Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (216)

Search Parameters:
Keywords = PDE6D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 295 KB  
Article
On Corresponding Cauchy–Riemann Equations Applied to Laplace-Type Operators over Generalized Quaternions, with an Application
by Ji Eun Kim
Axioms 2025, 14(9), 700; https://doi.org/10.3390/axioms14090700 - 16 Sep 2025
Viewed by 222
Abstract
In this paper, we develop a concise differential–potential framework for the functions of a generalized quaternionic variable in the two-parameter algebra Hα,β, with α,βR{0}. Starting from left/right difference quotients, we [...] Read more.
In this paper, we develop a concise differential–potential framework for the functions of a generalized quaternionic variable in the two-parameter algebra Hα,β, with α,βR{0}. Starting from left/right difference quotients, we derive complete Cauchy–Riemann (CR) systems and prove that, away from the null cone where the reduced norm N vanishes, these first-order systems are necessary and, under C1 regularity, sufficient for left/right differentiability, thereby linking classical one-dimensional calculus to a genuinely four-dimensional setting. On the potential theoretic side, the Dirac factorization Δα,β=D¯D=DD¯ shows that each real component of a differentiable mapping is Δα,β-harmonic, yielding a clean second-order theory that separates the elliptic (Hamiltonian) and split (coquaternionic) regimes via the principal symbol. In the classical case (α,β)=(1,1), we present a Poisson-type representation solving a model Dirichlet problem on the unit ball BR4, recovering mean-value and maximum principles. For computation and symbolic verification, real 4×4 matrix models for left/right multiplication linearize the CR systems. Examples (polynomials, affine CR families, and split-signature contrasts) illustrate the theory, and the outlook highlights boundary integral formulations, Green kernel constructions, and discretization strategies for quaternionic PDEs. Full article
(This article belongs to the Special Issue New Perspectives in Operator Theory and Functional Analysis)
Show Figures

Figure 1

33 pages, 2411 KB  
Article
Comparative Analysis of Numerical Methods for Solving 3D Continuation Problem for Wave Equation
by Galitdin Bakanov, Sreelatha Chandragiri, Sergey Kabanikhin and Maxim Shishlenin
Mathematics 2025, 13(18), 2979; https://doi.org/10.3390/math13182979 - 15 Sep 2025
Viewed by 405
Abstract
In this paper, we develop the explicit finite difference method (FDM) to solve an ill-posed Cauchy problem for the 3D acoustic wave equation in a time domain with the data on a part of the boundary given (continuation problem) in a cube. FDM [...] Read more.
In this paper, we develop the explicit finite difference method (FDM) to solve an ill-posed Cauchy problem for the 3D acoustic wave equation in a time domain with the data on a part of the boundary given (continuation problem) in a cube. FDM is one of the numerical methods used to compute the solutions of hyperbolic partial differential equations (PDEs) by discretizing the given domain into a finite number of regions and a consequent reduction in given PDEs into a system of linear algebraic equations (SLAE). We present a theory, and through Matlab Version: 9.14.0.2286388 (R2023a), we find an efficient solution of a dense system of equations by implementing the numerical solution of this approach using several iterative techniques. We extend the formulation of the Jacobi, Gauss–Seidel, and successive over-relaxation (SOR) iterative methods in solving the linear system for computational efficiency and for the properties of the convergence of the proposed method. Numerical experiments are conducted, and we compare the analytical solution and numerical solution for different time phenomena. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

