Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,169)

Search Parameters:
Keywords = P2Y1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1097 KiB  
Article
Mapping Perfusion and Predicting Success: Infrared Thermography-Guided Perforator Flaps for Lower Limb Defects
by Abdalah Abu-Baker, Andrada-Elena Ţigăran, Teodora Timofan, Daniela-Elena Ion, Daniela-Elena Gheoca-Mutu, Adelaida Avino, Cristina-Nicoleta Marina, Adrian Daniel Tulin, Laura Raducu and Radu-Cristian Jecan
Medicina 2025, 61(8), 1410; https://doi.org/10.3390/medicina61081410 (registering DOI) - 3 Aug 2025
Abstract
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography [...] Read more.
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography (IRT) in preoperative planning and postoperative monitoring of perforator-based flaps, assessing its accuracy in identifying perforators, predicting complications, and optimizing outcomes. Materials and Methods: A prospective observational study was conducted on 76 patients undergoing lower limb reconstruction with fascio-cutaneous perforator flaps between 2022 and 2024. Perforator mapping was performed concurrently with IRT and Doppler ultrasonography (D-US), with intraoperative confirmation. Flap design variables and systemic parameters were recorded. Postoperative monitoring employed thermal imaging on days 1 and 7. Outcomes were correlated with thermal, anatomical, and systemic factors using statistical analyses, including t-tests and Pearson correlation. Results: IRT showed high sensitivity (97.4%) and positive predictive value (96.8%) for perforator detection. A total of nine minor complications occurred, predominantly in patients with diabetes mellitus and/or elevated glycemia (p = 0.05). Larger flap-to-defect ratios (A/C and B/C) correlated with increased complications in propeller flaps, while smaller ratios posed risks for V-Y and Keystone flaps. Thermal analysis indicated significantly lower flap temperatures and greater temperature gradients in flaps with complications by postoperative day 7 (p < 0.05). CRP levels correlated with glycemia and white blood cell counts, highlighting systemic inflammation’s impact on outcomes. Conclusions: IRT proves to be a reliable, non-invasive method for perforator localization and flap monitoring, enhancing surgical planning and early complication detection. Combined with D-US, it improves perforator selection and perfusion assessment. Thermographic parameters, systemic factors, and flap design metrics collectively predict flap viability. Integration of IRT into surgical workflows offers a cost-effective tool for optimizing reconstructive outcomes in lower limb surgery. Full article
Show Figures

Figure 1

30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 (registering DOI) - 2 Aug 2025
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

19 pages, 1721 KiB  
Article
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 (registering DOI) - 1 Aug 2025
Viewed by 22
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y [...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

