Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (873)

Search Parameters:
Keywords = PAAS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

13 pages, 1563 KiB  
Article
Activation of Peracetic Acid by Ozone for Recalcitrant Pollutant Degradation: Accelerated Kinetics, Byproduct Mitigation, and Microbial Inactivation
by Dihao Bai, Cong Liu, Siqing Zhang, Huiyu Dong, Lei Sun and Xiangjuan Yuan
Water 2025, 17(15), 2240; https://doi.org/10.3390/w17152240 - 28 Jul 2025
Viewed by 217
Abstract
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, [...] Read more.
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, transformation products, ecotoxicity, disinfection byproducts (DBPs), and microbial inactivation. The O3/PAA system synergistically activates PAA via O3 to generate hydroxyl radicals (OH) and organic radicals (CH3COO and CH3CO(O)O), achieving an IPM degradation rate constant of 0.10 min−1, which was significantly higher than individual O3 or PAA treatments. The degradation efficiency of IPM in the O3/PAA system exhibited a positive correlation with solution pH, achieving a maximum degradation rate constant of 0.23 min−1 under alkaline conditions (pH 9.0). Furthermore, the process demonstrated strong resistance to interference from coexisting anions, maintaining robust IPM removal efficiency in the presence of common aqueous matrix constituents. Furthermore, quenching experiments revealed OH dominated IPM degradation in O3/PAA system, while the direct oxidation by O3 and R-O played secondary roles. Additionally, based on transformation products (TPs) identification and ECOSAR predictions, the primary degradation pathways were elucidated and the potential ecotoxicity of TPs was systematically assessed. DBPs analysis after chlorination revealed that the O3/PAA (2.5:3) system achieved the lowest total DBPs concentration (99.88 μg/L), representing a 71.5% reduction compared to PAA alone. Amongst, dichloroacetamide (DCAM) dominated the DBPs profile, comprising > 60% of total species. Furthermore, the O3/PAA process achieved rapid 5–6 log reductions of E. coli. and S. aureus within 3 min. These results highlight the dual advantages of O3/PAA in effective disinfection and byproduct control, supporting its application in sustainable wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2020 KiB  
Article
Micro-Gas Flow Sensor Utilizing Surface Network Density Regulation for Humidity-Modulated Ion Transport
by Chuanjie Liu and Zhihong Liu
Gels 2025, 11(8), 570; https://doi.org/10.3390/gels11080570 - 23 Jul 2025
Viewed by 227
Abstract
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow [...] Read more.
As a bridge for human–machine interaction, the performance improvement of sensors relies on the in-depth understanding of ion transport mechanisms. This study focuses on the surface effect of resistive gel sensors and designs a polyacrylic acid/ferric ion hydrogel (PAA/Fe3+) gas flow sensor. Prepared by one-pot polymerization, PAA/Fe3+ forms a three-dimensional network through the entanglement of crosslinked and uncrosslinked PAA chains, where the coordination between Fe3+ and carboxyl groups endows the material with excellent mechanical properties (tensile strength of 80 kPa and elongation at break of 1100%). Experiments show that when a gas flow acts on the hydrogel surface, changes in surface humidity alter the density of the network structure, thereby regulating ion migration rates: the network loosens to promote ion transport during water absorption, while it tightens to hinder transport during water loss. This mechanism enables the sensor to exhibit significant resistance responses (ΔR/R0 up to 0.55) to gentle breezes (0–13 m/s), with a response time of approximately 166 ms and a sensitivity 40 times higher than that of bulk deformation. The surface ion transport model proposed in this study provides a new strategy for ultrasensitive gas flow sensing, showing potential application values in intelligent robotics, electronic skin, and other fields. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