20 pages, 4431 KB  
Article
Molecular Imbalances Between Striosome and Matrix Compartments Characterize the Pathogenesis and Pathophysiology of Huntington’s Disease Model Mouse
by Ryoma Morigaki, Tomoko Yoshida, Joji Fujikawa, Jill R. Crittenden and Ann M. Graybiel
Int. J. Mol. Sci. 2025, 26(17), 8573; https://doi.org/10.3390/ijms26178573 - 3 Sep 2025
Viewed by 931
Abstract
The pathogenesis and pathophysiology of Huntington’s disease (HD) are still incompletely understood, despite the remarkable advances in identifying the molecular effects of the Htt mutation in this disease. Clinical positron emission tomography studies suggest that phosphodiesterase 10A (PDE10A) declines earlier than dopamine D1 [...] Read more.
The pathogenesis and pathophysiology of Huntington’s disease (HD) are still incompletely understood, despite the remarkable advances in identifying the molecular effects of the Htt mutation in this disease. Clinical positron emission tomography studies suggest that phosphodiesterase 10A (PDE10A) declines earlier than dopamine D1 and D2 receptors in HD, indicating that it might serve as a key molecular marker in understanding disease mechanisms. In movement disorders, mutations in the genes encoding PDE10A and G-protein α subunit (Gαolf), both critical cAMP regulators in striatal spiny projection neurons, have been linked to chorea and dystonia. These observations highlight the potential importance of striatal cyclic AMP (cAMP) signaling in these disorders, but how such dysfunction could come is unknown. Here, we suggest that a key to understanding signaling dysfunction might be to evaluate these messenger systems in light of the circuit-level compartmental organization of the caudoputamen, in which there is particular vulnerability of the striosome compartment in HD. We developed machine learning algorithms to define with high precision and reproducibility the borders of striosomes in the brains of Q175 knock-in (Q175KI) HD mice from 3–12 months of age. We demonstrate that the expression of multiple molecules, including Gαolf, PDE10A, dopamine D1 and D2 receptors, and adenosine A2A receptors, is significantly reduced in the striosomes of Q175KI mice as compared to wildtype controls, across 3, 6, and 12 months of age. By contrast, mu-opioid receptor (MOR1) expression is uniquely upregulated, suggesting a compartment-specific and age-dependent shift in molecular profiles in the Q175KI HD mouse model caudoputamen. These differential changes may serve as a useful platform to determine factors underlying the greater vulnerability of striatal projection neurons in the striosomes than in the matrix in HD. Full article
(This article belongs to the Special Issue Molecular Research of Dystonia and Parkinson’s Disease)
Show Figures

Figure 1

15 pages, 3959 KB  
Article
Antibiofilm Inhibitor Ferulic Acid as an Antibacterial Synergist Against Escherichia coli
by Zhijin Zhang, Jing Xu, Xiaojuan Wei, Rongbin Hu, Zhen Zhu, Zixuan Shang, Weiwei Wang, Bing Li, Yubin Bai and Jiyu Zhang
Biomolecules 2025, 15(9), 1253; https://doi.org/10.3390/biom15091253 - 29 Aug 2025
Viewed by 503
Abstract
Escherichia coli (E. coli) is a severe foodborne pathogen, and the formation of its biofilm can enhance bacterial virulence and reduce antibiotic sensitivity, posing a significant threat to human and animal health. Ferulic Acid (FA) is a natural active product that [...] Read more.
Escherichia coli (E. coli) is a severe foodborne pathogen, and the formation of its biofilm can enhance bacterial virulence and reduce antibiotic sensitivity, posing a significant threat to human and animal health. Ferulic Acid (FA) is a natural active product that has been proven to possess various biological activities, including anti-inflammatory, antioxidant, and antitumor properties. This study evaluated the inhibitory effect of FA on the biofilm formation of E. coli through crystal violet (CV) staining and scanning electron microscopy (SEM) and investigated the synergistic effect of FA with antibiotics, using the alamar blue (AB) assay. In addition, the regulatory effect of FA on the transcription of biofilm-related genes was analyzed using qRT-PCR technology. The results showed that FA could significantly inhibit biofilm formation, reduce the production of extracellular polymeric substances (EPS), and weaken bacterial motility, without affecting bacterial growth and metabolic activity. qRT-PCR analysis revealed that FA significantly downregulated the expression of curli-related gene csgD, flagella-related genes (flhC, flhD, and motA), and type I fimbriae gene fimA, while upregulating the transcription of c-di-GMP-related genes (pdeR, pdeA, and dosP). It is noteworthy that FA exhibits significant synergistic antibacterial effects when combined with clinically commonly used antibiotics, including sodium fosfomycin, ceftriaxone, gentamicin, and tetracycline, with the most prominent synergistic effect observed in the combination of FA and sodium fosfomycin. These results confirm that FA possesses notable anti-biofilm activity and novel synergistic antibacterial properties, providing a potential therapeutic strategy for treating E. coli infections. Full article
(This article belongs to the Special Issue Novel Mechanisms of Bacterial Antibiotic Resistance)
Show Figures

