Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = PEM electrolyzer system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 358
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Capacity Optimization for Coordinated Operation of Hybrid Electrolytic Cells Based on Wavelet Packet
by Yi Yang, Bowen Zhou, Yang Xu, Juan Zhang, Bo Yang, Guiping Zhou and Shunjiang Wang
Sustainability 2025, 17(14), 6412; https://doi.org/10.3390/su17146412 - 13 Jul 2025
Viewed by 325
Abstract
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and [...] Read more.
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and low-frequency components by an adaptive wavelet packet. The low-frequency power is allocated to the alkaline electrolyzers (AWE) to ensure its stability, and the high-frequency power is allocated to the proton exchange membrane electrolyzers (PEM) with a faster response characteristic, thereby improving the energy utilization rate. This paper proposes a bi-layer optimization model, in which the upper-layer objective is to minimize the cost of mixed hydrogen production, and the lower-layer optimization objective is to maximize the utilization rate of renewable energy. The differential evolution algorithm optimizes the upper-layer objective, with results sent to the lower layer. Then, the YALMIP toolbox is used to solve the lower-layer objective. Through case analysis, the optimal proportion of AWE and PEM hydrogen electrolyzers obtained by this optimization method is 89.5 and 10.5, respectively. Compared with a single type of electrolyzer, the method proposed in this paper effectively improves the energy utilization efficiency and reduces the cost of hydrogen production. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

26 pages, 3957 KiB  
Article
Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs
by Abdellatif Azzaoui, Mohammed Attiaoui, Elmiloud Chaabelasri, Hugo Gonçalves Silva and Ahmed Alami Merrouni
Energies 2025, 18(14), 3633; https://doi.org/10.3390/en18143633 - 9 Jul 2025
Viewed by 393
Abstract
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is [...] Read more.
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is emerging as a key parameter. When produced using simple and cost-effective technologies like linear Fresnel reflector (LFR), it offers a practical solution. Therefore, assessing the potential of hydrogen production from LFR technology is essential to support the development of the energy sector and promote local industrial growth. This study investigates “green” hydrogen production using a 50 MW concentrated solar power (CSP) system based on LFR technology, where the CSP system generates electricity to power a proton exchange membrane electrolyzer for hydrogen production for three locations, including Ain Beni Mathar in Morocco, Assiout in Egypt, and Tabuk in Saudi Arabia. The results show that Tabuk achieved the highest annual hydrogen production (45.02 kg/kWe), followed by Assiout (38.72 kg/kWe) and Ain Beni Mathar (32.42 kg/kWe), with corresponding levelized costs of hydrogen (LCOH2) of 6.47 USD/kg, 6.84 USD/kg, and 7.35 USD/kg, respectively. In addition, several sensitivity analyses were conducted addressing the impact of thermal energy storage (TES) on the hydrogen production and costs, the effect of reduced investment costs resulting from the local manufacturing of LFR components, and the futuristic assumption of the electrolyzer cost drop. The integration of TES enhanced hydrogen output and reduced LCOH2 by up to 9%. Additionally, a future PEM electrolyzer costs projected for 2030 showed that LCOH2 could decrease by up to 1.3 USD/kg depending on site conditions. These findings demonstrate that combining TES with cost optimization strategies can significantly improve both technical performance and economic feasibility in the MENA region. Full article
(This article belongs to the Special Issue Hydrogen Energy Generation, Storage, Transportation and Utilization)
Show Figures