21 pages, 2961 KiB  
Article
Impact of the Use of 2-Phospho-L Ascorbic Acid in the Production of Engineered Stromal Tissue for Regenerative Medicine
by David Brownell, Laurence Carignan, Reza Alavi, Christophe Caneparo, Maxime Labroy, Todd Galbraith, Stéphane Chabaud, François Berthod, Laure Gibot, François Bordeleau and Stéphane Bolduc
Cells 2025, 14(14), 1123; https://doi.org/10.3390/cells14141123 - 21 Jul 2025
Viewed by 415
Abstract
Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for [...] Read more.
Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for use in humans, such as skin and corneas. Ascorbic acid (vitamin C, AA) is essential for collagen biosynthesis. However, AA is chemically unstable in culture, with a half-life of 24 h, requiring freshly prepared AA with each change of medium. This study aims to demonstrate the functional equivalence of 2-phospho-L-ascorbate (2PAA), a stable form of AA, for tissue reconstruction. Dermal, vaginal, and bladder stroma were reconstructed by self-assembly using tissue-specific protocols. The tissues were cultured in a medium supplemented with either freshly prepared or frozen AA, or with 2PAA. Biochemical analyses were performed on the tissues to evaluate cell density and tissue composition, including collagen secretion and deposition. Histology and quantitative polarized light microscopy were used to evaluate tissue architecture, and mechanical evaluation was performed both by tensiometry and atomic force microscopy (AFM) to evaluate its macroscopic and cell-scale mechanical properties. The tissues produced by the three ascorbate conditions had similar collagen deposition, architecture, and mechanical properties in each organ-specific stroma. Mechanical characterization revealed tissue-specific differences, with tensile modulus values ranging from 1–5 MPa and AFM-derived apparent stiffness in the 1–2 kPa range, reflecting the nonlinear and scale-dependent behavior of the engineered stroma. The results demonstrate the possibility of substituting AA with 2PAA for tissue engineering. This protocol could significantly reduce the costs associated with tissue production by reducing preparation time and use of materials. This is a crucial factor for any scale-up activity. Full article
Show Figures

Figure 1

17 pages, 16101 KiB  
Article
A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
by Rubén Octavio Muñoz-García, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz and Luis Emilio Cruz-Barba
Gels 2025, 11(7), 560; https://doi.org/10.3390/gels11070560 - 21 Jul 2025
Viewed by 272
Abstract
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 [...] Read more.
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 to 5 g H2O/g) than homo PAA hydrogels synthesized in water as the solvent. They were swollen in a 0.1 M NaOH solution and subsequently used to remove Ni2+ ions from aqueous solutions with concentrations ranging from 1000 to 4000 ppm. The absorption capacity of these hydrogels ranged from 91 to 340 mg of Ni2+/g in a rapid 1 h process, and from 122 to 435 mg of Ni2+/g in a 24 h process, demonstrating an improvement in Ni2+ absorption compared to previously reported hydrogels. The colored 1000 and 2000 ppm Ni2+ solutions became clear after treatment, while the PAA-HPC hydrogels turned green due to the uptake of Ni2+ ions, which were partially chelated by carboxylate groups as nickel polyacrylate and partially precipitated as Ni(OH)2, resulting in an average absorption efficiency of 80%. The hydrogel was able to release the absorbed Ni2+ upon immersion in an HCl solution, with an average release percentage of 76.4%, indicating its potential for reuse. These findings support the use of PAA-HPC hydrogels for cleaning Ni2+-polluted water. The cost of producing 1 g of these hydrogels in laboratory conditions is approximately 0.2 USD. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

18 pages, 9768 KiB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 311
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
Electroactive Poly(amic acid) Films Grafted with Pendant Aniline Tetramer for Hydrogen Sulfide Gas Sensing Applications
by Kun-Hao Luo, Yun-Ting Chen, Hsuan-Yu Wu, Zong-Kai Ni and Jui-Ming Yeh
Polymers 2025, 17(14), 1915; https://doi.org/10.3390/polym17141915 - 11 Jul 2025
Viewed by 353
Abstract
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of [...] Read more.
Hydrogen sulfide (H2S) is a highly toxic and corrosive gas generated in numerous industrial and environmental processes; rapid, sensitive detection at low ppm levels is therefore crucial for ensuring occupational safety and protecting public health. This work explores the effect of grafting various loadings of pendant aniline tetramer pendants (PEDA) onto electroactive poly(amic acid) (EPAA) films and evaluates their performance as H2S gas sensors. Comprehensive characterization including ion trap mass spectrometry (Ion trap MS), Fourier-transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and four-probe conductivity measurements, confirmed successful PEDA incorporation and revealed enhanced electrical conductivity with increasing PEDA content. Gas sensing tests revealed that EPAA3 (3 wt% PEDA) achieved the best overall performance toward 10 ppm H2S, producing a 591% response with a rapid 108 s response time. Selectivity studies showed that the response of EPAA3 to H2S exceeded those for SO2, NO2, NH3, and CO by factors of five to twelve, underscoring its excellent discrimination against common interferents. Repeatability tests over five successive cycles gave a relative standard deviation of just 7.4% for EPAA3, and long-term stability measurements over 16 days in ambient air demonstrated that EPAA3 retained over 80%. These findings establish that PEDA-grafted PAA films combine the processability of poly(amic acid) with the sharp, reversible redox behavior of pendant aniline tetramers, delivering reproducible, selective, and stable H2S sensing. EPAA3, in particular, represents a balanced composition that maximizes sensitivity and durability, offering a promising platform for practical environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

