Discovery of Natural Phosphodiesterase 5 Inhibitors from Dalbergia cochinchinensis Pierre Leaves Using LC-QTOF-MS2
Abstract
:1. Introduction
2. Results
2.1. PDE5 Inhibitory Activity of Various Parts of D. cochinchinensis
2.2. At-Line Screening and Identification of PDE5 Inhibitors in D. cochinchinensis Leaf Ethanolic Extract
2.3. Identification of Chemical Compounds in the Leaf of D. cochinchinensis Using LC-QTOF-MS2
2.4. Liquid–Liquid Partition of D. cochinchinensis Leaf Extract
2.5. Identification of Chemical Compounds of Ethyl Acetate Partition (EE) Using LC-QTOF-MS2
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.1.1. Plant Material
4.1.2. Solvents
4.1.3. Reagents
4.1.4. Tools Used for Analysis
4.2. Plant Extraction
4.2.1. Crude Hydro-Ethanolic Extract
4.2.2. Liquid–Liquid Partition
4.3. Sample Analysis
4.3.1. High-Performance Liquid Chromatography (HPLC)
4.3.2. Liquid Chromatography Mass Spectrometry (LC-MS/MS)
4.4. At-Line Technique
4.5. PDE5 Inhibitory Activity
4.5.1. Sample Preparation for PDE5 Inhibitory Activity
4.5.2. Enzyme Preparation
4.5.3. Experimental Protocols
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDE5 | Phosphodiesterase 5 |
HE | Hexane-partition extract |
EE | Ethyl acetate-partition extract |
WE | Water-partition extract |
References
- Maggi, M.; Filippi, S.; Ledda, F.; Magini, A.; Forti, G. Erectile dysfunction: From biochemical pharmacology to advances in medical therapy. Eur. J. Endocrinol. 2000, 143, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Rösing, D.; Klebingat, K.-J.; Berberich, H.J.; Bosinski, H.A.G.; Loewit, K.; Beier, K.M. Male sexual dysfunction: Diagnosis and treatment from a sexological and interdisciplinary perspective. Dtsch. Arztebl. Int. 2009, 106, 821–828. [Google Scholar] [CrossRef]
- Feldman, H.A.; Johannes, C.B.; Derby, C.A.; Kleinman, K.P.; Mohr, B.A.; Araujo, A.B.; McKinlay, J.B. Erectile Dysfunction and Coronary Risk Factors: Prospective Results from the Massachusetts Male Aging Study. Prev. Med. 2000, 30, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, E. Potency, selectivity, and consequences of nonselectivity of PDE inhibition. Int. J. Impot. Res. 2004, 16 (Suppl. 1), S11–S14. [Google Scholar] [CrossRef]
- Feneck, R. Phosphodiesterase inhibitors and the cardiovascular system. Cont. Educ. Anaesth. Crit. Care Pain 2007, 7, 203–207. [Google Scholar] [CrossRef]
- Lue Tom, F. Erectile Dysfunction. N. Engl. J. Med. 2000, 342, 1802–1813. [Google Scholar] [CrossRef]
- Leite, R.; Giachini, F.R.; Carneiro, F.S.; Nunes, K.P.; Tostes, R.C.; Webb, R.C. Targets for the treatment of erectile dysfunction: Is NO/cGMP still the answer? Recent Pat. Cardiovasc. Drug Discov. 2007, 2, 119–132. [Google Scholar] [CrossRef]
- Eardley, I.; Donatucci, C.; Corbin, J.; El-Meliegy, A.; Hatzimouratidis, K.; McVary, K.; Munarriz, R.; Lee, S.W. Pharmacotherapy for erectile dysfunction. J. Sex. Med. 2010, 7, 524–540. [Google Scholar] [CrossRef]
- Huang, S.A.; Lie, J.D. Phosphodiesterase-5 (PDE5) Inhibitors In the Management of Erectile Dysfunction. Pharm. Ther. 2013, 38, 407–419. [Google Scholar] [PubMed]