Figure 1

32 pages, 12850 KB  
Article
Polynitrogen Bicyclic and Tricyclic Compounds as PDE4 Inhibitors
by Claudia Vergelli, Agostino Cilibrizzi, Gabriella Guerrini, Fabrizio Melani, Marta Menicatti, Gianluca Bartolucci, Maria Paola Giovannoni and Letizia Crocetti
Appl. Sci. 2025, 15(15), 8678; https://doi.org/10.3390/app15158678 - 5 Aug 2025
Viewed by 428
Abstract
We report here two new series of designed PDE4 inhibitors, the first one showing the quinoline scaffold recently investigated by us through a fragment-based drug design strategy, and the second consisting of pyrazolo [1′,5′:1,6]pyrimido[4,5-d]pyridazine derivatives. Both the new series were subjected [...] Read more.
We report here two new series of designed PDE4 inhibitors, the first one showing the quinoline scaffold recently investigated by us through a fragment-based drug design strategy, and the second consisting of pyrazolo [1′,5′:1,6]pyrimido[4,5-d]pyridazine derivatives. Both the new series were subjected to biological studies to assess their inhibitory effect on PDE4 enzymes, supported by molecular modelling experiments, to rationalize the different activities recorded in the in vitro tests. Interesting results were achieved for two compounds belonging to the tricyclic series, namely 10a and 10e, exhibiting IC50 = 62 and 175.5 nM, respectively. These results could represent the starting point for further studies with the aim of developing new and effective PDE4 inhibitors for biomedical investigations. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

10 pages, 588 KB  
Article
Genome-Wide Association Study of Gluteus Medius Muscle Size in a Crossbred Pig Population
by Yu He, Chunyan Bai, Junwen Fei, Juan Ke, Changyi Chen, Xiaoran Zhang, Wuyang Liu, Jing Li, Shuang Liang, Boxing Sun and Hao Sun
Vet. Sci. 2025, 12(8), 730; https://doi.org/10.3390/vetsci12080730 - 3 Aug 2025
Viewed by 450
Abstract
The size of the gluteus medius muscle (GM) in swine significantly impacts both hindlimb conformation and carcass yield, while little is known about the genetic architecture of this trait. This study aims to estimate genetic parameters and identify candidate genes associated with this [...] Read more.
The size of the gluteus medius muscle (GM) in swine significantly impacts both hindlimb conformation and carcass yield, while little is known about the genetic architecture of this trait. This study aims to estimate genetic parameters and identify candidate genes associated with this trait through a genome-wide association study (GWAS). A total of 439 commercial crossbred pigs, possessing both Landrace and Yorkshire ancestry, were genotyped using the Porcine 50K chip. The length and width of the GM were directly measured, and the area was then calculated from these values. The heritabilities were estimated by HIBLUP (V1.5.0) software, and the GWAS was conducted employing the BLINK model implemented in GAPIT3. The heritability estimates for the length, width, and area of the GM were 0.43, 0.40, and 0.46, respectively. The GWAS identified four genome-wide significant SNPs (rs81381267, rs697734475, rs81298447, and rs81458910) associated with the gluteus medius muscle area. The PDE4D gene was identified as a promising candidate gene potentially involved in the regulation of gluteus medius muscle development. Our analysis revealed moderate heritability estimates for gluteus medius muscle size traits. These findings enhance our understanding of the genetic architecture underlying porcine muscle development. Full article
Show Figures

