Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,428)

Search Parameters:
Keywords = PA27

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 753 KiB  
Article
In-Context Learning for Low-Resource Machine Translation: A Study on Tarifit with Large Language Models
by Oussama Akallouch and Khalid Fardousse
Algorithms 2025, 18(8), 489; https://doi.org/10.3390/a18080489 (registering DOI) - 6 Aug 2025
Abstract
This study presents the first systematic evaluation of in-context learning for Tarifit machine translation, a low-resource Amazigh language spoken by 5 million people in Morocco and Europe. We assess three large language models (GPT-4, Claude-3.5, PaLM-2) across Tarifit–Arabic, Tarifit–French, and Tarifit–English translation using [...] Read more.
This study presents the first systematic evaluation of in-context learning for Tarifit machine translation, a low-resource Amazigh language spoken by 5 million people in Morocco and Europe. We assess three large language models (GPT-4, Claude-3.5, PaLM-2) across Tarifit–Arabic, Tarifit–French, and Tarifit–English translation using 1000 sentence pairs and 5-fold cross-validation. Results show that 8-shot similarity-based demonstration selection achieves optimal performance. GPT-4 achieved 20.2 BLEU for Tarifit–Arabic, 14.8 for Tarifit–French, and 10.9 for Tarifit–English. Linguistic proximity significantly impacts translation quality, with Tarifit–Arabic substantially outperforming other language pairs by 8.4 BLEU points due to shared vocabulary and morphological patterns. Error analysis reveals systematic issues with morphological complexity (42% of errors) and cultural terminology preservation (18% of errors). This work establishes baseline benchmarks for Tarifit translation and demonstrates the viability of in-context learning for morphologically complex low-resource languages, contributing to linguistic equity in AI systems. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

14 pages, 7789 KiB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 (registering DOI) - 6 Aug 2025
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

16 pages, 1290 KiB  
Article
Passion, Motivation, and Subjective Well-Being in Sport for People with Disabilities
by Luís Cid, Anabela Vitorino, Teresa Bento, Diogo Teixeira, Pedro Duarte-Mendes and Nuno Couto
Healthcare 2025, 13(15), 1919; https://doi.org/10.3390/healthcare13151919 - 6 Aug 2025
Abstract
Objective: Considering the absence of research testing the entire sequence of passion, behavioral regulation, and subjective well-being (SWB), this study aimed to analyze the hypothetical causal relationships between the variables of a model that integrates the Dualistic Passion Model (DMP) and Self-Determination Theory [...] Read more.
Objective: Considering the absence of research testing the entire sequence of passion, behavioral regulation, and subjective well-being (SWB), this study aimed to analyze the hypothetical causal relationships between the variables of a model that integrates the Dualistic Passion Model (DMP) and Self-Determination Theory (SDT) in order to understand the impact of harmonious passion (HP) and obsessive passion (OP) and the regulation of motivation on the SWB of elite athletes with disability. Method: This study includes 143 elite athletes from national adapted sports (36 female; 107 male) aged between 15 and 59 (M = 29.21; SD = 10.45). Weekly training sessions ranged from 1 to 12 (M = 4.52; SD = 2.71), and the years of competitive practice ranged from 1 to 28 (M = 5.55; SD = 6.98). Data were collected using valid and reliable questionnaires for the study population and analyzed using structural equation analysis. The following results were identified: a positive and a significant effect between OP and self-determination motivation (SDM); a positive but not a significant effect between OP and non-self-determination motivation (NSDM); a significant effect between SDM and SWL and SDM and positive affect (PA); and, finally, a positive but non-significant effect between SDM and negative affect (NA). In contrast, there is a positive and significant effect between HP and SDM; a negative and significant effect between HP and NSDM; a positive but non-significant effect between NSDM and SWL; a negative and significant effect between NSDM and PA; and, finally, a positive and significant effect between NSDM and NA. Conclusions: The perception of passion regarding sport can be a positive predictor of SDM, which, in turn, can influence levels of SWB, both from a cognitive point of view (SWL) and from an emotional point of view (PA). This reinforces the positive effect of the self-determination behavior in adapted sport on SWB and its contribution to health and quality of life in people with disabilities. Full article
Show Figures