Figure 1

30 pages, 4875 KiB  
Article
Stochastic Demand-Side Management for Residential Off-Grid PV Systems Considering Battery, Fuel Cell, and PEM Electrolyzer Degradation
by Mohamed A. Hendy, Mohamed A. Nayel and Mohamed Abdelrahem
Energies 2025, 18(13), 3395; https://doi.org/10.3390/en18133395 - 27 Jun 2025
Viewed by 355
Abstract
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and [...] Read more.
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and PEM electrolyzers. The uncertainty in demand forecasting is addressed through a scenario-based generation to enhance the robustness and accuracy of the proposed method. Then, stochastic optimization was employed to determine the optimal operating schedules for deferable appliances and optimal water heater (WH) settings. The optimization problem was solved using a genetic algorithm (GA), which efficiently explores the solution space to determine the optimal operating schedules and reduce degradation costs. The proposed SDSM technique is validated through MATLAB 2020 simulations, demonstrating its effectiveness in reducing component degradation costs, minimizing load shedding, and reducing excess energy generation while maintaining user comfort. The simulation results indicate that the proposed method achieved total degradation cost reductions of 16.66% and 42.6% for typical summer and winter days, respectively, in addition to a reduction of the levelized cost of energy (LCOE) by about 22.5% compared to the average performance of 10,000 random operation scenarios. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 1451 KiB  
Article
Techno-Economic Assessment of Hydrogen-Based Power-to-Power Systems: Operational Strategies and Feasibility Within Energy Communities
by Lucia Pera, Marta Gandiglio and Paolo Marocco
Energies 2025, 18(13), 3254; https://doi.org/10.3390/en18133254 - 21 Jun 2025
Cited by 1 | Viewed by 376
Abstract
In the context of the evolving energy landscape, the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework, hydrogen emerges as a promising energy storage vector, offering a viable solution to the flexibility challenges caused by the inherent [...] Read more.
In the context of the evolving energy landscape, the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework, hydrogen emerges as a promising energy storage vector, offering a viable solution to the flexibility challenges caused by the inherent variability of RESs. This work investigates the feasibility of integrating a hydrogen-based energy storage system within an energy community in Barcelona, using surplus electricity from photovoltaic (PV) panels. A power-to-power configuration is modelled through a comprehensive methodology that determines optimal component sizing, based on high-resolution real-world data. This analysis explores how different operational strategies influence the system’s cost-effectiveness. The methodology is thus intended to assist in the early-stage decision-making process, offering a flexible approach that can be adapted to various market conditions and operational scenarios. The results show that, under the current conditions, the combination of PV generation, energy storage, and low-cost grid electricity purchases yield the most favourable outcomes. However, in a long-term perspective, considering projected cost reductions for hydrogen technologies, strategies including energy sales back to the grid become more profitable. This case study offers a practical example of balancing engineering and economic considerations, providing replicable insights for designing hydrogen storage systems in similar energy communities. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Graphical abstract