Figure 1

16 pages, 1127 KB  
Article
Effects of Corn–Soybean Meal-Based Fermented Feed Supplementation on Growth Performance, Meat Quality, Fatty Acid Profiles, Nutritional Values, and Gut Microbiota of Lean-Type Finishing Pigs
by Jiao Song, Xin Wang, Yuhan Cao, Yue He and Ye Yang
Foods 2025, 14(15), 2641; https://doi.org/10.3390/foods14152641 - 28 Jul 2025
Viewed by 769
Abstract
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 [...] Read more.
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 replicates of 8 pigs per pen. The pigs in control group (CON group) were fed a basal diet, while the pigs in fermented feed group (FF group) were fed a diet supplemented with 10% fermented feed. The experimental period lasted 70 days. Results exhibited that pigs in FF group had a significant increase in final body weight and average daily gain (ADG) (p < 0.05) and had a significant decrease in the feed-to-gain ratio (F/G) (p < 0.05). The FF group also exhibited significant promotion in muscle intramuscular fat content, marbling score, and meat color and significantly reduced the meat shear force and drip loss (p < 0.05). Serum analysis indicated that fermented feed significantly elevated blood glucose, total cholesterol, triglyceride levels, and serum hormones such as insulin, leptin, and IGF-1 (p < 0.05). Additionally, fermented feed significantly elevated the levels of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs), whereas it decreased the saturated fatty acids (SFAs) contents (p < 0.05). The fermented feed also significantly enhanced pork nutritional values (p < 0.05). The fermented feed increased the expression of IGF-1, SREBP1c, PDE3, PPARγ, SCD5, and FAT/CD36 mRNA (p < 0.05). Furthermore, microbial 16S rDNA analysis uncovered that FF supplementation significantly reduced the Campilobacterota phylum abundance, while increasing the genus abundances of Clostridium_sensu_stricto, norank_f_Oscillospiraceae, unclassified_c_Clostridia, and V9D2013 (p < 0.05). In summary, the results indicated that the microbial fermented feed exhibited the regulation effects on pork quality and nutritional values of lean-type pigs through regulating lipid metabolism and gut microbial composition. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 1567 KB  
Article
Whole Exome Sequencing in 26 Saudi Patients Expands the Mutational and Clinical Spectrum of Diabetic Nephropathy
by Imadeldin Elfaki, Rashid Mir, Sanaa Almowallad, Rehab F. Almassabi, Wed Albalawi, Aziz Dhaher Albalawi, Ajaz A. Bhat, Jameel Barnawi, Faris J. Tayeb, Mohammed M. Jalal, Malik A. Altayar and Faisal H. Altemani
Medicina 2025, 61(6), 1017; https://doi.org/10.3390/medicina61061017 - 29 May 2025
Viewed by 987
Abstract
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a health problem all over the world due to its serious complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, cardiovascular diseases, and limb amputation. The risk factors for T2DM are environmental, lifestyle, [...] Read more.
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a health problem all over the world due to its serious complications such as diabetic nephropathy, diabetic neuropathy, diabetic retinopathy, cardiovascular diseases, and limb amputation. The risk factors for T2DM are environmental, lifestyle, and genetic. The genome-wide association studies (GWASs) have revealed the linkage of certain loci with diabetes mellitus (DM) and its complications. The objective of this study was to examine the association of genetic loci with diabetic nephropathy (DN) in the Saudi population. Materials and Methods: Whole exome sequencing (WES) and bioinformatics analysis, such as Genome Analysis Toolkit, Samtools, SnpEff, Polymorphism Phenotyping v2, and Sorting Intolerant from Tolerant (SIFT), were used to examine the association of gene variations with DN in 26 Saudi patients (18 males and 8 females). Results: The present study showed that there are loci that are probably linked to DM and DN. The genes showed variations that include COCH, PRPF31, PIEZO2, RABL5, CCT5, PLIN3, PDE4A, SH3BP2, GPR108, GPR108, MUC6, CACNA1D, and MAFA. The physiological processes that are potentially affected by these gene variations include insulin signaling and secretion, the inflammatory pathway, and mitochondrial function. Conclusion: The variations in these genes and the dysregulation of these processes may be linked to the development of DM and DN. These findings require further verification in future studies with larger sample sizes and protein functional studies. The results of this study will assist in identifying the genes involved in DM and DN (for example, through genetic counseling) and help in prevention and treatment of individuals or populations at risk of this disease and its complications. Full article
Show Figures