- Moreira, S.G., Jr.; Brannigan, R.E.; Spitz, A.; Orejuela, F.J.; Lipshultz, L.I.; Kim, E.D. Side-effect profile of sildenafil citrate (Viagra) in clinical practice. Urology 2000, 56, 474–476. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, H.J.; Kwak, J.H.; Chun, H.O.; Kim, J.H.; Park, H.; Kim, D.H.; Lee, Y.S. A prenylated flavonol, sophoflavescenol: A potent and selective inhibitor of cGMP phosphodiesterase 5. Bioorganic Med. Chem. Lett. 2002, 12, 2313–2316. [Google Scholar] [CrossRef] [PubMed]
- Temkitthawon, P.; Hinds, T.R.; Beavo, J.A.; Viyoch, J.; Suwanborirux, K.; Pongamornkul, W.; Sawasdee, P.; Ingkaninan, K. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors. J. Ethnopharmacol. 2011, 137, 1437–1441. [Google Scholar] [CrossRef] [PubMed]
- Chaichamnong, N.; Temkitthawon, P.; Khorana, N.; Pitpakdeeanan, P.; Taepavarapruk, P.; Nuengchamnong, N.; Siriwattanasathien, Y.; Suksamrarn, A.; Ingkaninan, K. Phosphodiesterase 5 Inhibitors from Derris scandens. Planta Med. 2018, 84, 1134–1140. [Google Scholar] [CrossRef]
- Kruangtip, O.; Chootip, K.; Temkitthawon, P.; Changwichit, K.; Chuprajob, T.; Changtam, C.; Suksamrarn, A.; Khorana, N.; Scholfield, C.N.; Ingkaninan, K. Curcumin analogues inhibit phosphodiesterase-5 and dilate rat pulmonary arteries. J. Pharm. Pharmacol. 2015, 67, 87–95. [Google Scholar] [CrossRef]
- Sabphon, C.; Temkitthawon, P.; Ingkaninan, K.; Sawasdee, P. Phosphodiesterase inhibitory activity of the flavonoids and xanthones from Anaxagorea luzonensis. Nat. Prod. Commun. 2015, 10, 301–303. [Google Scholar] [CrossRef]
- Temkitthawon, P.; Changwichit, K.; Khorana, N.; Viyoch, J.; Suwanborirux, K.; Ingkaninan, K. Phenanthrenes from Eulophia macrobulbon as Novel Phosphodiesterase-5 Inhibitors. Nat. Prod. Commun. 2017, 12, 79–82. [Google Scholar] [CrossRef]
- Nam, K.W.; Je, K.H.; Shin, Y.J.; Kang, S.S.; Mar, W. Inhibitory effects of furoquinoline alkaloids from Melicope confusa and Dictamnus albus against human phosphodiesterase 5 (hPDE5A) in vitro. Arch. Pharm. Res. 2005, 28, 675–679. [Google Scholar] [CrossRef]
- Saha, S.; Shilpi, J.; Mondal, H.; Hossain, F.; Anisuzzman, M.; Hasan, M.; Cordell, G. Ethnomedicinal, phytochemical, and pharmacological profile of the genus Dalbergia L. (Fabaceae). Phytopharmacology 2013, 4, 291–346. [Google Scholar]
- Palasuwan, A.; Soogarun, S.; Lertlum, T.; Pradniwat, P.; Wiwanitkit, V. Inhibition of Heinz body induction in an in vitro model and total antioxidant activity of medicinal Thai plants. Asian Pac. J. Cancer Prev. 2005, 6, 458–463. [Google Scholar]
- Liu, R.-H.; Li, Y.-Y.; Shao, F.; Chen, L.-Y.; Wen, X.-C.; Zhang, P.-Z.; Huang, H.-L. A New Chalcone from the Heartwood of Dalbergia cochinchinensis. Chem. Nat. Compd. 2016, 52, 405–408. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, J.; Mo, X.; Xu, Z.; Qiu, S.; Liu, X. A New Isoflavan From the Heartwood of Dalbergia cochinchinensis. Nat. Prod. Commun. 2021, 16, 1–4. [Google Scholar] [CrossRef]
- Shirota, O.; Pathak, V.; Sekita, S.; Satake, M.; Nagashima, Y.; Hirayama, Y.; Hakamata, Y.; Hayashi, T. Phenolic constituents from Dalbergia cochinchinensis. J. Nat. Prod. 2003, 66, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Son, N.T.; Manh Ha, N. Siamese, Indian, and Brazilian Rosewoods: A Review on Phytochemistry, Applications, and Pharmacology. Nat. Prod. Commun. 2022, 17, 1934578X221096962. [Google Scholar] [CrossRef]