20 pages, 15028 KiB  
Article
Development and Characterization of Self-Adhesive Polymeric Films with Antiallergic Effect
by Ioana Savencu, Sonia Iurian, Cătălina Bogdan, Valentin Toma, Rareș Știufiuc and Ioan Tomuță
Polymers 2025, 17(13), 1867; https://doi.org/10.3390/polym17131867 - 3 Jul 2025
Viewed by 974
Abstract
This study aimed to design self-adhesive cutaneous films with an antiallergic effect using a Design of Experiments approach. The active pharmaceutical ingredient (API) was diphenhydramine hydrochloride (DPH). A full factorial experimental design with three factors and two levels was created. The factors were [...] Read more.
This study aimed to design self-adhesive cutaneous films with an antiallergic effect using a Design of Experiments approach. The active pharmaceutical ingredient (API) was diphenhydramine hydrochloride (DPH). A full factorial experimental design with three factors and two levels was created. The factors were the polyvinyl alcohol (PVA) ratio, the polyacrylic acid (PAA) ratio, and the type of plasticizer. The responses evaluated were hardness, deformation at hardness, adhesive force, and in vitro DPH release profile. Eleven formulations were generated, prepared in two steps via solvent casting, and characterized in terms of mechanical and adhesive properties, as well as the in vitro DPH release profile. The PVA ratio had the most significant impact on the responses, followed by PEG 400 and PEG 4000. Four film formulations were investigated using Raman spectroscopy, which revealed that the API was distributed in both the base and adhesive layers. Consequently, an optimal formulation was prepared and characterized. Good mechanical properties (a hardness of 463.7 g and a deformation at hardness of 16.56 mm) and an increased adhesive force (76 g) were observed, while the DPH was released up to 68% over 12 h. In conclusion, a novel self-adhesive film was developed, which may enhance patients’ adherence to local antiallergic treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

15 pages, 2849 KiB  
Article
Improving the Corrosion Resistance of Titanium by PAA/Chitosan Bilayer Architecture Through the Layer-by-Layer Method
by Daniele Morais Dias, Murilo Oliveira Alves Ferreira, Ana Paula Ramos, Witor Wolf, Jéferson Aparecido Moreto and Rodrigo Galo
Polysaccharides 2025, 6(3), 57; https://doi.org/10.3390/polysaccharides6030057 - 1 Jul 2025
Viewed by 261
Abstract
To enhance interaction with the host tissue and protect the metal surface, various surface treatments can be applied to dental implants. This study aimed to produce layer-by-layer (LbL) films by alternated immersion of the titanium sample into polyacrylic acid (PAA) and chitosan solutions, [...] Read more.
To enhance interaction with the host tissue and protect the metal surface, various surface treatments can be applied to dental implants. This study aimed to produce layer-by-layer (LbL) films by alternated immersion of the titanium sample into polyacrylic acid (PAA) and chitosan solutions, obtaining a PAA/chitosan bilayer architecture, seeking to improve the corrosion resistance. For this purpose, 03 experimental groups (n = 05) were performed: Ti-Cp (as control), Ti-Cp+8 bilayers PAA/chitosan, and Ti-Cp+12 bilayers PAA/chitosan. The corrosion behavior was assessed by using open-circuit potential (OCP), potentiodynamic polarization curves (PPcs) and electrochemical impedance spectroscopy (EIS) techniques, conducted in 0.9 wt% NaCl solution at a controlled temperature of 25 ± 1 °C. The samples were characterized morphologically and structurally by atomic force microscope (AFM), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX), and X-ray diffraction (XRD) techniques before and after the corrosion tests. The electrochemical results significantly highlight the beneficial influence of coatings based on PAA/chitosan in enhancing the corrosion resistance of titanium. These findings not only corroborate the feasibility of using alternative materials for the protection of titanium but also open new possibilities for the development of innovative coatings that can be applied within the biomedical sector, serving as mediators for medicinal purposes, particularly in osteoconductive interventions. Full article
Show Figures