Figure 1

26 pages, 10877 KiB  
Article
Analysis of Mechanical Properties of Crumb Rubber Tires Mixed with Silty Sand of Various Sizes and Percentages
by Sindambiwe Theogene, Jianxiu Sun, Yanzi Wang, Run Xu, Jie Sun, Yuchen Tao, Changyong Zhang, Qingshuo Sun, Jiandong Wu, Hongya Yue and Hongbo Zhang
Polymers 2025, 17(15), 2144; https://doi.org/10.3390/polym17152144 - 5 Aug 2025
Abstract
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, [...] Read more.
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, and low permeability. This study explores the incorporation of crumb rubber derived from waste tires into silty sand to enhance its mechanical properties. Crumb rubber particles of varying sizes (3–6 mm, 5–10 mm, and 10–20 mm) were mixed with silty sand at 0%, 3%, 6%, and 9% percentages, respectively. Triaxial compression tests of unconsolidated and consolidated undrained tests with cell pressures of 100, 300, and 500 kPa were conducted. The deviatoric stress, shear stress, and stiffness modulus were investigated. The results revealed that the addition of crumb rubber significantly increased the deviatoric and shear stresses, especially at particle sizes of 5–10 mm, with contents of 3%, 6%, and 9%. Additionally, the stiffness modulus was notably reduced in the mixture containing 6% crumb rubber tire. These findings suggest that incorporating crumb rubber tires into silty sand not only improves silty sand performance but also offers an environmentally sustainable approach to tire waste recycling, making it a viable strategy for silty sand stabilization in construction and geotechnical engineering performance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

19 pages, 1220 KiB  
Article
The Role of Square Dancing in Psychological Capital: Evidence from a Large Cross-Sequential Study
by Ruitong Li, Yujia Qu, Zhiyuan Liu and Yan Wang
Healthcare 2025, 13(15), 1913; https://doi.org/10.3390/healthcare13151913 - 5 Aug 2025
Abstract
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and [...] Read more.
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and psychological capital (PsyCap) in middle-aged and elderly individuals using cross-validation, subgroup analysis, and a cross-sequential design. (2) Methods: A cross-sectional study with 5714 participants employed a serial mediation model. Online questionnaires assessed square-dancing exercise, cognitive reappraisal, prosocial behavior tendencies, PsyCap, and interpersonal relationships. Statistical analyses were conducted using SPSS 27.0 and Mplus 8.3, incorporating correlation analysis, structural equation modeling, and subgroup comparisons. (3) Results: (a) Cognitive reappraisal and prosocial behavior mediated the link between square-dancing and PsyCap through three pathways; (b) model stability was confirmed across two random subsamples; (c) cross-group differences emerged in age and interpersonal relationships. Compared with secondary data, this study further validated PsyCap’s stability over six months post-pandemic. (4) Conclusions: The study, based on China’s largest square-dancing sample, establishes a robust serial mediation model. The findings strengthen theoretical foundations for PA-based interventions promoting psychological resilience in aging populations, highlighting structured exercise’s role in mental and social well-being. Full article
Show Figures