13 pages, 251 KiB  
Article
On Solution Set Associated with a Class of Multiple Objective Control Models
by Savin Treanţă and Omar Mutab Alsalami
Mathematics 2025, 13(15), 2484; https://doi.org/10.3390/math13152484 (registering DOI) - 1 Aug 2025
Viewed by 44
Abstract
In this paper, necessary and sufficient efficiency conditions in new multi-cost variational models are formulated and proved. To this end, we introduce a new notion of [...] Read more.
In this paper, necessary and sufficient efficiency conditions in new multi-cost variational models are formulated and proved. To this end, we introduce a new notion of (ϑ0,ϑ1)(σ0,σ1)typeI functionals determined by multiple integrals. To better emphasize the significance of the suggested (ϑ0,ϑ1)(σ0,σ1)typeI functionals and how they add to previous studies, we mention that the (ϑ0,ϑ1)(σ0,σ1)typeI and generalized (ϑ0,ϑ1)(σ0,σ1)typeItypeI assumptions associated with the involved multiple integral functionals cover broader and more general classes of problems, where the convexity of the functionals is not fulfilled or the functionals considered are not of simple integral type. In addition, innovative proofs are provided for the main results. Full article
(This article belongs to the Special Issue Applied Functional Analysis and Applications: 2nd Edition)
13 pages, 994 KiB  
Article
Evaluation of the Metabolomics Profile in Charcot–Marie–Tooth (CMT) Patients: Novel Potential Biomarkers
by Federica Murgia, Martina Cadeddu, Jessica Frau, Giancarlo Coghe, Lorefice Lorena, Alessandro Vannelli, Maria Rita Murru, Martina Spada, Antonio Noto, Luigi Atzori and Eleonora Cocco
Metabolites 2025, 15(8), 520; https://doi.org/10.3390/metabo15080520 (registering DOI) - 1 Aug 2025
Viewed by 95
Abstract
Background: Charcot–Marie–Tooth (CMT) is a group of inherited diseases impairing the peripheral nervous system. CMT originates from genetic variants that affect proteins fundamental for the myelination of peripheral nerves and survival. Moreover, environmental and humoral factors can impact disease development and evolution. Currently, [...] Read more.
Background: Charcot–Marie–Tooth (CMT) is a group of inherited diseases impairing the peripheral nervous system. CMT originates from genetic variants that affect proteins fundamental for the myelination of peripheral nerves and survival. Moreover, environmental and humoral factors can impact disease development and evolution. Currently, no therapy is available. Metabolomics is an emerging field of biomedical research that enables the development of novel biomarkers for neurodegenerative diseases by targeting metabolic pathways or metabolites. This study aimed to evaluate the metabolomics profile of CMT disease by comparing patients with healthy individuals. Methods: A total of 22 CMT patients (CMT) were included in this study and were demographically matched with 26 healthy individuals (C). Serum samples were analyzed through Nuclear Magnetic Resonance spectroscopy, and multivariate and univariate statistical analyses were subsequently applied. Results: A supervised model showed a clear separation (R2X = 0.3; R2Y = 0.7; Q2 = 0.4; p-value = 0.0004) between the two classes of subjects, and nine metabolites were found to be significantly different (2-hydroxybutyrate, 3-hydroxybutyrate, 3-methyl-2-oxovalerate, choline, citrate, glutamate, isoleucine, lysine, and methyl succinate). The combined ROC curve showed an AUC of 0.94 (CI: 0.9–1). Additional altered metabolic pathways were also identified within the disease context. Conclusion: This study represents a promising starting point, demonstrating the efficacy of metabolomics in evaluating CMT patients and identifying novel potential disease biomarkers. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

