Development and Characterization of Self-Adhesive Polymeric Films with Antiallergic Effect
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. DoE Approach
2.4. Mechanical Characterization
2.5. Adhesive Behavior
2.6. In Vitro Drug-Release Study
2.7. Drug-Release Kinetics
2.8. Vibrational Spectroscopic Film Characterization
2.9. Statistical Analysis
3. Results
3.1. DoE Approach
3.2. In Vitro Drug Release
3.3. Spectroscopic Characterization
3.4. Formulation Optimization
4. Discussion
4.1. Mechanical Characterization
4.2. Adhesive Behavior
4.3. In Vitro Drug Release
4.4. Spectroscopic Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredient |
PVA | Polyvinyl alcohol |
PAA | Polyacrylic acid |
DPH | Diphenhydramine hydrochloride |
PEG | Polyethylene glycol |
DoE | Design of Experiments |
HPLC | High-Performance Liquid Chromatography |
FFS | Film-forming systems |
CI | Confidence interval |
PES | Polyethersulfone |
AIC | Akaike Information Criterion |
ANOVA | Analysis of Variance |
PLS | Partial Least Squares |
References
- Lim, D.; Jibreal, H. The Australasian College of Dermatologists: Papular Urticaria. Available online: https://www.dermcoll.edu.au/atoz/papular-urticaria/ (accessed on 28 January 2025).
- Fazio, S.B.; Yosipovitch, G. Pruritus: Therapies for Localized Pruritus. Available online: https://www.uptodate.com/contents/pruritus-therapies-for-localized-pruritus (accessed on 29 January 2025).
- Savencu, I.; Iurian, S.; Porfire, A.; Bogdan, C.; Tomuță, I. Review of advances in polymeric wound dressing films. React. Funct. Polym. 2021, 168, 105059. [Google Scholar] [CrossRef]
- Allergy Patches. Available online: https://www.patchmd.com/allergy-plus-topical-patch.html (accessed on 14 February 2025).
- Okubo, K.; Uchida, E.; Terahara, T.; Akiyama, K.; Kobayashi, S.; Tanaka, Y. Efficacy and safety of the emedastine patch, a novel transdermal drug delivery system for allergic rhinitis: Phase III, multicenter, randomized, double-blinded, placebo-controlled, parallel-group comparative study in patients with seasonal allergic rhinitis. Allergol. Int. 2018, 67, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Magic Patch Itch Relief. Available online: https://www.natpat.com/en-eu/products/itch-relief?srsltid=AfmBOoqIM8ShdrlkiRCX9r3EWImcSa7a13BLXsx2UQhAdRXu7bsBYSxd (accessed on 14 February 2025).
- Moskinto the Original Itch-Relief Patch. Available online: https://moskintousa.com/collections/shop-all/products/moskinto-tin-42-pack (accessed on 14 February 2025).
- Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J. 2014, 16, 771–783. [Google Scholar] [CrossRef]
- Chaiwarit, T.; Rachtanapun, P.; Kantrong, N.; Jantrawut, P. Preparation of Clindamycin Hydrochloride Loaded De-Esterified Low-Methoxyl Mango Peel Pectin Film Used as a Topical Drug Delivery System. Polymers 2020, 12, 1006. [Google Scholar] [CrossRef] [PubMed]
- Rosseto, H.C.; de Toledo, L.d.A.S.; Said dos Santos, R.; de Francisco, L.M.B.; Vecchi, C.F.; Esposito, E.; Cortesi, R.; Bruschi, M.L. Design of propolis-loaded film forming systems for topical administration: The effect of acrylic acid derivative polymers. J. Mol. Liq. 2021, 322, 114514. [Google Scholar] [CrossRef]
- Frederiksen, K.; Guy, R.H.; Petersson, K. Formulation considerations in the design of topical, polymeric film-forming systems for sustained drug delivery to the skin. Eur. J. Pharm. Biopharm. 2015, 91, 9–15. [Google Scholar] [CrossRef]
- Xin, L.; Cai, Y.; Liu, J.; Jia, W.; Fang, L.; Liu, C. Design and in vitro/in vivo evaluation of chitosan-polyvinyl alcohol copolymer material cross-linked by dynamic borate ester covalent for pregabalin film-forming delivery system. Int. J. Biol. Macromol. 2024, 281, 136433. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Polymethacrylates. In Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009; pp. 525–533. [Google Scholar]
- Eudragit Functional Polymers for Sustained Release. Available online: https://healthcare.evonik.com/en/drugdelivery/oral-drug-delivery/oral-excipients/eudragit-portfolio/sustained-release (accessed on 14 February 2025).