Figure 1

17 pages, 2751 KB  
Article
Discovery of Natural Phosphodiesterase 5 Inhibitors from Dalbergia cochinchinensis Pierre Leaves Using LC-QTOF-MS2
by Ruttanaporn Chantakul, Corine Girard, François Senejoux, Kornkanok Ingkaninan, Nitra Nuengchamnong and Prapapan Temkitthawon
Plants 2025, 14(11), 1652; https://doi.org/10.3390/plants14111652 - 29 May 2025
Viewed by 1667
Abstract
The imbalance of phosphodiesterase 5 (PDE5) enzyme in the male body, or excessive PDE5 enzyme levels, can occur due to factors such as aging, diseases (e.g., cardiovascular disease, diabetes, depressive disorder), and physical behaviors (e.g., alcoholism, smoking, stress). PDE5 is directly associated with [...] Read more.
The imbalance of phosphodiesterase 5 (PDE5) enzyme in the male body, or excessive PDE5 enzyme levels, can occur due to factors such as aging, diseases (e.g., cardiovascular disease, diabetes, depressive disorder), and physical behaviors (e.g., alcoholism, smoking, stress). PDE5 is directly associated with erectile dysfunction disease. Currently, many studies aim to find natural PDE5 inhibitors as an alternative to commercial drugs. This study is the first to demonstrate that the ethanolic leaf extract of D. cochinchinensis exhibits potent PDE5-inhibitory activity. The PDE5-inhibitory activity of five plant parts was evaluated: leaf (IC50 = 1.53 ± 0.12 µg/mL), twig (3.37 ± 0.54), fruit (14.92 ± 2.85), heartwood (19.05 ± 5.60), and bark (16.03 ± 2.92). However, there is still uncertainty about which compounds in leaf extract are responsible for the PDE5 inhibition. Therefore, the purpose of this study is to identify the chemical constituents in the leaf of D. cochinchinensis, including determining which of these compounds may act as PDE5 inhibitors. This study was achieved using at-line LC-QTOF-MS2. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

24 pages, 1312 KB  
Review
Targeting Phosphodiesterase 4 in Gastrointestinal and Liver Diseases: From Isoform-Specific Mechanisms to Precision Therapeutics
by Can Chen, Mei Liu and Xiang Tao
Biomedicines 2025, 13(6), 1285; https://doi.org/10.3390/biomedicines13061285 - 23 May 2025
Cited by 1 | Viewed by 1410
Abstract
Phosphodiesterase 4 (PDE4) serves as a crucial regulator of cyclic adenosine monophosphate (cAMP) signaling and has been identified as a significant therapeutic target for inflammatory and metabolic disorders impacting the gastrointestinal (GI) tract and liver. Although pan-PDE4 inhibitors hold therapeutic promise, their clinical [...] Read more.
Phosphodiesterase 4 (PDE4) serves as a crucial regulator of cyclic adenosine monophosphate (cAMP) signaling and has been identified as a significant therapeutic target for inflammatory and metabolic disorders impacting the gastrointestinal (GI) tract and liver. Although pan-PDE4 inhibitors hold therapeutic promise, their clinical use has been constrained by dose-dependent adverse effects. Recent progress in the development of isoform-specific PDE4 inhibitors, such as those selective for PDE4B/D, alongside targeted delivery systems like liver-targeting nanoparticles and probiotic-derived vesicles, is reshaping the therapeutic landscape. This review consolidates the latest insights into PDE4 biology, highlighting how the structural characterization of isoforms informs drug design. We conduct a critical evaluation of preclinical and clinical data across various diseases, including inflammatory bowel diseases (IBDs), alcoholic liver disease, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, and digestive tract tumors, with an emphasis on mechanisms extending beyond cAMP modulation, such as microbiota remodeling and immune reprogramming. Additionally, we address challenges in clinical translation, including biomarker discovery and the heterogeneity of trial outcomes, and propose a roadmap for future research directions. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