19 pages, 1627 KiB  
Article
Separation of Rare Earth Elements by Ion Exchange Resin: pH Effect and the Use of Fractionation Column
by Clauson Souza, Pedro A. P. V. S. Ferreira and Ana Claudia Q. Ladeira
Minerals 2025, 15(8), 821; https://doi.org/10.3390/min15080821 (registering DOI) - 1 Aug 2025
Viewed by 93
Abstract
This work investigated the ion exchange technique for selective separation of rare earth elements (REE) from acid mine drainage (AMD), using different column systems, pH values, and eluent concentrations. Systematic analysis of pH and eluent concentration showed that an initial pH of 6.0 [...] Read more.
This work investigated the ion exchange technique for selective separation of rare earth elements (REE) from acid mine drainage (AMD), using different column systems, pH values, and eluent concentrations. Systematic analysis of pH and eluent concentration showed that an initial pH of 6.0 and 0.02 mol L−1 NH4EDTA are the optimal conditions, achieving 98.4% heavy REE purity in the initial stage (0 to 10 bed volumes). This represents a 32-fold increase compared to the original AMD (6.7% heavy REE). The speciation of REE and impurities was determined by Visual Minteq 4.0 software using pH 2.0, which corresponds to the pH at the inlet of the fractionation column. Under this condition, La and Nd and the impurities (Ca, Mg, and Mn) remained in the fractionation column, while Al was partially retained. In addition, the heavy REE (Y and Dy) were mainly in the form of REE-EDTA complexes and not as free cations, which made fractionation more feasible. The fractionation column minimized impurities, retaining 100% of Ca and 67% of Al, generating a liquor concentrated in heavy REE. This sustainable approach adopted herein meets the critical needs for scalable recovery of REE from diluted effluents, representing a circular economy strategy for critical metals. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 434 KiB  
Article
Gastroesophageal Reflux Disease 10 Years After Bariatric Surgery—Is It a Problem? A Multicenter Study (BARI-10-POL)
by Natalia Dowgiałło-Gornowicz, Monika Proczko-Stepaniak, Anna Kloczkowska, Paweł Jaworski and Piotr Major
J. Clin. Med. 2025, 14(15), 5405; https://doi.org/10.3390/jcm14155405 (registering DOI) - 31 Jul 2025
Viewed by 167
Abstract
Background/Objectives: Gastroesophageal reflux disease (GERD) seems to be a common complaint which persists or develops after metabolic bariatric surgery (MBS). Endoscopic evaluation is vital in both the preoperative and postoperative phases to ensure optimal patient outcomes. The aim of this study was [...] Read more.
Background/Objectives: Gastroesophageal reflux disease (GERD) seems to be a common complaint which persists or develops after metabolic bariatric surgery (MBS). Endoscopic evaluation is vital in both the preoperative and postoperative phases to ensure optimal patient outcomes. The aim of this study was to evaluate the prevalence of GERD after MBS in a 10-year follow-up and analyze the endoscopic outcomes. Methods: This retrospective, multicenter study included 368 patients who underwent single bariatric procedure. The data came from five bariatric centers in Poland, part of the BARI-10-POL project. Data on symptoms of GERD, endoscopic findings, demographics, and surgical outcomes were collected for a 10-year follow-up period. Surgical procedures included SG, Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). Results: Of the 305 patients without symptoms of GERD, 12.3% developed de novo GERD postoperatively. There was no statistical significance regarding the new-onset symptoms and the type of MBS (p = 0.074) and the presence of symptoms of GERD and the type of MBS (p = 0.208). However, SG was associated with a significantly lower likelihood of GERD remission after MBS (p = 0.005). Endoscopic evaluation showed abnormal findings in asymptomatic patients in both preoperative (35.8%) and postoperative (14.1%) examinations (p < 0.001). Conclusions: GERD may be a common issue after MBS. One-quarter of patients after MBS may experience symptoms of GERD, regardless of the type of MBS. SG appears to be associated with a higher risk of persistent symptoms of GERD and a lower likelihood of GERD remission after MBS. Asymptomatic patients both before and after MBS may have abnormal findings in gastroscopy. Full article
(This article belongs to the Special Issue Clinical and Surgical Updates on Bariatric Surgery)
Show Figures

Figure 1

17 pages, 812 KiB  
Article
Association Between ABO Blood Groups and SARS-CoV-2 RNAemia, Spike Protein Mutations, and Thrombotic Events in COVID-19 Patients
by Esra’a Abudouleh, Tarek Owaidah, Fatimah Alhamlan, Arwa A. Al-Qahtani, Dalia Al Sarar, Abdulrahman Alkathiri, Shouq Alghannam, Arwa Bagasi, Manal M. Alkhulaifi and Ahmed A. Al-Qahtani
Pathogens 2025, 14(8), 758; https://doi.org/10.3390/pathogens14080758 (registering DOI) - 31 Jul 2025
Viewed by 103
Abstract
Background: COVID-19 is associated with coagulopathy and increased mortality. The ABO blood group system has been implicated in modulating susceptibility to SARS-CoV-2 infection and disease severity, but its relationship with viral RNAemia, spike gene mutations, and thrombosis remains underexplored. Methods: We analyzed 446 [...] Read more.
Background: COVID-19 is associated with coagulopathy and increased mortality. The ABO blood group system has been implicated in modulating susceptibility to SARS-CoV-2 infection and disease severity, but its relationship with viral RNAemia, spike gene mutations, and thrombosis remains underexplored. Methods: We analyzed 446 hospitalized COVID-19 patients between 2021 and 2022. SARS-CoV-2 RNAemia was assessed via RT-qPCR on whole blood, and spike gene mutations were identified through whole-genome sequencing in RNAemia-positive samples. ABO blood groups were determined by agglutination testing, and thrombotic events were evaluated using coagulation markers. Statistical analyses included chi-square tests and Kruskal–Wallis tests, with significance set at p < 0.05. Results: RNAemia was detected in 26.9% of patients, with no significant association with ABO blood group (p = 0.175). Omicron was the predominant variant, especially in blood group A (62.5%). The N501Y mutation was the most prevalent in group O (53.2%), and K417N was most prevalent in group B (36.9%), though neither reached statistical significance. Thrombotic events were significantly more common in blood group A (OR = 2.08, 95% CI = 1.3–3.4, p = 0.002), particularly among RNAemia-positive patients. Conclusions: ABO blood group phenotypes, particularly group A, may influence thrombotic risk in the context of SARS-CoV-2 RNAemia. While no direct association was found between blood group and RNAemia or spike mutations, the observed trends suggest potential host–pathogen interactions. Integrating ABO typing and RNAemia screening may enhance risk stratification and guide targeted thromboprophylaxis in COVID-19 patients. Full article
Show Figures

