boundaries exhibit a superior dielectric constant ε11 which reached
1.979 × 106 with um = −0.494%, as well as the c-M phase boundary showing a large piezoelectric
response d15 which reached 1.64 × 105 pm/V. In comparison, the c-PE and M-aa phase boundaries
exhibit a superior dielectric constant ε33 over 1 × 105 around um = 0.316% and the piezoelectric
response d33 reached 7235 pm/V. The large electrocaloric responses appear near the paraelectric-
ferroelectric phase boundary. These insights offer a guidance for experiments in epitaxial PIN–PMN–
PT thin films.

Keywords: misfit strain; PIN–PMN–PT; electrocaloric effect; ferroelectric thin films

1. Introduction

Ferroelectric materials, which exhibit a polarization with electromechanical cou-
pling [1,2], have been employed in actuators, sensors, piezoelectric energy harvesters, stor-
age devices, etc. [3,4]. Excellent performance is the key to the application of ferroelectric ma-
terials, which prompts people to continuously explore ferroelectric materials with an excel-
lent performance [5–7]. Piezoelectric materials contain defects such as ferroelectric domains,
oxygen vacancies, defect dipoles, and the strain [8–10]. PbMg1/3Nb2/3O3−PbTiO3(PMN–
PT) can reach an ultrahigh piezoelectric response (d33 > 2000 pC/N) and has electrome-
chanical coupling factors (k33 > 0.9) [11], which have attracted much attention [12–15].
The novel ternary compound xPb(In1/2Nb1/2)O3-(1−x−y)Pb(Mg1/3Nb2/3)O3−yPbTiO3
(PIN–PMN–PT) has been proposed to increase the coercive field and phase transition
temperature of these materials without a change in the piezoelectric properties [16–18].
Thus, compared with PMN–PT, PIN–PMN–PT remains a more ferroelectric state which is
stable under high temperatures.

There are more studies on PIN–PMN–PT bulk. For instance, in the experimental
aspect, Li et al. [11] investigated the ferroelectric, dielectric, elastic, piezoelectric, and
electromechanical properties of tetragonal PIN–PMN–PT crystals. The electromechanical
coupling exhibited a high dc bias electric field stability compared to its rhombohedral
counterpart, and the single domain piezoelectric coefficients d33 and d15 were found to be
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530 and 2350 pC/N, respectively. Lin et al. [18] studied the piezoelectric thermal stability
of PIN–PMN–PT ternary ceramics near the morphotropic phase boundary. The resulting
temperature-dependent piezoelectric effects in the PIN–PMN–PT ceramics indicate that
this ternary ceramics system within the MPB region shows a better temperature stability
and increased usable temperature range compared with the PMN–32PT single crystals.
In the theoretical aspect, Lv et al. developed a Landau–Devonshire energy functional for
PIN–PMN-PT to investigate the phase transformation, phase diagrams, and the electrome-
chanical properties of the PIN–PMN–PT single crystal [19], which match well with the
experiments. On the contrary, research on PIN–PMN–PT thin films has been rare. Com-
pared to bulk films, thin films are grown on a substrate, which impose a strain constraint
due to a substrate lattice mismatch [9,20–23]. It is known that the misfit strain can, in
general, influence the phase structures and electromechanical properties in thin films [24].
The films have wider applications and a better adjustment than the bulks [8]. However,
the influences of the misfit strain on the phase structures, electromechanical properties,
and electrocaloric response in the epitaxial PIN–PMN–PT thin films have been lacking,
which hinders the corresponding experimental studies. Notice that the misfit strain in the
films is caused by the mismatch of lattice between the substrate and the film, which can be
relaxed by a defect [25–29], such as a dislocation in the thicker films [30]. Thus, this article
employs a nonlinear thermodynamic analysis to establish the misfit strain–temperature
phase diagram for PIN–PMN–PT (26PIN–42PMN–32PT) thin films, which the stoichiomet-
ric composition are described by atomic%, from which the influences of the misfit strain on
the phase structures, electromechanical properties, and electrocaloric responses are studied,
offering a guidance for PIN–PMN–PT thin film experiments.

The structure of this article is as follows: the theory of nonlinear thermodynamics
for ferroelectric thin films is outlined in Section 2, including the calculation methods for
the electromechanical properties and electrocaloric response. The influences of the misfit
strain on the phase structures, electromechanical properties, and electrocaloric responses
of PIN–PMN–PT thin films are investigated in Section 3. The important discoveries and
conclusions are summarized in Section 4.