29 pages, 3271 KiB  
Article
Offshore Platform Decarbonization Methodology Based on Renewable Energies and Offshore Green Hydrogen: A Techno-Economic Assessment of PLOCAN Case Study
by Alejandro Romero-Filgueira, Maria José Pérez-Molina, José Antonio Carta and Pedro Cabrera
J. Mar. Sci. Eng. 2025, 13(6), 1083; https://doi.org/10.3390/jmse13061083 - 29 May 2025
Viewed by 507
Abstract
The decarbonization of offshore infrastructures is relevant to advancing global climate goals. This study presents a renewable-based energy system tailored for the Oceanic Platform of the Canary Islands (PLOCAN), designed to achieve full energy autonomy and eliminate greenhouse gas emissions. A hybrid configuration [...] Read more.
The decarbonization of offshore infrastructures is relevant to advancing global climate goals. This study presents a renewable-based energy system tailored for the Oceanic Platform of the Canary Islands (PLOCAN), designed to achieve full energy autonomy and eliminate greenhouse gas emissions. A hybrid configuration integrating photovoltaic panels, vertical-axis wind turbines, lithium-ion batteries, a proton exchange membrane (PEM) electrolyzer, and a PEM fuel cell was developed and evaluated through detailed resource assessment, system simulation, and techno-economic analysis under real offshore constraints. The results confirm that complete decarbonization is technically feasible, with a net present cost approximately 15% lower than the current diesel-based system and a total suppression of pollutant emissions. Although the transition entails a higher initial investment, the long-term economic and environmental gains are substantial. Offshore green hydrogen emerges as a key vector for achieving energy resilience and sustainability in isolated marine infrastructures, offering a replicable pathway towards fully decarbonized ocean platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2859 KiB  
Article
Produced Water Use for Hydrogen Production: Feasibility Assessment in Wyoming, USA
by Cilia Abdelhamid, Abdeldjalil Latrach, Minou Rabiei and Kalyan Venugopal
Energies 2025, 18(11), 2756; https://doi.org/10.3390/en18112756 - 26 May 2025
Cited by 1 | Viewed by 597
Abstract
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with [...] Read more.
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with a general total of dissolved solids (TDS) ranging from 35,000 to 150,000 ppm, though Wyoming’s sources are often at the lower end of this spectrum. Optimal locations for hydrogen production hubs have been identified, particularly in high-yield areas like the Powder River Basin, where the top 2% of fields contribute over 80% of the state’s produced water. Detailed water-quality analysis indicates that virtually all of the examined sources exceed direct electrolyzer feed requirements (e.g., <2000 ppm TDS, <0.1 ppm Fe/Mn for target PEM systems), necessitating pre-treatment. A review of advanced treatment technologies highlights viable solutions, with estimated desalination and purification costs ranging from USD 0.11 to USD 1.01 per barrel, potentially constituting 2–6% of the levelized cost of hydrogen (LCOH). Furthermore, Wyoming’s substantial renewable-energy potential (3000–4000 GWh/year from wind and solar) could sustainably power electrolysis, theoretically yielding approximately 0.055–0.073 million metric tons (MMT) of green hydrogen annually (assuming 55 kWh/kg H2), a volume constrained more by energy availability than water supply. A preliminary economic analysis underscores that, while water treatment (2–6% LCOH) and transportation (potentially > 10% LCOH) are notable, electricity pricing (50–70% LCOH) and electrolyzer CAPEX (20–40% LCOH) are dominant cost factors. While leveraging produced water could reduce freshwater consumption and enhance hydrogen production sustainability, further research is required to optimize treatment processes and assess economic viability under real-world conditions. This study emphasizes the need for integrated approaches combining water treatment, renewable energy, and policy incentives to advance a circular economy model for hydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

11 pages, 2124 KiB  
Article
Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers
by Haoyu Zhang, Jiangong Zhu, Chao Wang, Hao Yuan, Haifeng Dai and Xuezhe Wei
Energies 2025, 18(11), 2700; https://doi.org/10.3390/en18112700 - 23 May 2025
Viewed by 480
Abstract
The flow rate strategies of deionized water have a significant impact on the mass transfer process of proton exchange membrane (PEM) electrolyzers, which are critical for the efficient and safe operation of hydrogen production systems. Electrochemical impedance spectroscopy is an effective tool for [...] Read more.
The flow rate strategies of deionized water have a significant impact on the mass transfer process of proton exchange membrane (PEM) electrolyzers, which are critical for the efficient and safe operation of hydrogen production systems. Electrochemical impedance spectroscopy is an effective tool for distinguishing different kinetic processes within the electrolyzer. In this study, three different Ti-felt porous transport layers (PTLs) are tested with two flow rate modes, constant flow (50 mL/min) and periodic cycling flow (10 mL/min–50 mL/min–10 mL/min), to investigate the influence of flow rate strategies on the mass transfer impedance of the electrolyzer. The following observations were made: (1) For PTL with better performance, the flow rate of the periodic cycling flow has little effect on its mass transfer impedance, and the mass transfer impedance of the periodic circulation flow mode is not much different from that of the constant flow. (2) For PTL with poorer performance, in the periodic cycling mode, the mass transfer impedance at 10 mL/min is smaller than that at 50 mL/min, but both are higher than the impedance under constant flow. The conclusions of this study provide a theoretical basis for the flow management of PEM electrolytic hydrogen production systems. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