Figure 1

10 pages, 2282 KiB  
Article
AI-Assisted Edema Map Optimization Improves Infarction Detection in Twin-Spiral Dual-Energy CT
by Ludwig Singer, Daniel Heinze, Tim Alexius Möhle, Alexander Sekita, Angelika Mennecke, Stefan Lang, Stefan T. Gerner, Stefan Schwab, Arnd Dörfler and Manuel Alexander Schmidt
Brain Sci. 2025, 15(8), 821; https://doi.org/10.3390/brainsci15080821 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
Objective: This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO). Methods: We retrospectively analyzed [...] Read more.
Objective: This study aimed to evaluate whether modifying the post-processing algorithm of Twin-Spiral Dual-Energy computed tomography (DECT) improves infarct detection compared to conventional Dual-Energy CT (DECT) and Single-Energy CT (SECT) following endovascular therapy (EVT) for large vessel occlusion (LVO). Methods: We retrospectively analyzed 52 patients who underwent Twin-Spiral DECT after endovascular stroke therapy. Ten patients were used to generate a device-specific parameter (“y”) using an AI-based neural network (SynthSR). This parameter was integrated into the post-processing algorithm for edema map generation. Quantitative Hounsfield unit (HU) measurements were used to assess density differences in ischemic brain tissue across conventional virtual non-contrast (VNC) images and edema maps. Results: The median HU of infarcted tissue in conventional mixed DECT was 33.73 ± 4.58, compared to 22.96 ± 3.81 in default VNC images. Edema maps with different smoothing filter settings showed values of 14.39 ± 4.96, 14.50 ± 3.75, and 15.05 ± 2.65, respectively. All edema maps demonstrated statistically significant HU differences of infarcted tissue compared to conventional VNC images (p<0.001) while maintaining the density values of non-infarcted brain tissue. Conclusions: Enhancing the post-processing algorithm of conventional virtual non-contrast imaging improves infarct detection compared to standard mixed or virtual non-contrast reconstructions in Dual-Energy CT. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

14 pages, 6242 KiB  
Article
Characteristic Analysis of Ictalurus punctatus STING and Screening Validation of Interacting Proteins with Ictalurid herpesvirus 1
by Lihui Meng, Shuxin Li, Hongxun Chen, Sheng Yuan and Zhe Zhao
Microorganisms 2025, 13(8), 1780; https://doi.org/10.3390/microorganisms13081780 - 30 Jul 2025
Viewed by 143
Abstract
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function [...] Read more.
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function of STING and evade the host antiviral defenses. Understanding both the mechanism of action and the viruses targets of STING effector is important because of their importance to evade the host antiviral defenses. In this study, the STING (IpSTING) of Ictalurus punctatus was first identified and characterized. Subsequently, the yeast two-hybrid system (Y2HS) was used to screen for proteins from channel catfish virus (CCV, Ictalurid herpesvirus 1) that interact with IpSTING. The ORFs of the CCV were cloned into the pGBKT7 vector and expressed in the AH109 yeast strain. The bait protein expression was validated by autoactivation, and toxicity investigation compared with control (AH109 yeast strain transformed with empty pGBKT7 and pGADT7 vector). Two positive candidate proteins, ORF41 and ORF65, were identified through Y2HS screening as interacting with IpSTING. Their interactions were further validated using co-immunoprecipitation (Co-IP). This represented the first identification of interactions between IpSTING and the CCV proteins ORF41 and ORF65. The data advanced our understanding of the functions of ORF41 and ORF65 and suggested that they might contribute to the evasion of host antiviral defenses. However, the interaction mechanism between IpSTING, and CCV proteins ORF41 and ORF65 still needs to be further explored. Full article
Show Figures