- Muppalaneni, S.; Omidian, H. Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. J. Dev. Drugs 2013, 2, 3. [Google Scholar] [CrossRef]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Polyethylene Glycol. In Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009; pp. 517–522. [Google Scholar]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Carbomer. In Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009; pp. 110–114. [Google Scholar]
- Ito, T.; Yamaguchi, S.; Soga, D.; Ueda, K.; Yoshimoto, T.; Koyama, Y. Water-Absorbing Bioadhesive Poly(Acrylic Acid)/Polyvinylpyrrolidone Complex Sponge for Hemostatic Agents. Bioeng 2022, 9, 755. [Google Scholar] [CrossRef]
- Diphenhydramine Topical. Available online: https://medlineplus.gov/druginfo/meds/a601044.html (accessed on 17 February 2025).
- Diphenhydramine. Available online: https://go.drugbank.com/drugs/DB01075 (accessed on 13 June 2025).
- Bocci, G.; Oprea, T.I.; Benet, L.Z. State of the Art and Uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New Additions, Revisions, and Citation References. AAPS J. 2022, 24, 37. [Google Scholar] [CrossRef]
- Vaezi Moghaddam, A.A.-O.; Mortazavi, S.A.-O.X.; Kobarfard, F.; Bafkary, R.; Darbasizadeh, B. Synthesis and functionalization of mucoadhesive mesoporous silica particles containing diphenhydramine for treatment of aphthous ulcers. BioImpacts 2023, 13, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Yildiz Pekoz, A.; Meryem, S.E.; Alper, O.; Meltem, O.; Fatma, T.; Engin, K.; Olcay, S.; Araman, A. Preparation and in-vivo evaluation of dimenhydrinate buccal mucoadhesive films with enhanced bioavailability. Drug Dev. Ind. Pharm. 2016, 42, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Maneewattanapinyo, P.; Monton, C.; Pichayakorn, W.; Suksaeree, J. Plant leaf mucilage/carrageenan/Eudragit® NE30D blended films: Optimization, characterization, and pharmaceutical application. Int. J. Biol. Macromol. 2024, 254, 127916. [Google Scholar] [CrossRef] [PubMed]
- Nesseem, D.I.; Eid, S.F.; El-Houseny, S.S. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci. 2011, 89, 430–438. [Google Scholar] [CrossRef]
- Wongwad, E.; Ingkaninan, K.; Waranuch, N.; Park, C.; Somayaji, V.; Na-Ek, N.; Löbenberg, R. Improved transdermal delivery of novel cannabinoid-loaded patches using Eudragit matrix. Drug 2024, 96, 105697. [Google Scholar] [CrossRef]
- Kouchak, M.; Handali, S.; Naseri Boroujeni, B. Evaluation of the Mechanical Properties and Drug Permeability of Chitosan/Eudragit RL Composite Film. PHRP 2015, 6, 14–19. [Google Scholar] [CrossRef]
- Sampaopan, Y.; Suksaeree, J. Formulation Development and Pharmaceutical Evaluation of Lysiphyllum strychnifolium Topical Patches for Their Anti-inflammatory Potential. AAPS PharmSciTech 2022, 23, 116. [Google Scholar] [CrossRef]
- Alarcón-Segovia, L.C.; Daza-Agudelo, J.I.; Rintoul, I. Multifactorial Effects of Gelling Conditions on Mechanical Properties of Skin-Like Gelatin Membranes Intended for In Vitro Experimentation and Artificial Skin Models. Polymers 2021, 13, 1991. [Google Scholar] [CrossRef]
- European Pharmacopoeia 11.8. Acetate Buffer Solution pH 4.6. Available online: https://pheur.edqm.eu/app/11-8/content/default/4001400E.htm (accessed on 12 June 2025).