2. Computational Model
2.1. Thermodynamic Potential of Thin Films and Electromechanical Properties

Lv et al. [19] developed a tenth-order Landau–Devonshire energy function for PIN–
PMN–PT, which was restricted to the bulk structures. We consider the epitaxial PMN–
PT–PIN thin films subjected to the in-plane biaxial misfit strain um, leading to the mixed
boundary conditions as below [30,31]:

ε1 = ε2 = um, ε6 = 0, σ3 = σ4 = σ5 = 0

Thus, the thermodynamic potential of PMN–PT–PIN thin films can be obtained from
the standard Gibbs function using the Legendre transform [30,31]:

G = α1
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With

α∗1 = α1 −
um(Q11 + Q12)

S11 + S12
, (2)

α∗3 = α1 −
2Q12um

S11 + S12
, (3)
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S11(Q11
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2)− 2Q11Q12S12
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where Pi and Ei represent the components of polarization and external electric fields; α1,
αij, αijk, αijkl , and αijklm are the dielectric constants under constant stress; α∗1 and α∗ij are the
normalized dielectric constants; Sij represents the elastic compliance coefficient; and Qij
represents the electrostrictive coefficient. The material parameters used in the calculations
are listed in Table 1.

According to the principle of the minimum energy, the polarization components of the
thin films at stable configurations can be computed by solving the system of the equation:

∂G
∂P1

= 0,
∂G
∂P2

= 0,
∂G
∂P3

= 0

With the computed polarization components (P1, P2, P3), the relative dielectric con-
stant of the thin film can be calculated [32]:

εij = 1 +
ηij

ε0
(8)

where
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For (001)-oriented thin films, the piezoelectric coefficients din can be computed [22]:

din =
∂sn

∂P1
ηi1 +

∂sn

∂P2
ηi2 +

∂sn

∂P3
ηi3, (10)

where the strain Si is obtained from the stress–strain relation [30]. The main focus has been
placed on the significant piezoelectric coefficients d15 and d33. The strain components used
for calculating the piezoelectric coefficients d15 and d33 are given as [32]:
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Table 1. The material parameters used in the calculations [11,19,33].

Coefficients Values Units

α1 3.816× 104(T − 182) C−2m2N, and T in ◦C
α11 −1.212× 107 C−4m6N
α12 −1.285× 107 C−4m6N
α111 9.424× 107 C−6m10N
α112 1.550× 108 C−6m10N
α123 4.716× 109 C−6m10N
α1111 3.190× 107 C−8m14N
α1112 2.521× 109 C−8m14N
α1122 −1.993× 109 C−8m14N
α1123 −3.956× 1010 C−8m14N
α11112 −8.865× 109 C−10m18N
α11223 1.717× 1011 C−10m18N
α11123 8.946× 1010 C−10m18N
α11111 0 C−10m18N
α11122 0 C−10m18N
Q11 0.066 m4/C2

Q12 −0.032 m4/C2

Q44 0.023 m4/C2

S11 12.3× 10−12 m2/N
S12 −7.1× 10−12 m2/N
S44 15.1× 10−12 m2/N

Clatt 2.697× 106 J/m3K

2.2. Adiabatic Temperature Change in Electrocaloric Response

The electrocaloric (EC) effect is a phenomenon in a dielectric material that shows an
adiabatic temperature change ∆T under an applied electric field change, or the entropy
change induced by the isothermal conditions [34]. Following the method developed by
Liu et al. in the previous work [35,36], we use an entropy-based analysis to calculate the
EC adiabatic temperature change ∆T for the epitaxial PMN–PT–PIN thin films. In the
literature [35–37], the total entropy Stotal of a ferroelectric thin film can be written as the
sum of the dipolar entropy Sdip and the lattice entropy Slatt,

Stotal(E, T) = Sdip(E, T) + Slatt(T) (12)

In Equation (12), Sdip(E, T) is the contribution from the dipolar degree of freedom,
which is a function of polarization, depending on the working temperature T, the external
electric field E, and the misfit strain. Slatt(T) is assumed to be only correlated to the lattice
contribution. Under the adiabatic condition, the total entropy change of the thin film is
zero, leading to

Slatt(Tf )− Slatt(Ti) = −[Sdip(E f , Tf )− Sdip(Ei, Ti)] (13)

where subscripts i and f correspond to the initial and final states, respectively. The change
in y Slatt can be approximated by

Slatt(Tf )− Slatt(Ti) =
∫ Tf

Ti

Clatt(T)
T

dT ≈ Clatt(Ti) ln
(Tf

Ti

)
(14)

Note that Clatt is the lattice heat capacity per unit volume. Combining Equations (13)
and (14), the final state temperature Tf can be calculated by

Tf = Tiexp
{
− 1

Clatt
[Sdip

(
E f , Tf

)
− Sdip(Ei, Ti)]

}
(15)
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Thus, the adiabatic temperature change in the electrocaloric response is given by

∆T = Tf − Ti = Tiexp
{
− 1

Clatt
[Sdip

(
E f , Tf

)
− Sdip(Ei, Ti)]

}
− Ti (16)

where the dipolar entropy Sdip is associated with the dipolar free energy ofthe ferroelectric
thin films and can be determined by [35–37].

Sdip(E, T) = −
(

∂G
∂T

)
E

(17)

3. Results and Discussion

The above nonlinear thermodynamics method is adopted to analyze the influences of the
misfit strain on the phase structures, electromechanical properties, and electrocaloric response
in PIN–PMN–PT thin films. The material parameters used in the calculations are listed in
Table 1 [11,19,33], which accurately reproduce the phase diagrams and electromechanical
properties in the PIN–PMN–PT bulk, indicating the reliability of the material parameters.