Figure 1

18 pages, 2037 KiB  
Article
A Study on the Correlation Between Stress Tolerance Traits and Yield in Various Barley (Hordeum vulgare L.) Genotypes Under Low Nitrogen and Phosphorus Stress
by Xiaoning Liu, Bingqin Teng, Feng Zhao and Qijun Bao
Agronomy 2025, 15(8), 1846; https://doi.org/10.3390/agronomy15081846 - 30 Jul 2025
Viewed by 103
Abstract
This study investigates the effects of low nitrogen (N) and phosphorus (P) stress on the growth and yield of nine barley (Hordeum vulgare L.) genotypes (1267-2, 1749-1, 1149-3, 2017Y-2, 2017Y-16, 2017Y-17, 2017Y-18, 2017Y-19, and XBZ17-1-61), all of which are spring two-rowed hulled [...] Read more.
This study investigates the effects of low nitrogen (N) and phosphorus (P) stress on the growth and yield of nine barley (Hordeum vulgare L.) genotypes (1267-2, 1749-1, 1149-3, 2017Y-2, 2017Y-16, 2017Y-17, 2017Y-18, 2017Y-19, and XBZ17-1-61), all of which are spring two-rowed hulled barley types from the Economic Crops and Beer Material Institute, Gansu Academy of Agricultural Sciences. Data were collected over two consecutive growing seasons (2021–2022) at Huangyang Town (altitude 1766 m, irrigated desert soil with 1.71% organic matter, 1.00 g·kg−1 total N, 0.87 g·kg−1 total P in 0–20 cm plough layer) to elucidate the correlation between stress tolerance traits and yield performance. Field experiments were conducted under two treatment conditions: no fertilization (NP0) and normal fertilization (180 kg·hm−2 N and P, NP180). Growth indicators (plant height, spike length, spikelets per unit area, etc.) and quality indicators (proportion of plump/shrunken grains, 1000-grain weight, protein, starch content) were measured, and data were analyzed using correlation analysis, principal component analysis, and structural equation modeling. The results revealed that low N and P stress significantly impacted quality indicators, such as the proportion of plump and shrunken grains, while having a minimal effect on growth indicators like plant height and spike length. Notably, the number of spikelets per unit area emerged as a critical factor positively influencing yield. Among the tested genotypes, 1749-1, 1267-2, 1149-3, 2017Y-16, 2017Y-18, 2017Y-19, and XBZ17-1-61 exhibited superior yield performance under low N and P stress conditions, indicating their potential for breeding programs focused on stress resilience. Included among these, the 1749-1 line showed the best overall performance and consistent results across both years. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 2131 KiB  
Article
Investigating Neuroprotective Effects of Berberine on Mitochondrial Dysfunction and Autophagy Impairment in Parkinson’s Disease
by Hae-Rim Cha, Jin-Seok Kim, Jin-Hyeob Ryu and Hyun-Jeong Cho
Int. J. Mol. Sci. 2025, 26(15), 7342; https://doi.org/10.3390/ijms26157342 (registering DOI) - 29 Jul 2025
Viewed by 439
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. [...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disorder with substantial global impact. Although current therapies can provide symptomatic relief, they are often associated with high costs and adverse effects. Natural compounds with a history of traditional medicinal use have emerged as promising alternatives. In this study, we investigated the therapeutic potential and underlying mechanisms of berberine in both cellular and animal models of PD. In vitro, SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) exhibited decreased viability and increased oxidative stress, both of which were significantly alleviated by berberine treatment based on cell viability assays and DCFH-DA staining. Western blot analysis revealed that berberine modulated the AMPK–PGC-1α–SIRT1 signaling pathway and restored the expression of autophagy-related proteins LC3B and P62, suggesting that berberine could improve mitochondrial function and autophagy balance. In vivo studies using a 6-OHDA-induced PD mouse model further confirmed these effects, showing that berberine could improve motor function and lead to molecular changes consistent with in vitro studies. Additionally, safety evaluations indicated no significant hepatotoxicity based on AST and ALT levels. Body weight also remained stable throughout treatment. Collectively, our findings suggest that berberine can not only alleviate PD-related symptoms but also target key pathological mechanisms, supporting its potential as a therapeutic candidate for PD and other neurodegenerative diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 2239 KiB  