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- ICH Q2(R2) Guideline on Validation of Analytical Procedures. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 20 June 2025).
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. Design of Experiments, Principles and Applications; Umetrics AB, Umeå Learnways AB: Stockholm, Sweden, 2000; p. 329. [Google Scholar]
- Iurian, S.; Turdean, L.; Tomuta, I. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone. Drug Des. Dev. Ther. 2017, 11, 733–746. [Google Scholar] [CrossRef]
- Raman Data and Analysis. Raman Spectroscopy for Analysis and Monitoring. Available online: https://static.horiba.com/fileadmin/Horiba/Technology/Measurement_Techniques/Molecular_Spectroscopy/Raman_Spectroscopy/Raman_Academy/Raman_Tutorial/Raman_bands.pdf?utm_source=uhw&utm_medium=301&utm_campaign=uhw-redirect (accessed on 28 May 2025).
- Wyan, L. Analysis of Over-the-Counter Antihistamines Through Raman Spectroscopy and Density Functional Theory Calculations. Dissertation Thesis, Pace University, New York, NY, USA, 2019. [Google Scholar]
- Neagu, O.M.; Vicaș, L.G.; Vlase, A.-M.; Vlase, L.; Pallag, A.; Teușdea, A.; Bacskay, I.; Marian, E.; Mureșan, M.E.; Jurca, T. Mucoadhesive films based on polyvinyl alcohol and bioactive compounds for oral administration: Structural characterization and mucoadhesive properties. Farmacia 2023, 71, 737–746. [Google Scholar] [CrossRef]
- CT3 TEXTURE ANALYZER Operating Instructions Manual No. M08-372-F1116. Available online: https://www.brookfieldengineering.com/-/media/ametekbrookfield/manuals/texture/ct3%20manual%20m08-372-f1116.pdf (accessed on 9 May 2025).
- Food and Beverage Applications-Almonds. Available online: https://www.brookfieldengineering.com/brookfield-university/learning-center/application-notes/texture-applications/food-and-beverage/almonds (accessed on 7 May 2025).
- Chen, K.; Chen, G.; Wei, S.; Yang, X.; Zhang, D.; Xu, L. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment. Mater. Sci. Eng. C 2018, 91, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Colobatiu, L.; Gavan, A.; Mocan, A.; Bogdan, C.; Mirel, S.; Tomuta, I. Development of bioactive compounds-loaded chitosan films by using a QbD approach—A novel and potential wound dressing material. React. Funct. Polym. 2019, 138, 46–54. [Google Scholar] [CrossRef]
- Savencu, I.; Iurian, S.; Bogdan, C.; Spînu, N.; Suciu, M.; Pop, A.; Țoc, A.; Tomuță, I. Design, optimization and pharmaceutical characterization of wound healing film dressings with chloramphenicol and ibuprofen. Drug Dev. Ind. Pharm. 2024, 50, 446–459. [Google Scholar] [CrossRef]
- Safta, D.A.; Bogdan, C.; Iurian, S.; Moldovan, M.-L. Optimization of Film-Dressings Containing Herbal Extracts for Wound Care—A Quality by Design Approach. Gels 2025, 11, 322. [Google Scholar] [CrossRef]
- Food and Beverage Applications-Dry Lasagne. Available online: https://www.brookfieldengineering.com/brookfield-university/learning-center/application-notes/texture-applications/food-and-beverage/dry-lasagne (accessed on 7 May 2025).