Figure 1

18 pages, 4478 KiB  
Article
Design and Characterization of PAA/CHI/Triclosan Multilayer Films with Long-Term Antibacterial Activity
by Balzhan Savdenbekova, Aruzhan Sailau, Ayazhan Seidulayeva, Zhanar Bekissanova, Ardak Jumagaziyeva and Renata Nemkayeva
Polymers 2025, 17(13), 1789; https://doi.org/10.3390/polym17131789 - 27 Jun 2025
Viewed by 313
Abstract
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful [...] Read more.
The development of antibacterial coatings for biomedical applications is crucial to prevent implant-associated infections (IAIs). In this study, we designed and evaluated a multilayer coating based on chitosan (CHI), polyacrylic acid (PAA), and triclosan (TCS) using the layer-by-layer (LbL) self-assembly technique. The successful incorporation of TCS was confirmed by Fourier-transform infrared (FTIR) spectroscopy. Surface roughness and topography were analyzed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Additionally, the pH-dependent behavior of PAA/CHI films was studied to assess its effect on TCS loading. According to disk diffusion assays, coatings assembled at pH 5 (PAA5/CHI5/TCS) exhibited the strongest antibacterial activity, with inhibition zones of 60.0 ± 0.0 mm for S. aureus and 33.67 ± 1.5 mm for E. coli. The long-term stability of the coatings was evaluated by measuring the antibacterial activity after 1, 10, 20, 30, and 40 days, with results confirming that antimicrobial properties and structural integrity were preserved over time. Furthermore, TCS release kinetics were assessed under physiological (pH 7.4) and acidic (pH 5.5) conditions, revealing enhanced release at pH 5.5. These findings highlight the potential of this multilayer system for biomedical applications requiring both stability and pH-responsive drug release. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Graphical abstract

11 pages, 865 KiB  
Article
Influence of Comprehensive Pre-Anaesthetic Assessment on ASA Classification and Surgical Cancellations in Dogs and Cats: A Retrospective Observational Study
by Ariel Cañón Pérez, María De Los Reyes Marti-Scharfhausen Sánchez, Antonio Sevilla Ureba, Eva Zoe Hernández Magaña, Jaime Viscasillas Monteagudo, Agustín Martínez Albiñana and José I. Redondo
Vet. Sci. 2025, 12(7), 612; https://doi.org/10.3390/vetsci12070612 - 23 Jun 2025
Viewed by 2209
Abstract
Anaesthesia carries an inherent risk of morbidity and mortality in veterinary patients, yet the clinical impact of comprehensive pre-anaesthetic assessment (PAA) is insufficiently quantified. We retrospectively reviewed 350 PAAs including 267 dogs and 83 cats, performed at a small-animal teaching hospital in 2021. [...] Read more.
Anaesthesia carries an inherent risk of morbidity and mortality in veterinary patients, yet the clinical impact of comprehensive pre-anaesthetic assessment (PAA) is insufficiently quantified. We retrospectively reviewed 350 PAAs including 267 dogs and 83 cats, performed at a small-animal teaching hospital in 2021. Signalment, history, physical examination findings, complementary diagnostics, initial ASA physical status (ASA-i), final ASA status after test review (ASA-f) and procedural outcomes were recorded. Complementary diagnostics—predominantly haematology, serum biochemistry, thoracic radiography, and electrocardiography—were requested in 82–86% of cases. ASA-f differed from ASA-i in 7.5% (11/306) of animals: +1 in 3.6%, +2 in 1.0%, −1 in 2.9%; no patient shifted by more than two classes. Fifty-seven planned procedures (16.2%) were cancelled following PAAs, chiefly abdominal (43.9%) and minor soft-tissue surgeries (31.6%). Internal-medicine abnormalities (47%) and cardiac findings (19%) were the leading causes; in 46% of cancellations, the trigger was an abnormal test result absent from the physical examination. Sixty-three percent of cancelled interventions were later completed after further evaluation or treatment. These data demonstrate that structured PAA substantially alters perioperative decision-making in small-animal practice and supports selective yet rigorous diagnostic test use to enhance patient safety and optimise theatre utilisation. Full article
Show Figures