21 pages, 2380 KB  
Article
Genetic Structure, Selective Signatures, and Single Nucleotide Polymorphism Fingerprints of Blue Tilapia (Oreochromis aureus), Nile Tilapia Oreochromis niloticus), and Red Tilapia (Oreochromis spp.), as Determined by Whole-Genome Resequencing
by Jixiang Hua, Yifan Tao, Siqi Lu, Qingchun Wang, Hui Sun, Yalun Dong and Jun Qiang
Int. J. Mol. Sci. 2025, 26(10), 4910; https://doi.org/10.3390/ijms26104910 - 20 May 2025
Cited by 1 | Viewed by 1027
Abstract
Tilapia (Oreochromis spp.) is a globally important farmed fish. Analyses of genetic variation across different types of tilapia are essential for the development of superior breeding populations. We investigated the genetic structures of breeding populations of blue tilapia (Oreochromis aureus) [...] Read more.
Tilapia (Oreochromis spp.) is a globally important farmed fish. Analyses of genetic variation across different types of tilapia are essential for the development of superior breeding populations. We investigated the genetic structures of breeding populations of blue tilapia (Oreochromis aureus) (OA), Nile tilapia (Oreochromis niloticus) (ON), and red tilapia (Oreochromis spp.) (OS) by whole-genome resequencing. The results showed that the OS population had maintained high genetic diversity but significant genetic differentiation from the OA population. Principal component analysis, phylogenetic analysis, and genetic clustering analysis revealed a clear pattern of genetic differentiation among the three populations. The genetic structure of the ON population differed from that of the OA population but was similar to that of the OS population. Population kinship analysis revealed a close relationship between the ON and OS populations. Selective scanning analyses of three comparison groups (OA vs. ON, OA vs. OS, and ON vs. OS) revealed population-selected regions related to metabolism, endocrine, and immune systems, harboring key genes (qrsl1, pde4d, hras, ikbkb, prkag1, prkaa2, prkacb, irs2, and eif4e2). These key genes were related to growth, reproduction, and disease resistance, indicating that breeding programs have selected for these traits. Due to the lack of stable morphological characteristics of juvenile fish and the changes in external environmental conditions that lead to changes in individual morphological characteristics, SNP fingerprints were successfully constructed for the identification of the three populations based on the differences in SNPs. Based on the five core SNP markers, two combinations of SNP markers were developed to accurately identify the three populations of tilapia at the genomic level. These results provide new information about tilapia genetic resources and reference data for identification and breeding purposes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3263 KB  
Article
Multi-Omics Mining of Characteristic Quality Factors Boosts the Brand Enhancement of the Geographical Indication Product—Pingliang Red Cattle
by Jing Liu, Yu Zhu, Xiaoxia Liu, Juan Zhang, Chuan Liu, Yan Zhao, Shuming Yang, Ailiang Chen and Jie Zhao
Foods 2025, 14(10), 1770; https://doi.org/10.3390/foods14101770 - 16 May 2025
Viewed by 858
Abstract
Pingliang Red Cattle, a renowned geographical indication product in China, is distinguished by its superior meat quality, yet the scientific basis for its unique attributes remains underexplored. This study integrated metabolomic and transcriptomic analyses to elucidate the biochemical and physiological factors underlying the [...] Read more.
Pingliang Red Cattle, a renowned geographical indication product in China, is distinguished by its superior meat quality, yet the scientific basis for its unique attributes remains underexplored. This study integrated metabolomic and transcriptomic analyses to elucidate the biochemical and physiological factors underlying the enhanced flavor, color stability, and tenderness of Pingliang Red Cattle beef compared to Qinchuan and Simmental cattle. Metabolomic profiling revealed significantly elevated levels of inosine monophosphate (IMP, 2.86–3.96× higher) and glutathione (GSH, 2.42–5.43× higher) in Pingliang Red Cattle, contributing to intense umami flavor and prolonged meat color retention. Notably, ergothioneine (EGT), a potent antioxidant, was identified for the first time in Pingliang Red Cattle beef, with concentrations 2.55× and 4.25× higher than in Qinchuan and Simmental, respectively. Transcriptomic analysis highlighted the upregulation of 21 tenderness-related genes (e.g., FABP3, PRDX6, CAST) and key enzymes in purine and glutathione metabolism pathways (e.g., PDE4D, ADSL, GGT1), correlating with meat tenderness and the improved meat quality. Additionally, Pingliang Red Cattle’s natural forage-rich diet and low-density rearing practices were critical in enhancing these traits. These findings provide a scientific foundation for Pingliang Red Cattle’s premium quality, offering actionable insights for GI product branding, quality optimization, and market competitiveness. The multi-omics approach established here serves as a paradigm for quality assessment and improvement of other GI agricultural products, bridging traditional reputation with molecular evidence. Full article
Show Figures