- Srisomsap, C.; Svasti, J.; Surarit, R.; Champattanachai, V.; Sawangareetrakul, P.; Boonpuan, K.; Subhasitanont, P.; Chokchaichamnankit, D. Isolation and characterization of an enzyme with beta-glucosidase and beta-fucosidase activities from Dalbergia cochinchinensis Pierre. J. Biochem. 1996, 119, 585–590. [Google Scholar] [CrossRef]
- Kothari, P.; Tripathi, A.K.; Girme, A.; Rai, D.; Singh, R.; Sinha, S.; Choudhary, D.; Nagar, G.K.; Maurya, R.; Hingorani, L.; et al. Caviunin glycoside (CAFG) from Dalbergia sissoo attenuates osteoarthritis by modulating chondrogenic and matrix regulating proteins. J. Ethnopharmacol. 2022, 282, 114315. [Google Scholar] [CrossRef]
- Dixit, P.; Chillara, R.; Khedgikar, V.; Gautam, J.; Kushwaha, P.; Kumar, A.; Singh, D.; Trivedi, R.; Maurya, R. Constituents of Dalbergia sissoo Roxb. leaves with osteogenic activity. Bioorg. Med. Chem. Lett. 2012, 22, 890–897. [Google Scholar] [CrossRef]
- Farag, S.F.; Ahmed, A.S.; Terashima, K.; Takaya, Y.; Niwa, M. Isoflavonoid glycosides from Dalbergia sissoo. Phytochemistry 2001, 57, 1263–1268. [Google Scholar] [CrossRef]
- Sarg, T.; Ateya, A.-M.; Abdel-Ghani, A.; Badr, W.; Shams, G. Phytochemical and Pharmacological Studies of Dalbergia sissoo Growing in Egypt. Pharm. Biol. 1999, 37, 54–62. [Google Scholar] [CrossRef]
- Borai, P.; Dayal, R. A flavone glycoside from Dalbergia stipulacea leaves. Phytochemistry 1993, 33, 731–732. [Google Scholar] [CrossRef]
- Narayanan, V.; Nacarajan, N.S. Two isoflavone galactosides from Dalbergia spinosa. Phytochemistry 1988, 27, 2364–2365. [Google Scholar] [CrossRef]
- Pham, T.L.; Tran, H.T.; Tran, T.B. Some biological, ecological characteristics and bioactivity of some species of Dalbergia genus in Vietnam (in Vietnamese). In Proceedings of the 4th National Scientific Conference on Ecology and Biological Resources, Ha Noi, Vietnam, 21 October 2011. [Google Scholar]
- Pathak, V.; Shirota, O.; Sekita, S.; Hirayama, Y.; Hakamata, Y.; Hayashi, T.; Yanagawa, T.; Satake, M. Antiandrogenic phenolic constituents from Dalbergia cochinchinensis. Phytochemistry 1997, 46, 1219–1223. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Liu, R.; Chen, L.; Quyang, C.; Wei, X.; Liu, Y.; Ren, J. Anti-inflammatory Benzofurans from the Heartwood of Dalbergia cochinchinensis Pierre ex Laness. Rec. Nat. Prod. 2023, 17, 549–554. [Google Scholar] [CrossRef]
- Kaufmann, A.; Walker, S. Evaluation of the interrelationship between mass resolving power and mass error tolerances for targeted bioanalysis using liquid chromatography coupled to high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 347–356. [Google Scholar] [CrossRef]
- Nhung, N.P.; Chi, N.M.; Thu, P.Q.; Thuong, B.H.; Ban, D.V.; Dell, B. Market and policy setting for the trade in Dalbergia tonkinensis, a rare and valuable rosewood, in Vietnam. Trees For. People 2020, 1, 100002. [Google Scholar] [CrossRef]