- Bouzidi, A.; Jilani, W.; AlAbdulaal, T.H.; Jalalah, M.; Harraz, F.A.; Yahia, I.S.; Ibrahim, M.A.; Zahran, H.Y. Simple synthesis and characterization of novel polyvinyl alcohol capped sodium selenite solid composite film (PVA: NaSe SCF) samples. J. Sci. Adv. Mater. Devices 2022, 7, 100458. [Google Scholar] [CrossRef]
- Jelinska, N.; Kalnins, M.; Tupureina, V.; Dzene, A. Poly (Vinyl Alcohol)/Poly (Vinyl Acetate) Blend Films. Sci. J. Riga Tech. Univ. 2010, 21, 55–61. [Google Scholar]
- Yang, T.; Wu, J.; Yao, Y.; Wang, K.; Zhang, Q.; Fu, Q. Towards the toughness-strength balance of poly(vinyl alcohol) films via synergic plasticization. Polymer 2024, 301, 127031. [Google Scholar] [CrossRef]
- Jin, S.G. Production and Application of Biomaterials Based on Polyvinyl alcohol (PVA) as Wound Dressing. Chem. Asian J. 2022, 17, e202200595. [Google Scholar] [CrossRef] [PubMed]
- Liew, K.B.; Tan, Y.T.F.; Peh, K.-K. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev. Ind. Pharm. 2014, 40, 110–119. [Google Scholar] [CrossRef]
- Maulana, D.S.; Mubarak, A.S.; Pujiastuti, D.Y. The Concentration of polyethylen glycol (PeG) 400 on bioplastic cellulose based carrageenan waste on biodegradability and mechanical properties bioplastic. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 679, p. 012008. [Google Scholar] [CrossRef]
- Falqi, F.H.; Bin-Dahman, O.A.; Hussain, M.; Al-Harthi, M.A. Preparation of Miscible PVA/PEG Blends and Effect of Graphene Concentration on Thermal, Crystallization, Morphological, and Mechanical Properties of PVA/PEG (10 wt%) Blend. Int. J. Polym. Sci. 2018, 2018, 8527693. [Google Scholar] [CrossRef]
- Faturechi, R.; Karimi, A.; Hashemi, A.; Yousefi, H.; Navidbakhsh, M. Influence of Poly(acrylic acid) on the Mechanical Properties of Composite Hydrogels. Adv. Polym. Technol. 2015, 34, 21487. [Google Scholar] [CrossRef]
- Corona-Rivera, M.Á.; Velasco, M.R.; Ovando-Medina, V.M.; Cervantes-González, E.; López, J.E.P. Fabrication of poly(acrylic acid)/chitosan/linseed mucilage films: Thermal and mechanical properties. Polym. Eng. Sci. 2024, 64, 3243–3259. [Google Scholar] [CrossRef]
- Lam, H.T.; Zupančič, O.; Laffleur, F.; Bernkop-Schnürch, A. Mucoadhesive properties of polyacrylates: Structure–Function relationship. Int. J. Adhes. Adhes. 2021, 107, 102857. [Google Scholar] [CrossRef]
- Gao, Y.; La, H.; Min, H.; Hou, Z. Study on the mechanical properties of Polyacrylic Acid/Chitosan double network hydrogels in dynamic water content. Mater. Res. Express 2024, 11, 115308. [Google Scholar] [CrossRef]
- Buron, C.C.; Vrlinic, T.; Le Gallou, T.; Lakard, S.; Bolopion, A.; Rougeot, P.; Lakard, B. pH-Responsive PEG/PAA Multilayer Assemblies for Reversible Adhesion of Micro-Objects. ACS Appl. Polym. 2020, 2, 5646–5653. [Google Scholar] [CrossRef]