16 pages, 2661 KiB  
Article
Toward More Efficient Large-Scale Green Hydrogen Systems via Waste Heat Recovery and ORC
by Shayan S. Niknezhad, Forough Moghaddamali and Efstratios Pistikopoulos
Appl. Sci. 2025, 15(10), 5224; https://doi.org/10.3390/app15105224 - 8 May 2025
Viewed by 855
Abstract
This research models a 20 MW PEM hydrogen plant. PEM units operate in the 60 to 80 °C range based on their location and size. This study aims to recover the waste heat from PEM modules to enhance the efficiency of the plant. [...] Read more.
This research models a 20 MW PEM hydrogen plant. PEM units operate in the 60 to 80 °C range based on their location and size. This study aims to recover the waste heat from PEM modules to enhance the efficiency of the plant. In order to recover the heat, two systems are implemented: (a) recovering the waste heat from each PEM module; (b) recovering the heat from hot water to produce electricity utilizing an organic refrigerant cycle (ORC). The model is made by ASPEN® V14. After modeling the plant and utilizing the ORC, the module is optimized using Python to maximize the electricity produced by the turbine, therefore enhancing the efficiency. The system is a closed-loop cycle operating at 25 °C and ambient pressure. The 20 MW PEM electrolyzer plant produces 363 kg/hr of hydrogen and 2877 kg/hr of oxygen. Based on the higher heating value of hydrogen, the plant produces 14,302.2 kWh of hydrogen energy equivalents. The ORC is maximized by increasing the electricity output from the turbine and reducing the pump work while maintaining energy conservation and mass balance. The results show that the electricity power output reaches 555.88 kW, and the pump power reaches 23.47 kW. Full article
(This article belongs to the Special Issue Production, Storage and Utilization of Hydrogen Energy)
Show Figures

Figure 1

11 pages, 1518 KiB  
Perspective
Challenges and Opportunities of the Dynamic Operation of PEM Water Electrolyzers
by Balázs Endrődi, Cintia Alexandra Trapp, István Szén, Imre Bakos, Miklós Lukovics and Csaba Janáky
Energies 2025, 18(9), 2154; https://doi.org/10.3390/en18092154 - 23 Apr 2025
Cited by 1 | Viewed by 1622
Abstract
Hydrogen is expected to play an important role in decarbonizing different heavy industries and the transportation sector. Water electrolysis is, therefore, one of the most rapidly spreading energy technologies, with PEM electrolyzers taking a continuously increasing share in the technology mix. Most often, [...] Read more.
Hydrogen is expected to play an important role in decarbonizing different heavy industries and the transportation sector. Water electrolysis is, therefore, one of the most rapidly spreading energy technologies, with PEM electrolyzers taking a continuously increasing share in the technology mix. Most often, the aim is to form green hydrogen, utilizing electricity exclusively of renewable origin. The intermittency of such sources, however, poses several technological challenges and financial questions. Focusing on PEM electrolyzers, we discuss the effect of pressure, temperature, and reaction rate changes, induced by the intermittent operation, and general thoughts regarding system component erosion caused by the regular start–stop cycles are also considered. As a case study, we present a high-level techno-economic analysis of data from a pilot 1 MW PEM electrolysis system, coupled to a 20 MW PV farm, deployed in Hungary. We underscore the importance of the often overlooked local regulations and financial incentives, which strongly influence the most beneficial operation scenario. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

67 pages, 14319 KiB  
Review
Water Electrolysis Technologies and Their Modeling Approaches: A Comprehensive Review
by Ajitanshu Vedrtnam, Kishor Kalauni and Rahul Pahwa
Eng 2025, 6(4), 81; https://doi.org/10.3390/eng6040081 - 21 Apr 2025
Cited by 1 | Viewed by 4151
Abstract
Hydrogen (H2) is a key energy vector in the global transition toward clean and sustainable energy systems. Among the various production methods, water electrolysis presents a promising pathway for zero-emission hydrogen generation when powered by renewables. This review provides a comprehensive [...] Read more.
Hydrogen (H2) is a key energy vector in the global transition toward clean and sustainable energy systems. Among the various production methods, water electrolysis presents a promising pathway for zero-emission hydrogen generation when powered by renewables. This review provides a comprehensive evaluation of water electrolysis technologies, including alkaline (AWE), proton exchange membrane (PEMWE), solid oxide (SOEC), anion exchange membrane (AEMWE), and microbial electrolysis cells (MEC). It critically examines their material systems, catalytic strategies, operational characteristics, and recent performance advances. In addition to reviewing experimental progress, the study presents a finite element modeling (FEM) case study that evaluates thermal and mechanical responses in PEM and AWE configurations—illustrating how FEM supports design optimization and performance prediction. To broaden methodological insight, other simulation frameworks such as computational fluid dynamics (CFD), response surface methodology (RSM), and system-level modeling (e.g., Aspen Plus®) are also discussed based on their use in recent literature. These are reviewed to guide future integration of multi-scale and multi-physics approaches in electrolyzer research. By bridging practical design, numerical simulation, and material science perspectives, this work provides a resource for researchers and engineers advancing next-generation hydrogen production systems. Full article
Show Figures