- Liu, R.-H.; Wen, X.-C.; Shao, F.; Zhang, P.-Z.; Huang, H.-L.; Zhang, S. Flavonoids from Heartwood of Dalbergia cochinchinensis. Chin. Herb. Med. 2016, 8, 89–93. [Google Scholar] [CrossRef]
- Bhandari, S.; Nuengchamnong, N.; Chaichamnong, N.; Seasong, T.; Ingkaninan, K.; Temkitthawon, P. At-line LC-QTOF-MS micro-fractionation of Derris scandens (Roxb.) Benth, coupled to radioassay for the early identification of PDE5A1 inhibitors. Phytochem. Anal. 2020, 31, 297–305. [Google Scholar] [CrossRef]
Part of Plant | % PDE5 Inhibition at 25 µg/mL | IC50 Values (μg/mL) |
---|---|---|
Leaf | 100.00 ± 0.00 | 1.53 ± 0.12 |
Twig | 97.57 ± 7.31 | 3.37 ± 0.54 |
Fruit | 89.64 ± 2.69 | 14.92 ± 2.85 |
Heartwood | 86.50 ± 0.93 | 19.05 ± 5.60 |
Bark | 70.77 ± 4.23 | 16.03 ± 2.92 |
Compound | Retention Time | m/z | Molecular Weight | Adduct | MS/MS Fragmentation | Tentative Identification | Formula | Error (ppm) | Classification |
---|---|---|---|---|---|---|---|---|---|
1 | 3.314 | 473.1573 | 474.1585 | [M − H]− | 341.1047, 179.0521, 131.1465, 118.0478, 101.0211, 89.0215 | D-Galactopyranosyl-(1→3)-D-galactopyranosyl-(1→3)-L-arabinose | C17H30O15 | −12.91 | Oligosaccharide |
2 | 3.504 | 165.0378 | 120.0423 | [M + Cl]− | 129.0156, 117.0160, 105.0165, 87.0067 | 2, 3-Dihydroxybutanoic acid | C4H8O4 | 16.13 | Dihydroxybutyric acid |
3 | 3.561 | 191.0548 | 192.0634 | [M − H]− | 173.0423, 131.0311, 120.0613, 111.0425, 87.0063 | Quinic acid | C7H12O6 | 6.87 | Cyclohexanecarboxylic acid |
4 | 3.626 | 207.0492 | 208.0583 | [M − H]− | 173.0419, 155.0311, 129.0155, 117.0166, 93.0319 | 4-O-Methylglucuronic acid | C7H12O7 | 8.82 | Glucuronic acid |
5 | 3.762 | 173.0428 | 174.0528 | [M − H]− | 93.0325, 83.0471, 73.0275, 65.0360, 59.0124 | Shikimic acid | C7H10O5 | 15.87 | Phenolic cyclohexanecarboxylic acid |
6 | 4.495 | 451.2173 | 452.2258 | [M − H]− | 419.1175, 305.1151, 179.0514, 125.0215, 96.9565 | Calaliukiuenoside | C20H36O11 | 2.63 | Fatty acyl glycoside |
7 | 10.813 | 255.0470 | 256.0583 | [M − H]− | 193.0483, 123.0411 | (2R, 3S)-Piscidic acid | C11H12O7 | 15.79 | Phenylpropanoic acid |
8 | 13.239 | 337.0870 | 338.1002 | [M − H]− | 239.0499, 191.0545, 163.0365, 119.0473 | 3-O-p-Coumaroylquinic acid | C16H18O8 | 17.48 | Phenolic acid |
9 | 13.645 | 239.0525 | 240.0634 | [M − H]− | 179.0344, 107.0494, 59.0135 | 3-(6-hydroxy-7-methoxy-2H-1,3-benzodioxol-5-yl)propanoic acid | C11H12O6 | 15.11 | Benzodioxole |
10 | 16.270 | 457.1297 | 458.1424 | [M − H]− | 163.0366, 119.0473, 101.0204, 89.0213, 71.0108, 59.0121 | cis-p-Coumaric acid 4-[apiosyl-(1→2)-glucoside] | C20H26O12 | 11.92 | Phenolic glycoside |
11 | 17.550 | 577.2407 | 578.2516 | [M − H]− | 533.2540, 325.1095, 205.0672, 163.0576, 119.0320 | Orbiculin A | C33H38O9 | 6.25 | Sesquiterpenoid |
12 | 17.754 | 439.1755 | 394.1780 | [M + HCOO]− | 393.1706, 265.0981, 205.0722, 163.0586, 119.0377 | Cudraxanthone G | C24H26O5 | 1.65 | Xanthone |
13 | 20.275 | 755.1916 | 756.2113 | [M − H]− | 517.0541, 457.0353, 300.0268 | Quercetin 3-rhamnosyl-(1→4)-rhamnoside-7-galactoside | C33H40O20 | 16.44 | Flavonol glycoside |
14 | 21.180 | 561.1312 | 562.1475 | [M − H]− | 451.0945, 391.0736, 289.0677, 257.0345, 161.0200, 137.0205, 125.0213 | Epifisetinidol-(4β→8)-catechin | C30H26O11 | 16.10 | Proanthocyanidin |