- Quispe-Siccha, R.M.; Medina-Sandoval, O.I.; Estrada-Tinoco, A.; Pedroza-Pérez, J.A.; Martínez-Tovar, A.; Olarte-Carrillo, I.; Cerón-Maldonado, R.; Reding-Bernal, A.; López-Alvarenga, J.C. Development of Polyvinyl Alcohol Hydrogels for Controlled Glucose Release in Biomedical Applications. Gels 2024, 10, 668. [Google Scholar] [CrossRef]
- Cheng, R.; Niu, B.; Fang, X.; Chen, H.; Chen, H.; Wu, W.; Gao, H. Preparation and characterization of water vapor-responsive methylcellulose-polyethylene glycol-400 composite membranes and an indication of freshness of shiitake mushrooms. Int. J. Biol. Macromol. 2024, 270, 132189. [Google Scholar] [CrossRef]
- Rao, P.R.; Ramakrishna, S.; Diwan, P.V. Drug Release Kinetics from Polymeric Films Containing Propranolol Hydrochloride for Transdermal Use. Pharm. Dev. Technol. 2000, 5, 465–472. [Google Scholar] [CrossRef]
- Kim, J.O.; Noh, J.-K.; Thapa, R.K.; Hasan, N.; Choi, M.; Kim, J.H.; Lee, J.-H.; Ku, S.K.; Yoo, J.-W. Nitric oxide-releasing chitosan film for enhanced antibacterial and in vivo wound-healing efficacy. Int. J. Biol. Macromol. 2015, 79, 217–225. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Pavaloiu, R.-D.; Sha’at, F.; Hlevca, C.; Sha’at, M.; Savoiu, G.; Osman, S. Evaluation of drug release kinetics from polymeric nanoparticles loaded with poorly water-soluble APIs. OUAC 2021, 32, 132–136. [Google Scholar] [CrossRef]
- Rosu, M.-C.; Bratu, I. Promising psyllium-based composite containing TiO2 nanoparticles as aspirin-carrier matrix. Prog. Nat. Sci. Mater. Int. 2014, 24, 205–209. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Talevi, A.; Ruiz, M.E. Baker-Lonsdale Model of Drug Release. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–7. [Google Scholar]
- Haag, M.; Brüning, M.; Molt, K. Quantitative analysis of diphenhydramine hydrochloride in pharmaceutical wafers using near infrared and Raman spectroscopy. Anal. Bioanal. Chem. 2009, 395, 1777–1785. [Google Scholar] [CrossRef]
- Orkoula, M.G.; Kontoyannis, C.G.; Markopoulou, C.K.; Koundourellis, J.E. Quantitative analysis of liquid formulations using FT-Raman spectroscopy and HPLC: The case of diphenhydramine hydrochloride in Benadryl®. J. Pharm. Biomed. Anal. 2006, 41, 1406–1411. [Google Scholar] [CrossRef]
Factors | Symbol | Type | Levels | ||
---|---|---|---|---|---|
PVA ratio (%) | X1 | Quantitative | 0 | 15 | 30 |
PAA ratio (%) | X2 | Quantitative | 43.5 | 49.5 | 55.5 |
Plasticizer | X3 | Qualitative | PEG 400, PEG 4000 | ||
Exp Name | Run Order | PVA ratio (X1) (%) | PAA ratio (X2) (%) | Plasticizer (X3) | |
N1 | 5 | 0 | 43.5 | PEG 400 | |
N2 | 3 | 30 | 43.5 | PEG 400 | |
N3 | 4 | 0 | 55.5 | PEG 400 | |
N4 | 8 | 30 | 55.5 | PEG 400 | |
N5 | 6 | 0 | 43.5 | PEG 4000 | |
N6 | 2 | 30 | 43.5 | PEG 4000 | |
N7 | 1 | 0 | 55.5 | PEG 4000 | |
N8 | 9 | 30 | 55.5 | PEG 4000 | |
N9 | 7 | 15 | 49.5 | PEG 400 | |
N10 | 11 | 15 | 49.5 | PEG 400 | |