Figure 1

21 pages, 896 KiB  
Article
Insights into FGFR4 (rs351855 and rs7708357) Gene Variants, Ki-67 and p53 in Pituitary Adenoma Pathophysiology
by Martyna Juskiene, Monika Duseikaite, Alvita Vilkeviciute, Egle Kariniauske, Ieva Baikstiene, Jurgita Makstiene, Lina Poskiene, Arimantas Tamasauskas, Rasa Liutkeviciene, Rasa Verkauskiene and Birute Zilaitiene
Int. J. Mol. Sci. 2025, 26(15), 7565; https://doi.org/10.3390/ijms26157565 - 5 Aug 2025
Abstract
To determine the association between FGFR4 (rs351855 and rs7708357) gene variants, serum levels, and immunohistochemical markers (Ki-67 and p53) in pituitary adenoma (PA), a case-control study was conducted involving 300 subjects divided into two groups: the control group (n = 200) and [...] Read more.
To determine the association between FGFR4 (rs351855 and rs7708357) gene variants, serum levels, and immunohistochemical markers (Ki-67 and p53) in pituitary adenoma (PA), a case-control study was conducted involving 300 subjects divided into two groups: the control group (n = 200) and a group of PA (n = 100). The genotyping of FGFR4 rs351855 and rs7708357 was carried out using the real-time polymerase chain reaction (RT-PCR) method. The serum FGFR4 levels were measured using the ELISA method. Immunohistochemical analysis (Ki-67 and p53) was conducted. Statistical analysis of the data was performed using IBM SPSS Statistics 30.0 software. There were no statistically significant differences after analyzing the genotypes and alleles of FGFR4 rs351855 and rs7708357 in patients with PA and control groups (all p > 0.05). After evaluating the distribution of genotypes and alleles of FGFR4 rs351855 and rs7708357 in micro/macro, invasiveness, activity, and recurrence of PA and the control groups, the analysis showed no statistically significant differences between the groups (p > 0.05). Similarly, no significant differences in FGFR4 levels were observed between PA patients and control group (median (IQR): 3642.41 (1755.08) pg/mL vs. 3126.24 (1334.15) pg/mL, p = 0.121). Immunohistochemistry for Ki-67 revealed a labeling index (LI) of <1% in 25.5% of patients with PA, an LI of 1% in 10.9%, and an LI of >1% in 63.6% of patients. Further analyses showed no statistically significant associations with tumor size, invasiveness, activity, or recurrence. Immunohistochemistry for p53 revealed that macroadenomas had a significantly higher p53 H-score compared to microadenomas (median (IQR): 30.33 (28.68) vs. 18.34 (17.65), p = 0.005). Additionally, a moderate, statistically significant positive correlation between the Ki-67 LI and the p53 expression was found (Spearman’s ρ = 0.443, p = 0.003, n = 43). FGFR4 variants and serum protein levels were not significantly associated with PA risk or tumor features. Conversely, immunohistochemical markers Ki-67 and p53 were more informative, with higher p53 expression in macroadenomas and a moderate positive correlation between Ki-67 and p53, highlighting their potential relevance in tumor growth assessment. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 6254 KiB  
Article
Pro-Apoptotic Effects of Unsymmetrical Bisacridines in 3D Pancreatic Multicellular Tumor Spheroids
by Agnieszka Kurdyn, Ewa Paluszkiewicz and Ewa Augustin
Int. J. Mol. Sci. 2025, 26(15), 7557; https://doi.org/10.3390/ijms26157557 - 5 Aug 2025
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity [...] Read more.
Pancreatic cancer (PC) is an aggressive malignancy with a poor prognosis, requiring innovative approaches to evaluate new therapies. Considering the high activity of unsymmetrical bisacridines (UAs) in PC monolayer cultures, we employed multicellular tumor spheroids (MCTS) to assess whether UAs retain pro-apoptotic activity under more physiologically relevant conditions. Ultra-low attachment plates were used to form spheroids from three PC cell lines (Panc-1, MIA PaCa-2, and AsPC-1) with different genotypes and phenotypes. The effects of UA derivatives (C-2028, C-2045, and C-2053) were evaluated using microscopy and flow cytometry (7-AAD for viability and annexin V-FITC/PI for membrane integrity). UAs altered the morphology of the spheroids and reduced their growth. Notably, Panc-1 spheroids exhibited compromised integrity. The increase in 7-AAD+ cells confirmed diminished cell viability, and annexin V-FITC assays showed apoptosis as the dominant death pathway. Interestingly, the exact derivative was most active against a given cell line regardless of culture conditions. These results confirm that UAs maintain anticancer activity in 3D cultures and induce apoptosis, with varying efficacy across different cell lines. This underscores the value of diverse cellular models in compound evaluation and supports UAs as promising candidates for pancreatic cancer therapy. Full article
Show Figures

Graphical abstract

19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 14417 KiB  
Article
Toward Wearable MagnetoCardioGraphy (MCG) for Cognitive Workload Monitoring: Advancements in Sensor and Study Design
by Ali Kaiss, Jingzhen Yang and Asimina Kiourti
Sensors 2025, 25(15), 4806; https://doi.org/10.3390/s25154806 - 5 Aug 2025
Abstract
Despite cognitive workload (CW) being a critical metric in several applications, no technology exists to seamlessly and reliably quantify CW. Previously, we demonstrated the feasibility of a wearable MagnetoCardioGraphy (MCG) sensor to classify high vs. low CW based on MCG-derived heart rate variability [...] Read more.
Despite cognitive workload (CW) being a critical metric in several applications, no technology exists to seamlessly and reliably quantify CW. Previously, we demonstrated the feasibility of a wearable MagnetoCardioGraphy (MCG) sensor to classify high vs. low CW based on MCG-derived heart rate variability (mHRV). However, our sensor was unable to address certain critical operational requirements, resulting in noisy signals, often to the point of being unusable. In addition, test conditions for the participants were not decoupled from motion (i.e., physical activity (PA)), raising questions as to whether the noted changes in mHRV were attributed to CW, PA, or both. This study reports software and hardware advancements to optimize the MCG data quality, and investigates whether changes in CW (in the absence of PA) can be reliably detected. Performance is validated for healthy adults (n = 10) performing three types of CW tasks (one for low CW and two for high CW to eliminate the memory effect). Results demonstrate the ability to retrieve MCG R-peaks throughout the recordings, as well as the ability to differentiate high vs. low CW in all cases, confirming that CW does modulate the mHRV. A paired Bonferroni t-test with significance α=0.01 confirms the hypothesis that an increase in CW decreases mHRV. Our findings lay the groundwork toward a seamless, practical, and low-cost sensor for monitoring CW. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