15 | 22.581 | 340.1099 | 295.1056 | [M + HCOO]− | 188.0570, 161.0460 | Prulaurasin | C14H17NO6 | −17.96 | Cyanogenic glycoside |
16 | 28.788 | 431.1982 | 386.1941 | [M + HCOO]− | 385.1906, 179.0573, 89.0246 | Citroside A | C19H30O8 | −13.75 | Terpene glycoside |
17 | 29.630 | 475.1888 | 430.1839 | [M + HCOO]− | 429.1793, 265.0934, 205.0729, 163.0616, 101.0245 | Phenethyl rutinoside | C20H30O10 | −14.10 | O-glycoside |
18 | 30.100 | 739.2191 | 740.2164 | [M − H]− | 575.1405, 393.0638, 284.0336, 227.0348, 151.0029 | Kaempferol 3-(2″-rhamnosylrutinoside) or Clitorin | C33H40O19 | −13.52 | Flavonol glycoside |
19 | 31.800 | 609.1351 | 610.1534 | [M − H]− | 300.0276 | Rutin | C27H30O16 | 18.07 | Flavonol glycoside |
20 | 31.904 | 523.2307 | 478.2355 | [M + HCOO]− | 477.2271, 161.0415, 113.0197, 101.0213 | Cowanin | C29H34O6 | 5.81 | Xanthone |
21 | 31.911 | 725.2018 | 726.2007 | [M − H]− | 284.0278 | Kaempferol 7-methyl ether 3-apiosyl-(1→5)-apioside-4′-glucoside | C32H38O19 | −11.51 | Flavonol glycoside |
22 | 34.295 | 223.0569 | 224.0685 | [M − H]− | 163.0419, 91.0554 | Sinapic acid | C11H12O5 | 19.26 | Hydroxycinnamic acid |
23 | 36.233 | 545.1496 | 546.1526 | [M − H]− | 435.0995, 409.0886, 393.0870, 289.0677, 255.0626 | Guibourtinidol-(4α→6)-catechin | C30H26O10 | −7.85 | Proanthocyanidin |
24 | 37.934 | 144.0459 | 145.0528 | [M − H]− | 126.0304, 115.0395, 65.9985 | 4-Hydroxyquinoline | C9H7NO | −2.86 | Quinoline derivative |
25 | 38.337 | 859.2154 | 814.2168 | [M − HCOO]− | 300.0216, 284.0271, 255.0213 | Kaempferol 3-glucosyl-(1→2)-(6″-acetylgalactoside)-7-glucoside | C35H42O22 | −0.49 | Flavonol glycoside |
26 | 38.445 | 901.2252 | 902.2481 | [M − H]− | 755.1893, 300.0220 | Quercetin 3-(4″-(E)-p-coumarylrobinobioside)-7-rhamnoside | C42H46O22 | 17.31 | Flavonol glycoside |
27 | 38.680 | 833.1956 | 834.216 | [M − H]− | 790.5633, 681.1499, 600.1189, 561.1297, 451.0993, 271.0559, 161.0201 | Epifisetinidol-(4β→8)-epicatechin-(6→4β)-epifisetinidol | C45H38O16 | 15.73 | Proanthocyanidin |
28 | 39.425 | 415.2003 | 370.1992 | [M + HCOO]− | 255.0996, 179.0524, 119.0309 | 5-Megastigmen-7-yne-3, 9-diol 9-glucoside | C19H30O7 | −7.09 | Fatty acyl glycoside |
29 | 40.553 | 551.1661 | 552.1843 | [M − H]− | 429.0944, 293.0851, 257.0780, 152.0079, 135.0418 | (Z)-Resveratrol 3, 4′-diglucoside | C26H32O13 | 19.80 | Stilbene glycoside |
30 | 41.813 | 871.2164 | 872.2223 | [M − H]− | 725.1816, 284.0287 | Kaempferol 3-neohesperidoside-7-(6″-malonylglucoside) | C37H44O24 | −1.63 | Flavonol glycoside |
31 | 41.961 | 885.2321 | 886.2532 | [M − H]− | 739.2104, 284.0341, 227.0326, 145.0298 | Kaempferol 3-(4″-(E)-p-coumarylrobinobioside)-7-rhamnoside | C42H46O21 | 15.57 | Flavonol glycoside |
32 | 42.817 | 419.1375 | 420.1420 | [M − H]− | 257.0776, 135.0418, 121.0268, 109.0263 | 2′, 4′, 6′-Trihydroxydihydrochalcone 2′-glucoside | C21H24O9 | −6.55 | Chalcone glycoside |
33 | 42.962 | 915.2427 | 916.2137 | [M − H]− | 817.2007, 739.1996, 561.1319, 284.0287, 255.0608 | Kaempferol 3-ferulylrobinobioside-7-rhamnoside | C43H48O22 | 15.02 | Flavonol glycoside |