N11 | 10 | 15 | 49.5 | PEG 400 |
Exp | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | Y11 | Y12 | Y13 | Y14 | Y15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N1 | 321.8 | 31.94 | 43.7 | 17.40 | 20.14 | 21.19 | 21.88 | 25.29 | 28.33 | 28.82 | 31.93 | 34.39 | 34.12 | 34.93 | 37.20 |
N2 | 425.7 | 19.19 | 46.8 | 29.05 | 42.27 | 48.19 | 54.31 | 61.22 | 70.59 | 70.85 | 74.98 | 82.24 | 84.91 | 83.63 | 79.39 |
N3 | 393.8 | 37.53 | 51.8 | 13.17 | 16.96 | 18.84 | 20.01 | 23.16 | 28.55 | 31.70 | 34.69 | 38.33 | 42.44 | 43.54 | 47.26 |
N4 | 305.2 | 26.07 | 66.8 | 22.88 | 39.53 | 49.29 | 55.46 | 73.60 | 79.70 | 81.74 | 83.38 | 91.43 | 92.70 | 94.60 | 94.52 |
N5 | 359.7 | 39.64 | 58.0 | 19.98 | 25.41 | 27.56 | 29.02 | 33.71 | 39.62 | 42.74 | 44.36 | 47.28 | 49.82 | 50.70 | 52.83 |
N6 | 435.0 | 13.71 | 58.2 | 13.83 | 24.75 | 27.89 | 32.39 | 38.89 | 44.81 | 47.31 | 50.79 | 55.34 | 60.15 | 61.06 | 65.80 |
N7 | 321.5 | 39.93 | 57.8 | 9.87 | 16.65 | 18.51 | 19.92 | 24.14 | 26.15 | 28.01 | 31.20 | 34.26 | 36.10 | 36.14 | 38.12 |
N8 | 342.0 | 21.71 | 63.2 | 17.27 | 30.36 | 36.62 | 38.43 | 41.79 | 49.25 | 54.46 | 60.57 | 62.28 | 66.14 | 66.08 | 66.74 |
N9 | 332.0 | 31.52 | 55.5 | 21.75 | 26.57 | 31.95 | 34.88 | 42.14 | 51.92 | 57.85 | 65.83 | 70.91 | 73.65 | 78.28 | 81.73 |
N10 | 303.7 | 33.38 | 52.5 | 26.85 | 39.33 | 42.17 | 45.85 | 51.71 | 60.34 | 63.67 | 71.82 | 73.99 | 75.59 | 77.86 | 79.46 |
N11 | 232.5 | 30.68 | 76.5 | 18.17 | 25.41 | 29.17 | 31.87 | 42.27 | 50.46 | 55.07 | 58.33 | 59.87 | 63.72 | 64.15 | 65.88 |
Formulation | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 | N11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baker–Lonsdale | R2 | 0.5012 | 0.8742 | 0.9289 | 0.9788 | 0.7011 | 0.9205 | 0.7848 | 0.7937 | 0.9811 | 0.8365 | 0.8528 |
AIC | 86.75 | 91.66 | 70.66 | 73.76 | 90.41 | 80.82 | 79.05 | 93.47 | 68.72 | 93.76 | 89.37 | |
k | 0.0033 | 0.0368 | 0.0046 | 0.0532 | 0.0073 | 0.0112 | 0.0032 | 0.0142 | 0.0203 | 0.0255 | 0.0130 | |
Korsmeyer–Peppas | R2 | 0.9913 | 0.9289 | 0.9861 | 0.9238 | 0.9804 | 0.9789 | 0.9738 | 0.9431 | 0.9812 | 0.9630 | 0.9485 |
AIC | 36.13 | 86.24 | 51.41 | 92.39 | 57.02 | 65.56 | 53.64 | 78.73 | 70.61 | 76.42 | 77.72 | |
k | 22.770 | 52.705 | 20.622 | 55.212 | 30.189 | 31.229 | 19.826 | 37.635 | 36.613 | 46.246 | 34.923 | |
n | 0.196 | 0.193 | 0.329 | 0.235 | 0.226 | 0.300 | 0.267 | 0.241 | 0.330 | 0.223 | 0.266 | |
Hixson–Crowell | R2 | 0.0000 | 0.2805 | 0.3256 | 0.5742 | 0.0000 | 0.4267 | 0.0000 | 0.1912 | 0.7795 | 0.3784 | 0.3137 |
AIC | 104.71 | 114.33 | 99.91 | 112.76 | 109.97 | 106.50 | 101.39 | 111.23 | 100.65 | 111.12 | 109.39 | |
k | 0.015 | 0.080 | 0.020 | 0.088 | 0.027 | 0.039 | 0.016 | 0.050 | 0.062 | 0.071 | 0.046 | |
Higuchi | R2 | 0.3746 | 0.2932 | 0.8763 | 0.5318 | 0.5369 | 0.8067 | 0.7060 | 0.5775 | 0.8703 | 0.5052 | 0.6773 |