17 pages, 2337 KiB  
Article
Oxygen Reduction by Amide-Ligated Cobalt Complexes: Effect of Hydrogen Bond Acceptor
by Zahra Aghaei, Adedamola A. Opalade, Victor W. Day and Timothy A. Jackson
Molecules 2025, 30(15), 3274; https://doi.org/10.3390/molecules30153274 - 5 Aug 2025
Abstract
The ability of earth-abundant metals to serve as catalysts for the oxygen reduction reaction is of increasing importance given the prominence of this reaction in several emerging technologies. It is now recognized that both the primary and secondary coordination environments of these catalysts [...] Read more.
The ability of earth-abundant metals to serve as catalysts for the oxygen reduction reaction is of increasing importance given the prominence of this reaction in several emerging technologies. It is now recognized that both the primary and secondary coordination environments of these catalysts can be modulated to optimize their performance. In this present work, we describe two CoII complexes [CoII(PaPy2Q)](OTf) (1) and [CoII(PaPy2N)](OTf) (2) that catalyze chemical and electrochemical dioxygen reduction. Both 1 and 2 contain CoII centers in a N5 coordination environment, but 2 has a naphthyridine group that places a nitrogen atom in the secondary coordination sphere. Solid-state X-ray crystallography and solution-state spectroscopic measurements reveal that, apart from this second-sphere nitrogen in 2, complexes 1 and 2 have essentially identical properties. Despite these similarities, 2 performs the chemical reduction of dioxygen ~10-fold more rapidly than 1. In addition, 2 has an enhanced performance in the electrochemical reduction of dioxygen compared to 1. Both complexes yield a significant amount of H2O2 in the chemical reduction of dioxygen (>25%). The enhanced catalytic performance of 2 is attributed to the presence of the second-sphere nitrogen atom, which might enable the efficient protonation of cobalt–oxygen intermediates formed during turnover. Full article
(This article belongs to the Special Issue Metal Complexes: Synthesis, Characterization and Applications)
Show Figures

Figure 1

12 pages, 840 KiB  
Article
Baseline Knee Osteoarthritis and Chronic Obstructive Pulmonary Disease as Predictors of Physical Activity Decline: A Five-Year Longitudinal Study in U.S. Adults Using the Disablement Process Framework
by Saad A. Alhammad and Vishal Vennu
Healthcare 2025, 13(15), 1902; https://doi.org/10.3390/healthcare13151902 - 5 Aug 2025
Abstract
Background/Objective: Understanding how chronic conditions such as knee osteoarthritis (OA) and chronic obstructive pulmonary disease (COPD) influence long-term physical activity (PA) is essential for developing condition-specific rehabilitation strategies. This study aimed to examine whether baseline diagnoses of knee OA and COPD are independently [...] Read more.
Background/Objective: Understanding how chronic conditions such as knee osteoarthritis (OA) and chronic obstructive pulmonary disease (COPD) influence long-term physical activity (PA) is essential for developing condition-specific rehabilitation strategies. This study aimed to examine whether baseline diagnoses of knee OA and COPD are independently associated with the trajectories of PA decline over five years in U.S. adults, informed by the disablement process model. Methods: We analyzed data from 855 adults aged ≥45 years enrolled in the Osteoarthritis Initiative (OAI). The participants were categorized into three baseline groups, control (n = 122), knee OA (n = 646), and COPD (n = 87), based on self-reports and prior clinical assessments. PA was measured annually for five years using the Physical Activity Scale for the Elderly (PASE). General linear mixed models assessed changes in PA over time, adjusting for demographic, behavioral, and clinical covariates. Results: Compared to the controls, participants with knee OA had a significant decline in PA over time (β = −6.62; 95% CI: −15.4 to −2.19; p = 0.014). Those with COPD experienced an even greater decline compared to the knee OA group (β = −11.2; 95% CI: −21.7 to −0.67; p = 0.037). These associations persisted after adjusting for age, sex, body mass index, comorbidities, and smoking. Conclusions: Baseline knee OA and COPD were independently associated with long-term reductions in PA. These findings underscore the importance of early, tailored rehabilitation strategies, particularly pulmonary rehabilitation, in preserving functional independence among older adults with chronic conditions. Full article
(This article belongs to the Special Issue Association Between Physical Activity and Chronic Condition)
Show Figures