34 | 43.108 | 181.0516 | 182.0579 | [M − H]− | 153.0165, 108.0184 | Ethyl 3,4-dihydroxybenzoate | C9H10O4 | −5.34 | Hydroxybenzoic acid ester |
35 | 44.364 | 278.1052 | 279.1107 | [M − H]− | 188.0680, 172.0338, 144.0784, 114.0166, 96.9902 | Unidentified | C14H17NO5 | −6.49 | - |
36 | 44.645 | 843.2213 | 798.2219 | [M + HCOO]− | 284.0348, 227.0364 | Kaempferol 3-O-[2″-(4″′-acetyl-rhamnosyl)-6″-glucosyl] glucoside | C35H42O21 | −1.47 | Flavonol glycoside |
37 | 52.228 | 521.2244 | 522.2254 | [M − H]− | 475.2111, 307.0991, 247.0750, 205.0662, 167.1043, 145.0445, 113.0215 | Carpelastofuran | C30H34O8 | −12.10 | Oxepine-fused flavone |
38 | 55.313 | 193.0512 | 194.0579 | [M − H]− | 92.0244, 78.9563 | Unidentified | C10H10O4 | −2.94 | - |
39 | 56.454 | 327.2124 | 328.2250 | [M − H]− | 309.2005, 291.1921, 39.1224, 183.1331, 155.1031 | 9S, 12R, 13S-trihydroxy-10E, 15Z-octadecadienoic acid | C18H32O5 | 16.19 | Long-chain fatty acid |
40 | 58.836 | 329.2288 | 330.2406 | [M − H]− | 171.0985, 139.1072 | 12, 13, 15-trihydroxy-9E-octadecenoic acid | C18H34O5 | 13.81 | Long-chain fatty acid |
41 | 59.895 | 444.1316 | 399.1352 | [M + HCOO]− | 265.0683, 135.0401, 121.0262, 110.0223, 77.0376 | Niaziminin | C18H25NO7S | 4.00 | Flavone C-glycoside |
42 | 60.545 | 255.0669 | 256.0736 | [M − H]− | 109.0295 | Liquiritigenin | C15H12O4 | −2.42 | Flavanone |
43 | 61.468 | 267.0670 | 268.0736 | [M − H]− | 252.0384, 223.0353, 195.0394, 135.0056 | Dalbergin | C16H12O4 | −2.69 | Neoflavone |
44 | 62.079 | 753.2303 | 754.2320 | [M − H]− | 513.1424, 239.0706, 125.0196 | 2″′-O-Rhamnosyl-2″-O-glucosylcytisoside | C34H42O19 | −7.36 | Flavone C-glycoside |
45 | 63.155 | 993.2959 | 754.2320 | [M − H]− | 643.1819, 513.1440, 137.0244 | Swertisin 4′-O-glucoside-2″-O-rhamnoside | C34H42O19 | −8.03 | Flavone C-glycoside |
46 | 64.993 | 601.1989 | 556.2075 | [M + HCOO]− | 555.1591, 445.1207, 419.1073, 255.0621, 135.0419, 109.0273 | Punaglandin 1 | C27H37ClO10 | 11.36 | Prostanoid |
47 | 67.996 | 895.4942 | 850.5079 | [M + HCOO]− | 509.4032, 439.3613, 205.0738 | Hebevinoside XI | C46H74O14 | 13.24 | Cucurbitacin glycoside |
48 | 69.308 | 711.3261 | 676.3670 | [M + Cl]− | 675.3562, 397.1287, 277.2118 | Gingerglycolipid A | C33H56O14 | 14.49 | Glycosylmonoacylglycerol |
49 | 73.818 | 339.1946 | 304.2250 | [M + Cl]− | 206.0616, 183.0087, 78.9588 | 11, 12, 15-trihydroxy palmitic acid | C16H32O5 | −0.66 | Long-chain fatty acid |
Compound Isolated from Leaf | Scientific Name | Bioactivity | Classification |
---|---|---|---|
Alpinetin | D. sissoo | Anti-inflammatory, Anti-Osteoporosis, cytotoxic | Flavanone |
β-Amyrin | D. sissoo | Triterpinoid | |
Biochanin A | D. sissoo | Isoflavone | |
Biochanin A 7-O-[β-D-apiofuranosyl-(1→5) -β-D-apiofuranosyl-(1→6)-β-D glucopyranoside] | D. sissoo | Isoflavone | |
Biochanin A 7-O-apiosyl-(1→6)-glucoside | D. sissoo | Isoflavone | |
Biochanin A 7-O-glucoside | D. sissoo | Anti-Osteoporosis | Isoflavone |
Caviunin 7-O-β-D-glucopyranoside | D. sissoo | Isoflavone | |
Caviunin 7-O-[β-D-apiofuranosyl-(1→6)-β-D glucopyranoside] | D. sissoo | Anti-Osteoporosis | Isoflavone |
Cavunin | D. paniculata | Isoflavone | |
Coromandelin | D. coromandeliana | Isoflavone | |