Figure 1

13 pages, 240 KiB  
Article
Concentration Changes in Plasma Amino Acids and Their Metabolites in Eventing Horses During Cross-Country Competitions
by Flora Philine Reemtsma, Johanna Giers, Stephanie Horstmann, Sabita Diana Stoeckle and Heidrun Gehlen
Animals 2025, 15(13), 1840; https://doi.org/10.3390/ani15131840 - 22 Jun 2025
Viewed by 326
Abstract
Plasma amino acid (PAA) concentration in horses vary according to the exercise type. This study evaluated the changes in PAA levels and the associated metabolites, urea and ammonia, following short-duration, high-intensity cross-country exercise in eventing horses. Twenty eventing horses participated in 55 rides [...] Read more.
Plasma amino acid (PAA) concentration in horses vary according to the exercise type. This study evaluated the changes in PAA levels and the associated metabolites, urea and ammonia, following short-duration, high-intensity cross-country exercise in eventing horses. Twenty eventing horses participated in 55 rides at 14 international competitions (2* to 4* levels) across five venues in Germany and Poland. Blood samples were collected at four timepoints: before exercise (TP0), at 10 min (TP1), and at 30 min (TP2) post-exercise, as well as in the morning on the day after the competition (TP3). A total of 23 different PAAs and two metabolites (ammonia and urea) were analyzed. PAA concentration difference over time was assessed by a mixed ANOVA. Significant fluctuations were observed in 18/25 parameters. For 21/23 PAAs, levels increased at TP1 and/or TP2, while cysteine concentrations decreased. Concentrations returned to pre-competition levels for 21/23 PAAs by TP3. Proline levels remained elevated (p = 0.002), while those of glycine significantly decreased (p = 0.027) at TP3. Plasma ammonia and urea levels increased at TP1, TP2 and TP3. This study provides foundations for supplementation strategies and can inform future works exploring PAAs’ role in performance and training adaptation in eventing horses and their potential as performance-related biomarkers. Full article
(This article belongs to the Section Equids)
17 pages, 2590 KiB  
Article
Enhanced Oxidation of Carbamazepine Using Mn(II)-Activated Peracetic Acid: A Novel Advanced Oxidation Process Involving the Significant Role of Ligand Effects
by Xue Yang, Hai Yu, Liang Hong, Zhihang Huang, Qinda Zeng, Xiao Yao and Yinyuan Qiu
Molecules 2025, 30(13), 2690; https://doi.org/10.3390/molecules30132690 - 21 Jun 2025
Viewed by 376
Abstract
In recent years, extensive attention has been paid to advanced oxidation processes (AOPs) with peracetic acid (PAA), a widely used disinfectant, using transition metal ions for the degradation of organic contaminants within water environments. Mn(II) has been widely used as an effective homogeneous [...] Read more.
In recent years, extensive attention has been paid to advanced oxidation processes (AOPs) with peracetic acid (PAA), a widely used disinfectant, using transition metal ions for the degradation of organic contaminants within water environments. Mn(II) has been widely used as an effective homogeneous transition metal catalyst for oxidant activation, but it has shown poor performances with PAA. Since the stability of manganese species can be enhanced through the addition of ligands, this study systematically investigated a novel AOP for the oxidation of carbamazepine (CBZ) using an Mn(II)/PAA system with several different ligands added. The reactive species were explored through UV-vis spectrometry, scavengers, and probe compounds. The results suggest that Mn(III)–ligand complexes and other high-valent Mn species (Mn(V)) were generated and contributed obviously toward efficient CBZ oxidation, while radicals like CH3CO2 and CH3CO3 were minor contributors. The oxidation efficiency of Mn(II)/PAA/ligands depended highly on ligand species, as ethylene diamine tetraacetic acid (EDTA) and oxalate (SO) could promote the oxidation of CBZ, while pyrophosphate (PPP) showed modest enhancement. The results obtained here might contribute to the removal of residue pharmaceuticals under manganese-rich waters and also shed light on PAA-based AOPs that could help broaden our present knowledge of manganese chemistry for decontamination in water treatment. Full article
(This article belongs to the Special Issue Advanced Oxidation/Reduction Processes in Water Treatment)
Show Figures