Figure 1

9 pages, 1938 KiB  
Brief Report
Single-Component Silicon-Containing Polyurethane for High-Performance Waterproof and Breathable Nanofiber Membranes
by Dongxu Lu, Yanbing Li, Yake Chai, Ximei Wen, Liming Chen and Sanming Sun
Fibers 2025, 13(8), 105; https://doi.org/10.3390/fib13080105 - 5 Aug 2025
Abstract
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach [...] Read more.
High-performance waterproof and breathable nanofiber membranes (WBNMs) are in great demand for various advanced applications. However, the fabrication of such membranes often relies on fluorinated materials or involves complex preparation processes, limiting their practical use. In this study, we present an innovative approach by utilizing silicon-containing polyurethane (SiPU) as a single-component, fluorine-free raw material to prepare high-performance WBNMs via a simple one-step electrospinning process. The electrospinning technique enables the formation of SiPU nanofibrous membranes with a small maximum pore size (dmax) and high porosity, while the intrinsic hydrophobicity of SiPU imparts excellent water-repellent characteristics to the membranes. As a result, the single-component SiPU WBNM exhibits superior waterproofness and breathability, with a hydrostatic pressure of 52 kPa and a water vapor transmission rate (WVTR) of 5798 g m−2 d−1. Moreover, the optimized SiPU-14 WBNM demonstrates outstanding mechanical properties, including a tensile strength of 6.15 MPa and an elongation at break of 98.80%. These findings indicate that the single-component SiPU-14 WBNMs not only achieve excellent waterproof and breathable performance but also possess robust mechanical strength, thereby enhancing the comfort and expanding the potential applications of protective textiles, such as outdoor apparel and car seats. Full article
Show Figures

Graphical abstract

17 pages, 2219 KiB  
Article
Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters
by Yihan Pan, Xingliang Liu, Jinzhong Wu, Haocheng Zhou and Lina Zhu
Energies 2025, 18(15), 4144; https://doi.org/10.3390/en18154144 - 5 Aug 2025
Abstract
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative [...] Read more.
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative environmental conditions: temperature, vibration, shock, and low atmospheric pressure. Field measurements were conducted across road, rail, and air transport modes using a self-developed data acquisition system based on the NearLink communication technology. The measured data were then compared with the threshold values defined in current international and national standards. The results reveal that certain measured values exceeded the upper limits prescribed by existing standards, indicating limitations in their applicability under extreme transport conditions. Based on these findings, we propose revised testing parameters that better reflect actual transport risks, including a temperature cycling range of 72 ± 2 °C (high) and −40 ± 2 °C (low), a shock acceleration limit of 50 gn, adjusted peak frequencies in the vibration PSD profile, and a minimum pressure threshold of 11.6 kPa. These results provide a scientific basis for optimising safety standards and improving the safety of lithium-ion battery transportation. Full article
Show Figures

Figure 1

27 pages, 4509 KiB  
Article
Numerical Simulation and Analysis of Performance of Switchable Film-Insulated Photovoltaic–Thermal–Passive Cooling Module for Different Design Parameters
by Cong Jiao, Zeyu Li, Tiancheng Ju, Zihan Xu, Zhiqun Xu and Bin Sun
Processes 2025, 13(8), 2471; https://doi.org/10.3390/pr13082471 - 5 Aug 2025
Abstract
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. [...] Read more.
Photovoltaic–thermal (PVT) technology has attracted considerable attention for its ability to significantly improve solar energy conversion efficiency by simultaneously providing electricity and heat during the day. PVT technology serves a purpose in condensers and subcoolers for passive cooling in refrigeration systems at night. In our previous work, we proposed a switchable film-insulated photovoltaic–thermal–passive cooling (PVT-PC) module to address the structural incompatibility between diurnal and nocturnal modes. However, the performance of the proposed module strongly depends on two key design parameters: the structural height and the vacuum level of the air cushion. In this study, a numerical model of the proposed module is developed to examine the impact of design and meteorological parameters on its all-day performance. The results show that diurnal performance remains stable across different structural heights, while nocturnal passive cooling power shows strong dependence on vacuum level and structural height, achieving up to 103.73 W/m2 at 10 mm height and 1500 Pa vacuum, which is comparable to unglazed PVT modules. Convective heat transfer enhancement, induced by changes in air cushion shape, is identified as the primary contributor to improved nocturnal cooling performance. Wind speed has minimal impact on electrical output but significantly enhances thermal efficiency and nocturnal convective cooling power, with a passive cooling power increase of up to 31.61%. In contrast, higher sky temperatures degrade nocturnal cooling performance due to diminished radiative exchange, despite improving diurnal thermal efficiency. These findings provide fundamental insights for optimizing the structural design and operational strategies of PVT-PC systems under varying environmental conditions. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

Back to TopTop