Dalsissooside (Caviunin 7-O-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside]) | D. sissoo | Anti-Osteoporosis | Isoflavone |
Genstein | D. sissoo | Anti-Osteoporosis, cytotoxic | Isoflavone |
Genistein 8-C-glucoside | D. sissoo | Isoflavone | |
5-Hydroxy-6,7-dimethoxy-4′-O-(6-O-D-apio-β-D-furanosyl-β-D-glucopyranosyl) isoflavone (7-Methyltectorigenin 4′-O-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside]) | D. nigra | Isoflavone | |
Kaemferol-3-O-β-D-glucopyranoside | D. sissoo | Flavone | |
Kaemferol-3-O-rutinoside | D. sissoo | Flavone | |
Norartocarpetin | D. sissoo | Flavone | |
Luteolin | D. stipulacea | Flavone | |
Luteolin 4′-rutinoside | D. spruceana | Flavone | |
7-Methyl tectorigenin 4′-O-[β-Dapiofuranosyl-(1→6)-β-D-glucopyranoside] | D. sissoo | Flavone | |
Muningin | D. sissoo | Isoflavone | |
7-O-Methyl tectorigenin 4′-O-galactoside | D. spinosa | Anti-Osteoporosis | Flavone |
Pratensein | D. sissoo | Anti-Osteoporosis | Isoflavone |
Prunasin | D. spinosa | Cyanogenic glycosides | |
Prunetin | D. sissoo | Isoflavone | |
Prunetin 4′-O-[β-D-apiofuranosyl-(1→6)-β-D glucopyranoside] | D. sissoo | Isoflavone | |
Prunetin 4′-O-galactoside | D. spinosa | Isoflavone | |
Quercetin 3-β-D-glucopyranoside | D. sissoo | Flavone | |
Quercetin-3-O-rutinoside | D. sissoo | Flavone | |
β-Sitosterol | D. sissoo | Phytosterol | |
Sissotrin | D. sissoo | Isoflavone | |
Sissooic acid | D. sissoo | Simple phenol | |
Stigmasterol | D. sissoo | Phytosterol | |
Syringaresinol-4″-O-β-D-monoglucoside | D. sissoo | Lignan | |
Tectorigenin | D. sissoo | Isoflavone | |
Tectorigenin 7-O-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside] | D. sissoo | Isoflavone |
Compound | Retention Time | m/z | Molecular Weight | Adduct | MS/MS Fragmentation | Tentative Identification | Formula | Error (ppm) | Classification |
---|---|---|---|---|---|---|---|---|---|
1 | 5.555 | 169.0135 | 170.0208 | [M − H]− | 125.0241 | Gallic acid | C7H6O5 | 4.42 | Phenolic acid |
2 | 7.228 | 313.0903 | 314.0975 | [M − H]− | 269.1021, 161.0449, 101.0248 | (S)-Mandelic acid O-β-D-Glucopyranoside | C14H18O8 | 8.28 | O-glycoside |
3 | 7.488 | 153.0190 | 154.0262 | [M − H]− | 109.0296 | Protocatechuic acid | C7H6O4 | 2.17 | Phenolic acid |
4 | 8.301 | 239.0549 | 240.0621 | [M − H]− | 179.0346, 149.0606, 107.0502 | Eucomic acid | C11H12O6 | 5.07 | Phenolic acid |
5 | 8.337 | 435.1257 | 436.1369 | [M − H]− | 273.0756, 123.0439 | Phloretin-4′-O-glucoside | C21H24O10 | 9.13 | Dihydrochalcone glucoside |
6 | 8.947 | 137.0243 | 138.0316 | [M − H]− | 108.0218 | Protocatechuic aldehyde | C7H6O3 | 0.86 | Phenolic aldehyde |
7 | 8.993 | 739.2000 | 740.2070 | [M − H]− | 575.1345, 284.0317 | Kaempferol 3-rhamnosyl-(1→3)-rhamnosyl-(1→6)-glucoside | C33H40O19 | 12.31 | Flavonol glycoside |
8 | 9.173 | 561.1336 | 562.1407 | [M − H]− | 409.0905, 289.0707, 245.0811, 161.0240, 109.0294 | Catechin-Afzelechin | C30H26O11 | 11.82 | Procyanidin |
9 | 9.374 | 475.1777 | 430.1839 | [M + HCOO]− | 429.1736, 265.0921, 205.0704, 163.0602 | Phenethyl rutinoside | C20H30O10 | 9.26 | O-glycosyl |