Graphical abstract

13 pages, 5319 KiB  
Article
Self-Healing and Tough Polyacrylic Acid-Based Hydrogels for Micro-Strain Sensors
by Chuanjie Liu, Zhihong Liu and Bing Lu
Gels 2025, 11(7), 475; https://doi.org/10.3390/gels11070475 - 20 Jun 2025
Viewed by 438
Abstract
Self-healing hydrogels hold promise for smart sensors in bioengineering and intelligent systems, yet balancing self-healing ability with mechanical strength remains challenging. In this study, a self-healing hydrogel exhibiting superior stretchability was developed by embedding a combination of hydrogen bonding and dynamic metal coordination [...] Read more.
Self-healing hydrogels hold promise for smart sensors in bioengineering and intelligent systems, yet balancing self-healing ability with mechanical strength remains challenging. In this study, a self-healing hydrogel exhibiting superior stretchability was developed by embedding a combination of hydrogen bonding and dynamic metal coordination interactions, introduced by modified fenugreek galactomannan, ferric ions, and lignin silver nanoparticles, into a covalent polyacrylic acid (PAA) matrix. Synergistic covalent and multiple non-covalent interactions enabled the hydrogel with high self-healing ability and enhanced mechanical property. In particular, due to the introduction of multiple energy dissipation mechanisms, particularly migrative dynamic metal coordination interactions, the hydrogel exhibited ultra-high stretchability of up to 2000%. Furthermore, with the incorporation of lignin silver nanoparticles and ferric ions, the hydrogel demonstrated excellent strain sensitivity (gauge factor ≈ 3.94), with stable and repeatable resistance signals. Assembled into a flexible strain sensor, it effectively detected subtle human motions and organ vibrations, and even replaced conductive rubber in gaming controllers for real-time inputs. This study provides a versatile strategy for designing multifunctional hydrogels for advanced sensing applications. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Graphical abstract

20 pages, 4822 KiB  
Article
Enhanced Visualization of Erythrocytes Through Photoluminescence Using NaYbF4:Yb3+,Er3+ Nanoparticles
by Vivian Torres-Vera, Lorena M. Coronado, Ana Patricia Valencia, Alejandro Von Chong, Esteban Rua, Michelle Ng, Jorge Rubio-Retama, Carmenza Spadafora and Ricardo Correa
Biosensors 2025, 15(7), 396; https://doi.org/10.3390/bios15070396 - 20 Jun 2025
Viewed by 612
Abstract
Rare-earth nanoparticles (RE-NPs), particularly NaYF4:Yb3+,Er3+, have emerged as a promising class of photoluminescent probes for bioimaging and sensing applications. These nanomaterials are characterized by their ability to absorb low-energy photons and emit higher-energy photons through an upconversion [...] Read more.
Rare-earth nanoparticles (RE-NPs), particularly NaYF4:Yb3+,Er3+, have emerged as a promising class of photoluminescent probes for bioimaging and sensing applications. These nanomaterials are characterized by their ability to absorb low-energy photons and emit higher-energy photons through an upconversion luminescence process. This process can be triggered by continuous-wave (CW) light excitation, providing a unique optical feature that is not exhibited by native biomolecules. However, the application of upconversion nanoparticles (UCNPs) in bioimaging requires systematic optimization to maximize the signal and ensure biological compatibility. In this work, we synthesized hexagonal-phase UCNPs (average diameter: 29 ± 3 nm) coated with polyacrylic acid (PAA) and established the optimal conditions for imaging human erythrocytes. The best results were obtained after a 4-h incubation in 100 mM HEPES buffer, using a nanoparticle concentration of 0.01 mg/mL and a laser current intensity of 250–300 mA. Under these conditions, the UCNPs exhibited minimal cytotoxicity and were found to predominantly localize at the erythrocyte membrane periphery, indicating surface adsorption rather than internalization. Additionally, a machine learning model (Random Forest) was implemented that classified the photoluminescent signal with 80% accuracy and 83% precision, with the signal intensity identified as the most relevant feature. This study establishes a quantitative and validated protocol that balances signal strength with cell integrity, enabling robust and automated image analysis. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

Back to TopTop