Graphical abstract

24 pages, 4171 KiB  
Article
Energy Management of a 1 MW Photovoltaic Power-to-Electricity and Power-to-Gas for Green Hydrogen Storage Station
by Dalila Hidouri, Ines Ben Omrane, Kassmi Khalil and Adnen Cherif
World Electr. Veh. J. 2025, 16(4), 227; https://doi.org/10.3390/wevj16040227 - 11 Apr 2025
Viewed by 818
Abstract
Green hydrogen is increasingly recognized as a sustainable energy vector, offering significant potential for the industrial sector, buildings, and sustainable transport. As countries work to establish infrastructure for hydrogen production, transport, and energy storage, they face several challenges, including high costs, infrastructure complexity, [...] Read more.
Green hydrogen is increasingly recognized as a sustainable energy vector, offering significant potential for the industrial sector, buildings, and sustainable transport. As countries work to establish infrastructure for hydrogen production, transport, and energy storage, they face several challenges, including high costs, infrastructure complexity, security concerns, maintenance requirements, and the need for public acceptance. To explore these challenges and their environmental impact, this study proposes a hybrid sustainable infrastructure that integrates photovoltaic solar energy for the production and storage of green hydrogen, with PEMFC fuel cells and a hybrid Power-to-Electricity (PtE) and Power-to-Gas (PtG) configurations. The proposed system architecture is governed by an innovative energy optimization and management (EMS) algorithm, allowing forecasting, control, and supervision of various PV–hydrogen–Grid transfer scenarios. Additionally, comprehensive daily and seasonal simulations were performed to evaluate power sharing, energy transfer, hydrogen production, and storage capabilities. Dynamic performance assessments were conducted under different conditions of solar radiation, temperature, and load, demonstrating the system’s adaptability. The results indicate an overall efficiency of 62%, with greenhouse gas emissions reduced to 1% and a daily production of hydrogen of around 250 kg equivalent to 8350 KWh/day. Full article
Show Figures

Figure 1

23 pages, 7410 KiB  
Article
Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers
by Bachirou Djibo Boubé, Ramchandra Bhandari, Moussa Mounkaila Saley, Abdou Latif Bonkaney and Rabani Adamou
Energies 2025, 18(7), 1872; https://doi.org/10.3390/en18071872 - 7 Apr 2025
Viewed by 594
Abstract
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the [...] Read more.
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the potential of green hydrogen production using a geographic information system (GIS) tool, followed by an economic analysis of the levelized cost of hydrogen (LCOH) for alkaline and proton exchange membrane (PEM) water electrolyzers using fresh and desalinated water. The results show that the electricity generation potential is 311,617 TWh/year and 353,166 TWh/year for off-grid and utility-scale systems. The hydrogen potential using PEM (alkaline) water electrolyzers is calculated to be 5932 Mt/year and 6723 Mt/year (5694 Mt/year and 6454 Mt/year) for off-grid and utility-scale systems, respectively. The LCOH production potential decreases for PEM and alkaline water electrolyzers by 2030, ranging between 4.72–5.99 EUR/kgH2 and 5.05–6.37 EUR/kgH2 for off-grid and 4.09–5.21 EUR/kgH2 and 4.22–5.4 EUR/kgH2 for utility-scale systems. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Figure 1