10 | 9.541 | 340.1008 | 295.1026 | [M + HCOO]− | 188.0559, 161.0453 | Prulaurasin | C14H17NO6 | 8.79 | Cyanogenic glycoside |
11 | 9.989 | 593.1436 | 594.1509 | [M − H]− | 284.0316 | Kaempferol 3-glucoside-7-rhamnoside | C27H30O15 | 12.80 | Flavonol glycoside |
12 | 10.364 | 859.2178 | 814.2168 | [M + HCOO]− | 284.0307 | Kaempferol 3-glucosyl-(1→2)-(6″-acetylgalactoside)-7-glucoside | C35H42O22 | −3.29 | Flavonol glycoside |
13 | 10.377 | 901.2282 | 902.2354 | [M − H]− | 755.1964, 300.0257 | Quercetin 3-(4″-(E)-p-coumarylrobinobioside)-7-rhamnoside | C42H46O22 | 13.98 | Flavonol glycoside |
14 | 10.653 | 545.1396 | 546.1467 | [M − H]− | 409.0903, 289.0705, 255.0655, 205.0488 | Afzelechin dimer | C30H26O10 | 10.49 | Procyanidin |
15 | 10.914 | 833.1965 | 834.2038 | [M − H]− | 681.1548, 561.1345, 529.1093, 289.0700, 161.0244 | Epifisetinidol(4β→8) epicatechin(6→4β)epifisetinidol | C45H38O16 | 14.65 | Procyanidin |
16 | 10.982 | 915.2437 | 916.2508 | [M − H]− | 739.2026, 284.0314 | Kaempferol 3-ferulylrobinobioside-7-rhamnoside | C43H48O22 | 13.93 | Flavonol glycoside |
17 | 11.300 | 844.2297 | 784.2062 | [M + CH3COO]− | 284.0319 | Kaempferol 3-O-(2″-rhamnosyl-6″-acetyl-galactoside) 7-O-rhamnoside | C34H40O21 | −2.15 | Flavonol glycoside |
18 | 12.043 | 817.2030 | 818.2102 | [M − H]− | 665.1599, 561.1360, 409.0903, 289.0707, 255.0653, 161.0235 | Afzelechin trimer | C45H38O15 | 15.53 | Procyanidin |
19 | 12.702 | 801.2091 | 802.2262 | [M − H]− | 665.1601, 545.1412, 409.0901, 289.0706, 255.0654 | Afzelechin trimer | C45H38O14 | 12.21 | Procyanidin |
20 | 13.055 | 529.1440 | 530.1512 | [M − H]− | 393.0965, 255.0657, 137.0242 | Afzelechin Guibourtinidol | C30H26O9 | 12.11 | Procyanidin |
21 | 13.928 | 785.2180 | 786.2312 | [M − H]− | 649.1654, 529.1460, 393.0956, 289.0700, 255.0653 | Afzelechin Guibourtinidol dimer | C45H38O13 | 7.60 | Procyanidin |
22 | 15.912 | 444.1254 | 399.1318 | [M + HCOO]− | 398.1207, 292.0799, 121.0234 | Adlumidiceine | C21H21NO7 | 10.37 | Alkaloid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chantakul, R.; Girard, C.; Senejoux, F.; Ingkaninan, K.; Nuengchamnong, N.; Temkitthawon, P. Discovery of Natural Phosphodiesterase 5 Inhibitors from Dalbergia cochinchinensis Pierre Leaves Using LC-QTOF-MS2. Plants 2025, 14, 1652. https://doi.org/10.3390/plants14111652
Chantakul R, Girard C, Senejoux F, Ingkaninan K, Nuengchamnong N, Temkitthawon P. Discovery of Natural Phosphodiesterase 5 Inhibitors from Dalbergia cochinchinensis Pierre Leaves Using LC-QTOF-MS2. Plants. 2025; 14(11):1652. https://doi.org/10.3390/plants14111652
Chicago/Turabian StyleChantakul, Ruttanaporn, Corine Girard, François Senejoux, Kornkanok Ingkaninan, Nitra Nuengchamnong, and Prapapan Temkitthawon. 2025. "Discovery of Natural Phosphodiesterase 5 Inhibitors from Dalbergia cochinchinensis Pierre Leaves Using LC-QTOF-MS2" Plants 14, no. 11: 1652. https://doi.org/10.3390/plants14111652
APA StyleChantakul, R., Girard, C., Senejoux, F., Ingkaninan, K., Nuengchamnong, N., & Temkitthawon, P. (2025). Discovery of Natural Phosphodiesterase 5 Inhibitors from Dalbergia cochinchinensis Pierre Leaves Using LC-QTOF-MS2. Plants, 14(11), 1652. https://doi.org/10.3390/plants14111652