We first investigate the influence of the misfit strain on the phase structures of the PIN–
PMN–PT thin films, as shown in Figure 1. Figure 1a,b show that under the in-plane biaxial
misfit strain, PIN–PMN–PT thin films may exhibit the four phase structures, and their
polarization characteristics are summarized in Table 2. It can be seen that the tetragonal c
phase is easily formed under a compressive strain, and the orthorhombic aa phase is more
easily formed under a tensile strain. The tetragonal phase c has a polarization along the
[001]-direction. In contrast, the monoclinic M phase can exist under both a compressive
strain and a tensile strain. At high temperatures, the paraelectric PE phase is formed. To
more clearly observe the variation of polarization with the mismatch strain more clearly, the
change in the polarization components with the misfit strain at room temperature is plotted
in Figure 1c. It can be seen that with the misfit strain change from compressive to tensile, the
PIN–PMN–PT films exhibit a tetragonal c phase, monoclinic M phase, and orthorhombic aa
phase in turn. The out-of-plane component P3 decreases within the monoclinic M phase. In
contrast, the in-plane component P1 exhibits the opposite trend. At room temperature, the
c-M phase boundary is around um = −0.49%, while the M-aa phase boundary is around
um = 0.315%.

Table 2. The polarization components of the epitaxial PIN–PMN–PT thin films in the absence of an
external electric field.

Phase Polarization

Paraelectric PE P1 = P2 = P3 = 0
Tetragonal c P1 = P2 = 0, P3 6= 0

Orthorhombic aa P3 = 0, |P1| = |P2| 6= 0
Monoclinic M |P1| = |P2| 6= 0, P3 6= 0

Next, we investigate the influence of the misfit strain on the electromechanical proper-
ties of the PIN–PMN–PT thin films, including the dielectric and piezoelectric responses.
Figure 2 presents the dielectric constants ε11, ε22, and ε33 of the PIN–PMN–PT films at
different temperatures and misfit strains. Due to the in-plane biaxial misfit strain on the thin
films, it is expected that ε11 = ε22. Figure 2a shows the excellent transverse permittivity in
the vicinity of the c-M phase boundary and the aa-PE phase boundary. Figure 2b shows an
excellent longitudinal permittivity in the vicinity of the c-PE phase boundary and the M-aa
phase boundary. Figure 2c shows the trend of the dielectric constant at room temperature
with respect to the misfit strain. Similarly, the dielectric response enhancement at the phase
boundary is also observed in the BaTiO3 [22] and BiFeO3 [24,38] thin films due to the
abrupt change in the polarization slope near the phase boundary. The sudden change in the
polarization slope also causes the PIN–PMN–PT film to exhibit an excellent piezoelectric
response near the phase boundary, as shown in Figure 3a,b, where the c-M phase boundary
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has an excellent transverse piezoelectric response d15, the c-PE phase boundary and M-aa
phase boundary exhibit an excellent longitudinal piezoelectric response d33. The piezoelec-
tric response of the PIN–PMN–PT thin film at room temperature is shown in Figure 3c,
which reaches a peak at the c-M phase boundary, and a peak at the M-aa phase boundary.
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Finally, we investigate the influence of the misfit strain on the adiabatic tempera-
ture change ∆T in the electrocaloric response in PIN–PMN–PT thin films, as shown in
Figure 4, where the electrical field is applied along the [001] direction with a variation
(∆E) of 10 MV/m. The results show that large electrocaloric responses ∆T appear near
the ferroelectric–paraelectric phase boundary at high working temperature because the
dipoles in the paraelectric PE phase are easier to reorient when the external electrical field
is changed. The corresponding ∆T at a fixed temperature and under a fixed misfit strain are
shown in Figure 4b,c, where the peaks of the EC responses ∆T near the phase boundaries
can be observed more clearly, suggesting that an appropriate misfit strain can enhance the
EC response of the PIN–PMN–PT thin films.
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4. Conclusions

In summary, we adopt a nonlinear thermodynamics analysis to study the influences
of misfit strains on the phase structures, electromechanical properties, and electrocaloric
responses of epitaxial PIN–PMN–PT thin films. It is found that the PIN–PMN–PT thin
films may appear in tetragonal c-, orthorhombic aa-, monoclinic M-, and paraelectric PE
phases. We also found that the c-M and aa-PE phase boundaries show a superior dielectric
constant, ε11, as well as the c-M phase boundary having a large piezoelectric response,
d15, while the c-PE and M-aa phase boundaries show a superior dielectric constant, ε33,
and the piezoelectric response d33. The adiabatic temperature change ∆T indicates that
the paraelectric–ferroelectric phase boundary shows a large electrocaloric response. The
findings offer guidance for PIN–PMN–PT thin film experiments.
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