AIC | 89.69 | 114.10 | 77.86 | 114.00 | 96.11 | 92.37 | 83.10 | 102.79 | 93.74 | 108.15 | 99.57 | |
k | 12.470 | 28.585 | 14.596 | 32.433 | 17.476 | 20.850 | 12.409 | 22.395 | 25.920 | 26.598 | 21.805 | |
First order | R2 | 0.0000 | 0.5943 | 0.4507 | 0.9289 | 0.0000 | 0.5727 | 0.0000 | 0.3710 | 0.8476 | 0.5450 | 0.4851 |
AIC | 103.32 | 106.88 | 97.25 | 89.49 | 107.42 | 102.68 | 99.65 | 107.96 | 95.84 | 107.06 | 105.65 | |
k | 0.053 | 0.492 | 0.069 | 0.717 | 0.097 | 0.140 | 0.053 | 0.178 | 0.230 | 0.302 | 0.164 | |
Zero order | R2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
AIC | 107.42 | 130.74 | 105.31 | 132.43 | 115.39 | 116.65 | 104.75 | 122.03 | 120.79 | 126.89 | 120.36 | |
k | 3.453 | 7.779 | 4.204 | 8.938 | 4.857 | 5.926 | 3.491 | 6.211 | 7.437 | 7.356 | 6.085 |
Factor | Symbol | Value (%) | ||
---|---|---|---|---|
PVA ratio | X1 | 23.14 | ||
PAA ratio | X2 | 43.75 | ||
Plasticizer | X3 | PEG 400, 30% of PAA | ||
Response | Symbol | Predicted value | Observed value | Bias (%) |
Hardness (g) | Y1 | 371.51 | 463.7 | 24.81 |
Deformation at hardness (mm) | Y2 | 24.23 | 16.56 | −31.65 |
Adhesive force (g) | Y3 | 47.77 | 76.00 | 59.10 |
In vitro release 0.25 h (%) | Y4 | 25.36 | 15.74 | −37.93 |
In vitro release 0.5 h (%) | Y5 | 35.71 | 22.91 | −35.84 |
In vitro release 0.75 h (%) | Y6 | 39.71 | 27.73 | −30.17 |
In vitro release 1 h (%) | Y7 | 46.15 | 31.28 | −32.22 |
In vitro release 2 h (%) | Y8 | 57.04 | 58.39 | 2.37 |
In vitro release 3 h (%) | Y9 | 63.77 | 62.02 | −2.74 |
In vitro release 4 h (%) | Y10 | 65.45 | 62.26 | −4.87 |
In vitro release 5 h (%) | Y11 | 69.76 | 68.19 | −2.25 |
In vitro release 6 h (%) | Y12 | 75.67 | 68.78 | −9.11 |
In vitro release 7 h (%) | Y13 | 78.22 | 67.16 | −14.14 |
In vitro release 8 h (%) | Y14 | 80.58 | 66.60 | −17.35 |
In vitro release 12 h (%) | Y15 | 78.75 | 64.83 | −17.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savencu, I.; Iurian, S.; Bogdan, C.; Toma, V.; Știufiuc, R.; Tomuță, I. Development and Characterization of Self-Adhesive Polymeric Films with Antiallergic Effect. Polymers 2025, 17, 1867. https://doi.org/10.3390/polym17131867
Savencu I, Iurian S, Bogdan C, Toma V, Știufiuc R, Tomuță I. Development and Characterization of Self-Adhesive Polymeric Films with Antiallergic Effect. Polymers. 2025; 17(13):1867. https://doi.org/10.3390/polym17131867
Chicago/Turabian StyleSavencu, Ioana, Sonia Iurian, Cătălina Bogdan, Valentin Toma, Rareș Știufiuc, and Ioan Tomuță. 2025. "Development and Characterization of Self-Adhesive Polymeric Films with Antiallergic Effect" Polymers 17, no. 13: 1867. https://doi.org/10.3390/polym17131867
APA StyleSavencu, I., Iurian, S., Bogdan, C., Toma, V., Știufiuc, R., & Tomuță, I. (2025). Development and Characterization of Self-Adhesive Polymeric Films with Antiallergic Effect. Polymers, 17(13), 1867. https://doi.org/10.3390/polym17131867