Article
10-Year Fracture Risk Assessment with Novel Adjustment (FRAXplus): Type 2 Diabetic Sample-Focused Analysis
by Oana-Claudia Sima, Ana Valea, Nina Ionovici, Mihai Costachescu, Alexandru-Florin Florescu, Mihai-Lucian Ciobica and Mara Carsote
Diagnostics 2025, 15(15), 1899; https://doi.org/10.3390/diagnostics15151899 - 29 Jul 2025
Viewed by 257
Abstract
Background: Type 2 diabetes (T2D) has been placed among the risk factors for fragility (osteoporotic) fractures, particularly in menopausal women amid modern clinical practice. Objective: We aimed to analyze the bone status in terms of mineral metabolism assays, blood bone turnover [...] Read more.
Background: Type 2 diabetes (T2D) has been placed among the risk factors for fragility (osteoporotic) fractures, particularly in menopausal women amid modern clinical practice. Objective: We aimed to analyze the bone status in terms of mineral metabolism assays, blood bone turnover markers (BTM), and bone mineral density (DXA-BMD), respectively, to assess the 10-year fracture probability of major osteoporotic fractures (MOF) and hip fracture (HF) upon using conventional FRAX without/with femoral neck BMD (MOF-FN/HF-FN and MOF+FN/HF+FN) and the novel model (FRAXplus) with adjustments for T2D (MOF+T2D/HF+T2D) and lumbar spine BMD (MOF+LS/HF+LS). Methods: This retrospective, cross-sectional, pilot study, from January 2023 until January 2024, in menopausal women (aged: 50–80 years) with/without T2D (group DM/nonDM). Inclusion criteria (group DM): prior T2D under diet ± oral medication or novel T2D (OGTT diagnostic). Exclusion criteria: previous anti-osteoporotic medication, prediabetes, insulin therapy, non-T2D. Results: The cohort (N = 136; mean age: 61.36 ± 8.2y) included T2D (22.06%). Groups DM vs. non-DM were age- and years since menopause (YSM)-matched; they had a similar osteoporosis rate (16.67% vs. 23.58%) and fracture prevalence (6.66% vs. 9.43%). In T2D, body mass index (BMI) was higher (31.80 ± 5.31 vs. 26.54 ± 4.87 kg/m2; p < 0.001), while osteocalcin and CrossLaps were lower (18.09 ± 8.35 vs. 25.62 ± 12.78 ng/mL, p = 0.002; 0.39 ± 0.18 vs. 0.48 ± 0.22 ng/mL, p = 0.048), as well as 25-hydroxyvitamin D (16.96 ± 6.76 vs. 21.29 ± 9.84, p = 0.013). FN-BMD and TH-BMD were increased in T2D (p = 0.007, p = 0.002). MOF+LS/HF+LS were statistically significant lower than MOF-FN/HF-FN, respectively, MOF+FN/HF+FN (N = 136). In T2D: MOF+T2D was higher (p < 0.05) than MOF-FN, respectively, MOF+FN [median(IQR) of 3.7(2.5, 5.6) vs. 3.4(2.1, 5.8), respectively, 3.1(2.3, 4.39)], but MOF+LS was lower [2.75(1.9, 3.25)]. HF+T2D was higher (p < 0.05) than HF-FN, respectively, HF+FN [0.8(0.2, 2.4) vs. 0.5(0.2, 1.5), respectively, 0.35(0.13, 0.8)] but HF+LS was lower [0.2(0.1, 0.45)]. Conclusion: Type 2 diabetic menopausal women when compared to age- and YSM-match controls had a lower 25OHD and BTM (osteocalcin, CrossLaps), increased TH-BMD and FN-BMD (with loss of significance upon BMI adjustment). When applying novel FRAX model, LS-BMD adjustment showed lower MOF and HF as estimated by the conventional FRAX (in either subgroup or entire cohort) or as found by T2D adjustment using FRAXplus (in diabetic subgroup). To date, all four types of 10-year fracture probabilities displayed a strong correlation, but taking into consideration the presence of T2D, statistically significant higher risks than calculated by the traditional FRAX were found, hence, the current model might underestimate the condition-related fracture risk. Addressing the practical aspects of fracture risk assessment in diabetic menopausal women might improve the bone health and further offers a prompt tailored strategy to reduce the fracture risk, thus, reducing the overall disease burden. Full article
(This article belongs to the Special Issue Diagnosis and Management of Metabolic Bone Diseases: 2nd Edition)
Show Figures