Figure 1

16 pages, 2970 KB  
Article
PDE10A Inhibition Reduces NLRP3 Activation and Pyroptosis in Sepsis and Nerve Injury
by Bradford C. Berk, Camila Lage Chávez and Chia George Hsu
Int. J. Mol. Sci. 2025, 26(10), 4498; https://doi.org/10.3390/ijms26104498 - 8 May 2025
Viewed by 1305
Abstract
Cell death and inflammation are key innate immune responses, but excessive activation can cause tissue damage. The NLRP3 inflammasome is a promising target for reducing inflammation and promoting recovery. Immunometabolism regulates NLRP3 responses in neurological and inflammatory diseases through cyclic nucleotide signaling. Targeting [...] Read more.
Cell death and inflammation are key innate immune responses, but excessive activation can cause tissue damage. The NLRP3 inflammasome is a promising target for reducing inflammation and promoting recovery. Immunometabolism regulates NLRP3 responses in neurological and inflammatory diseases through cyclic nucleotide signaling. Targeting phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP, offer a novel approach to mitigate inflammation. While 14 PDE inhibitors are FDA-approved, PDE10A’s role in NLRP3 inflammasome activation remains unclear. This study investigates the effects of PDE10A inhibition on inflammasome-driven inflammation using two PDE10A inhibitors, MP-10 and TP-10, in macrophage and animal models of sepsis and traumatic nerve injury. Our results show that PDE10A inhibition reduces inflammasome activation by preventing ASC speck formation and by lowering levels of cleaved caspase-1, gasdermin D, and IL-1β, which are key mediators of pyroptosis. In the sepsis model, MP-10 significantly reduced inflammation, decreased plasma IL-1β, alleviated thrombocytopenia, and improved organ damage markers. In the nerve injury model, PDE10A inhibition enhanced motor function recovery and reduced muscle atrophy-related gene expression. These findings suggest that PDE10A inhibition could be a promising therapeutic approach for inflammatory and neuromuscular injuries. Given MP-10’s established safety in human trials, Phase 2 clinical studies for sepsis and nerve injury are highly promising. Full article
(This article belongs to the Special Issue Roles of Inflammasomes in Inflammatory Responses and Human Diseases)
Show Figures