36 pages, 3392 KiB  
Review
Proton Exchange Membrane Electrolysis Revisited: Advancements, Challenges, and Two-Phase Transport Insights in Materials and Modelling
by Ali Bayat, Prodip K. Das, Goutam Saha and Suvash C. Saha
Eng 2025, 6(4), 72; https://doi.org/10.3390/eng6040072 - 4 Apr 2025
Cited by 3 | Viewed by 2060
Abstract
The transition to clean energy has accelerated the pursuit of hydrogen as a sustainable fuel. Among various production methods, proton exchange membrane electrolysis cells (PEMECs) stand out due to their ability to generate ultra-pure hydrogen with efficiencies exceeding 80% and current densities reaching [...] Read more.
The transition to clean energy has accelerated the pursuit of hydrogen as a sustainable fuel. Among various production methods, proton exchange membrane electrolysis cells (PEMECs) stand out due to their ability to generate ultra-pure hydrogen with efficiencies exceeding 80% and current densities reaching 2 A/cm2. Their compact design and rapid response to dynamic energy inputs make them ideal for integration with renewable energy sources. This review provides a comprehensive assessment of PEMEC technology, covering key internal components, system configurations, and efficiency improvements. The role of catalyst optimization, membrane advancements, and electrode architectures in enhancing performance is critically analyzed. Additionally, we examine state-of-the-art numerical modelling, comparing zero-dimensional to three-dimensional simulations and single-phase to two-phase flow dynamics. The impact of oxygen evolution and bubble dynamics on mass transport and performance is highlighted. Recent studies indicate that optimized electrode architectures can enhance mass transport efficiency by up to 20%, significantly improving PEMEC operation. Advancements in two-phase flow simulations are crucial for capturing multiphase transport effects, such as phase separation, electrolyte transport, and membrane hydration. However, challenges persist, including high catalyst costs, durability concerns, and scalable system designs. To address these, this review explores non-precious metal catalysts, nanostructured membranes, and machine-learning-assisted simulations, which have demonstrated cost reductions of up to 50% while maintaining electrochemical performance. Future research should integrate experimental validation with computational modelling to improve predictive accuracy and real-world performance. Addressing system control strategies for stable PEMEC operation under variable renewable energy conditions is essential for large-scale deployment. This review serves as a roadmap for future research, guiding the development of more efficient, durable, and economically viable PEM electrolyzers for green hydrogen production. Full article
Show Figures

Figure 1

26 pages, 2564 KiB  
Article
Equipment Sizing and Operation Strategy of Photovoltaic-Powered Hydrogen Refueling Station Based on AE-PEM Coupled Hydrogen Production
by Zheng Yan, Yanfang Fan and Junjie Hou
Electronics 2025, 14(6), 1195; https://doi.org/10.3390/electronics14061195 - 18 Mar 2025
Cited by 1 | Viewed by 448
Abstract
With the global commercialization of hydrogen fuel cell vehicles, the number of hydrogen refueling stations is steadily increasing. On-site hydrogen production stations are expected to play a key role in future power systems by absorbing renewable energy and supplying electricity during peak grid [...] Read more.
With the global commercialization of hydrogen fuel cell vehicles, the number of hydrogen refueling stations is steadily increasing. On-site hydrogen production stations are expected to play a key role in future power systems by absorbing renewable energy and supplying electricity during peak grid loads, aiding in peak shaving and load leveling. However, renewable energy sources like photovoltaic (PV) systems have highly fluctuating power generation curves, making it difficult to provide stable energy for hydrogen production. Traditional stations mainly use alkaline electrolyzers (AE), which are sensitive to power fluctuations, leading to operational instability. To address this, this paper proposes using capacitors and energy storage batteries to mitigate PV fluctuations and introduces a combined AE and Proton Exchange Membrane (PEM) electrolyzer hydrogen production method. Study cases demonstrate that capacitors and energy storage batteries reduce the variance of PV power output by approximately 0.02. Building on this, the hybrid approach leverages the low cost of AE and the rapid response of PEM electrolyzers to better adapt to PV fluctuations and maximize PV absorption. The model is mathematically formulated and the station’s equipment planning and operational strategy are optimized using CPLEX. The results show that, compared to pure AE and PEM hydrogen production, the combined AE and PEM hydrogen production method reduces the total annual cost of the hydrogen refueling station by 4.3% and 5.9%, respectively. Full article
Show Figures

Figure 1

Back to TopTop