Figure 1

13 pages, 2070 KiB  
Article
Optimizing Row Spacing and Seeding Rate for Yield and Quality of Alfalfa in Saline–Alkali Soils
by Jiaqi Shi, Nan Xie, Lifeng Zhang, Xuan Pan, Yanling Wang, Zhongkuan Liu, Zhenyu Liu, Jianfei Zhi, Wenli Qin, Wei Feng, Guotong Sun and Hexing Yu
Agronomy 2025, 15(8), 1828; https://doi.org/10.3390/agronomy15081828 - 28 Jul 2025
Viewed by 194
Abstract
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, [...] Read more.
To elucidate the photosynthetic physiological mechanisms influencing alfalfa (Medicago sativa L.) yield and quality under varying planting densities, the cultivar ‘Zhongmu No.1’ was used as experimental material. The effects of different row spacing (R1, R2, R3) and seeding rate (S1, S2, S3, S4, S5) combinations on chlorophyll content (ChlM), nitrogen flavonol index (NFI), chlorophyll fluorescence parameters, forage quality, and hay yield were systematically analyzed. Results showed that alfalfa under R1S3 treatment achieved peak values for ChIM, NFI, EE, and hay yield, whereas R1S4 treatment yielded the highest Fv/Fm and CP content. Redundancy analysis further indicated that yield was most strongly associated with ChlM, NFI, Y (II), and qP. Y (II), and qP significantly influenced alfalfa forage quality, exerting negative effects on ADF and NDF, while demonstrating positive effects on CP and EE. In conclusion, narrow row spacing (15 cm) with moderate seeding rates (22.5–30 kg·hm−2) optimizes photosynthetic performance while concurrently enhancing both productivity and forage quality in alfalfa cultivated, establishing a theoretical foundation for photosynthetic regulation in high-quality and high-yield alfalfa cultivation. Full article
Show Figures

Figure 1

23 pages, 4900 KiB  
Article
Degradation of Glyphosate in Water by Electro-Oxidation on Magneli Phase: Application to a Nanofiltration Concentrate
by Wiyao Maturin Awesso, Ibrahim Tchakala, Sophie Tingry, Geoffroy Lesage, Julie Mendret, Akpénè Amenuvevega Dougna, Eddy Petit, Valérie Bonniol, Mande Seyf-Laye Alfa-Sika and Marc Cretin
Molecules 2025, 30(15), 3153; https://doi.org/10.3390/molecules30153153 - 28 Jul 2025
Viewed by 271
Abstract
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), [...] Read more.
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), the mineralization efficiency and fate of degradation by-products of the treated solution were determined using a total organic carbon (TOC) analyzer and HPLC/MS, respectively. The results showed that at pH = 3, glyphosate degradation and mineralization are enhanced by the increased generation of hydroxyl radicals (OH) at the anode surface. A current density of 14 mA cm2 enables complete glyphosate removal with 77.8% mineralization. Compared with boron-doped diamond (BDD), Ti4O7 shows close performance for treatment of a concentrated glyphosate solution (0.41 mM), obtained after nanofiltration of a synthetic ionic solution (0.1 mM glyphosate), carried out using an NF-270 membrane at a conversion rate (Y) of 80%. At 10 mA cm2 for 8 h, Ti4O7 achieved 81.3% mineralization with an energy consumption of 6.09 kWh g1 TOC, compared with 90.5% for BDD at 5.48 kWh g1 TOC. Despite a slight yield gap, Ti4O7 demonstrates notable efficiency under demanding conditions, suggesting its potential as a cost-effective alternative to BDD for glyphosate electro-oxidation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes (AOPs) in Treating Organic Pollutants)
Show Figures

Figure 1

Back to TopTop