Figure 1

24 pages, 17560 KB  
Article
Bioinformatics Analysis of Diadenylate Cyclase Regulation on Cyclic Diadenosine Monophosphate Biosynthesis in Exopolysaccharide Production by Leuconostoc mesenteroides DRP105
by Wenna Yu, Liansheng Yu, Tengxin Li, Ziwen Wang, Renpeng Du and Wenxiang Ping
Fermentation 2025, 11(4), 196; https://doi.org/10.3390/fermentation11040196 - 7 Apr 2025
Cited by 1 | Viewed by 852
Abstract
Lactic acid bacteria exopolysaccharides (EPS) have a variety of excellent biological functions and are widely used in the food and pharmaceutical industries. The complex metabolic system of lactic acid bacteria and the mechanism of EPS biosynthesis have not been fully analyzed, which limits [...] Read more.
Lactic acid bacteria exopolysaccharides (EPS) have a variety of excellent biological functions and are widely used in the food and pharmaceutical industries. The complex metabolic system of lactic acid bacteria and the mechanism of EPS biosynthesis have not been fully analyzed, which limits the wider application of EPS. EPS synthesis is regulated by cyclic diadenosine monophosphate (c-di-AMP), but the exact mechanism remains unclear. Dac and pde are c-di-AMP anabolic genes, gtfA, gtfB and gtfC are EPS synthesis gene clusters, among which gtfC was the key gene for EPS synthesis in Leuconostoc mesenteroides DRP105. In order to explore whether diadenylate cyclase (DAC) can catalyze the synthesis of c-di-AMP from ATP, the sequence of DAC was analyzed by bioinformatics based on the whole genome sequence. DAC was a CdaA type diadenylate cyclase containing the classical domain DisA_N and DGA and RHR motifs. The secondary structure was mainly composed of α-helices, and AlphaFold2 was used to model the 3D structure of the protein and evaluate the rationality of the DAC protein structure model. A total of 8 salt bridges, 21 hydrogen bonds and 221 non-bonded interactions were found between DAC and GtfC. Molecular docking simulations revealed ATP1 and ATP2 fully occupied the binding pocket of DAC and interacted directly with the binding site residues of DAC. The molecular dynamics simulations showed that the binding of DAC to ATP molecules was relatively stable. Gene and enzyme correlation analysis found that dac and gtfC gene expression were significantly positively correlated with DAC enzyme activity, c-di-AMP content and EPS production, and had no significant correlation with PDE enzyme activity responsible for c-di-AMP degradation. Bioinformatics analysis of the regulatory role of DAC in the synthesis of EPS by lactic acid bacteria was helpful to fully reveal the biosynthetic mechanism of EPS and provide theoretical basis for large-scale industrial production of EPS. Full article
Show Figures

Figure 1

40 pages, 12138 KB  
Article
Non-Similar Analysis of Boundary Layer Flow and Heat Transfer in Non-Newtonian Hybrid Nanofluid over a Cylinder with Viscous Dissipation Effects
by Ahmed Zeeshan, Majeed Ahmad Yousif, Muhammad Imran Khan, Muhammad Amer Latif, Syed Shahzad Ali and Pshtiwan Othman Mohammed
Energies 2025, 18(7), 1660; https://doi.org/10.3390/en18071660 - 26 Mar 2025
Cited by 6 | Viewed by 1029
Abstract
Highlighting the importance of artificial intelligence and machine learning approaches in engineering and fluid mechanics problems, especially in heat transfer applications is main goal of the presented article. With the advancement in Artificial Intelligence (AI) and Machine Learning (ML) techniques, the computational efficiency [...] Read more.
Highlighting the importance of artificial intelligence and machine learning approaches in engineering and fluid mechanics problems, especially in heat transfer applications is main goal of the presented article. With the advancement in Artificial Intelligence (AI) and Machine Learning (ML) techniques, the computational efficiency and accuracy of numerical results are enhanced. The theme of the study is to use machine learning techniques to examine the thermal analysis of MHD boundary layer flow of Eyring-Powell Hybrid Nanofluid (EPHNFs) passing a horizontal cylinder embedded in a porous medium with heat source/sink and viscous dissipation effects. The considered base fluid is water (H2O) and hybrid nanoparticles titanium oxide (TiO2) and Copper oxide (CuO). The governing flow equations are nonlinear PDEs. Non-similar system of PDEs are obtained with efficient conversion variables. The dimensionless PDEs are truncated using a local non-similarity approach up to third level and numerical solution is evaluated using MATLAB built-in-function bvp4c. Artificial Neural Networks (ANNs) simulation approach is used to trained the networks to predict the solution behavior. Thermal boundary layer improves with the enhancement in the value of Rd. The accuracy and reliability of ANNs predicted solution is addressed with computation of correlation index and residual analysis. The RMSE is evaluated [0.04892, 0.0007597, 0.0007596, 0.01546, 0.008871, 0.01686] for various scenarios. It is observed that when concentration of hybrid nanoparticles increases then thermal characteristics of the Eyring-Powell Hybrid Nanofluid (EPHNFs) passing a horizontal cylinder. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop