Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = OPV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1302 KiB  
Communication
Vaccinia and Monkeypox Virus-Neutralizing Antibodies in People Living with HIV: A Serological Study in a Orthopoxvirus-Endemic, Low-Income Region in Brazil
by Thyago José Silva, Ana Gabriella Stoffella-Dutra, Victor Lacerda Gripp, Pollyana R. C. Gorgens, Iago José da Silva Domingos, Pedro Henrique Bastos e Silva, Bruna Caroline Chaves-Garcia, Erna Geessien Kroon, Etel Rocha-Vieira, Giliane de Souza Trindade and Danilo Bretas de Oliveira
Pathogens 2025, 14(8), 733; https://doi.org/10.3390/pathogens14080733 - 25 Jul 2025
Viewed by 280
Abstract
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks [...] Read more.
Co-infections of Orthopoxviruses (OPVs), such as vaccinia virus (VACV) and monkeypox virus (MPXV), and the human immunodeficiency virus (HIV) can be associated with severe outcomes. Serro’s dairy region, located in Minas Gerais, southeastern Brazil, is an endemic area for VACV, where zoonotic outbreaks affect rural communities. This epidemiological context is especially relevant for at-risk populations, such as people living with HIV (PLHIV). This study aimed to assess the presence of neutralizing antibodies (NAbs) against OPV in PLHIV in this endemic setting. Serum samples were collected from 177 PLHIV in treatment at the specialized service between December 2021 and August 2022. VACV and MPXV NAbs were measured using the plaque reduction neutralization test (PRNT) and VACV-infected cells. The overall occurrence of OPV NAbs was 27.7%. NAbs were higher in individuals born before 1980 (53.3%) than those born after 1980 (1.1%). Among anti-VACV-seropositive individuals, 40.8% also had MPXV NAbs, suggesting cross-immunity. These findings indicate the circulation of VACV in PLHIV and highlight the increased susceptibility to OPV infections among individuals born after the cessation of smallpox vaccination. The results reinforce the importance of continued surveillance of OPV, especially in endemic regions and vulnerable populations. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

13 pages, 2199 KiB  
Article
Non-Invasive Composition Identification in Organic Solar Cells via Deep Learning
by Yi-Hsun Chang, You-Lun Zhang, Cheng-Hao Cheng, Shu-Han Wu, Cheng-Han Li, Su-Yu Liao, Zi-Chun Tseng, Ming-Yi Lin and Chun-Ying Huang
Nanomaterials 2025, 15(14), 1112; https://doi.org/10.3390/nano15141112 - 17 Jul 2025
Viewed by 295
Abstract
Accurate identification of active-layer compositions in organic photovoltaic (OPV) devices often relies on invasive techniques such as electrical measurements or material extraction, which risk damaging the device. In this study, we propose a non-invasive classification approach based on simulated full-device absorption spectra. To [...] Read more.
Accurate identification of active-layer compositions in organic photovoltaic (OPV) devices often relies on invasive techniques such as electrical measurements or material extraction, which risk damaging the device. In this study, we propose a non-invasive classification approach based on simulated full-device absorption spectra. To account for fabrication-related variability, the active-layer thickness varied by over ±15% around the optimal value, creating a realistic and diverse training dataset. A multilayer perceptron (MLP) neural network was applied with various activation functions, optimization algorithms, and data split ratios. The optimized model achieved classification accuracies exceeding 99% on both training and testing sets, with minimal sensitivity to random initialization or data partitioning. These results demonstrate the potential of applying deep learning to spectral data for reliable, non-destructive OPV composition classification, paving the way for integration into automated manufacturing diagnostics and quality control workflows. Full article
Show Figures

Figure 1

18 pages, 2609 KiB  
Article
Assessment of Oral Poliovirus Vaccine Viability and Titer at Delivery Points in Kinshasa, the Democratic Republic of the Congo: Implications for Cold Chain Management
by Gracia Kashitu-Mujinga, Anguy Makaka-Mutondo, Meris Matondo-Kuamfumu, Fabrice Mambu-Mbika, Junior Bulabula-Penge, Trésor Kabeya-Mampuela, Frida Nkawa, Grace Wanet-Tayele, Bibiche Nsunda-Makanzu, Pierre Nsele-Muntatu, Lusamba Kabamba, Antoine Nkuba-Ndaye, Aimé Mwana wa bene Cikomola, Elisabeth Mukamba-Musenga and Steve Ahuka-Mundeke
Vaccines 2025, 13(7), 680; https://doi.org/10.3390/vaccines13070680 - 25 Jun 2025
Viewed by 431
Abstract
Background: Poliomyelitis is a vaccine-preventable disease, with oral poliomyelitis vaccines (OPVs) and injectable poliomyelitis vaccines. In the Democratic Republic of the Congo (DRC), circulating vaccine-derived polioviruses (VDPVs) persist due to intrinsic and extrinsic factors, including the quality of the cold chain, which may [...] Read more.
Background: Poliomyelitis is a vaccine-preventable disease, with oral poliomyelitis vaccines (OPVs) and injectable poliomyelitis vaccines. In the Democratic Republic of the Congo (DRC), circulating vaccine-derived polioviruses (VDPVs) persist due to intrinsic and extrinsic factors, including the quality of the cold chain, which may make the vaccines less effective. This study’s objective was to evaluate the cold chain’s quality of OPVs and its effect on the vaccine’s viability and potency at different levels in health systems in Kinshasa. Methods: A cross-sectional study was conducted in Kinshasa, collecting OPVs at different levels of the health pyramid. Vaccine viability was assessed by cell culture using a modified World Health Organization (WHO) protocol, and the viral titer was determined using the Karber formula. The vaccine titer was classified as “very good”, “good”, or “poor” according to the WHO standard’s viral titer. Results: A total of 53 vaccines were collected and analyzed, compressing 38 bivalent oral poliomyelitis (bOPV) vaccines and 15 novel oral poliomyelitis vaccines, type 2 (nOPV2). The viral titer ranged from log105.8 to log 107.3 and from log105.4 to log108.9 for the nOPV2 and the bOPV, respectively. Of these 53 vaccine samples, 10% of the bOPVs showed viral titers below the recommended WHO threshold (>106 CCID50/dose), 100% of the nOPV2 had viral titers within the WHO standards (>105 CCID50/dose), and a significant decline in the viral titer was observed for both types of vaccines (nOPV2 and bOPV) as the distribution progressed along the level of the health pyramid. Conclusions: This study demonstrated that the viral titer of OPV declined from central to peripheral areas in routine and campaign strategies in Kinshasa. Full article
(This article belongs to the Section Vaccines and Public Health)
Show Figures

Figure 1

19 pages, 5602 KiB  
Article
PnPDA+: A Meta Feature-Guided Domain Adapter for Collaborative Perception
by Liang Xin, Guangtao Zhou, Zhaoyang Yu, Danni Wang, Tianyou Luo, Xiaoyuan Fu and Jinglin Li
World Electr. Veh. J. 2025, 16(7), 343; https://doi.org/10.3390/wevj16070343 - 21 Jun 2025
Viewed by 298
Abstract
Although cooperative perception enhances situational awareness by enabling vehicles to share intermediate features, real-world deployment faces challenges due to heterogeneity in sensor modalities, architectures, and encoder parameters across agents. These domain gaps often result in semantic inconsistencies among the shared features, thereby degrading [...] Read more.
Although cooperative perception enhances situational awareness by enabling vehicles to share intermediate features, real-world deployment faces challenges due to heterogeneity in sensor modalities, architectures, and encoder parameters across agents. These domain gaps often result in semantic inconsistencies among the shared features, thereby degrading the quality of feature fusion. Existing approaches either necessitate the retraining of private models or fail to adapt to newly introduced agents. To address these limitations, we propose PnPDA+, a unified and modular domain adaptation framework designed for heterogeneous multi-vehicle cooperative perception. PnPDA+ consists of two key components: a Meta Feature Extraction Network (MFEN) and a Plug-and-Play Domain Adapter (PnPDA). MFEN extracts domain-aware and frame-aware meta features from received heterogeneous features, encoding domain-specific knowledge and spatial-temporal cues to serve as high-level semantic priors. Guided by these meta features, the PnPDA module performs adaptive semantic conversion to enhance cross-agent feature alignment without modifying existing perception models. This design ensures the scalable integration of emerging vehicles with minimal fine-tuning, significantly improving both semantic consistency and generalization. Experiments on OPV2V show that PnPDA+ outperforms state-of-the-art methods by 4.08% in perception accuracy while preserving model integrity and scalability. Full article
Show Figures

Figure 1

32 pages, 1088 KiB  
Review
Life Cycle Assessment of Organic Solar Cells: Structure, Analytical Framework, and Future Product Concepts
by Kyriaki Kiskira, Konstantinos Kalkanis, Fernando Coelho, Sofia Plakantonaki, Christian D’onofrio, Constantinos S. Psomopoulos, Georgios Priniotakis and George C. Ioannidis
Electronics 2025, 14(12), 2426; https://doi.org/10.3390/electronics14122426 - 13 Jun 2025
Cited by 1 | Viewed by 441
Abstract
Organic photovoltaic (OPV) technology, namely, organic solar cells (OSCs), have garnered attention as a sustainable and adaptable substitute for traditional silicon-based solar panels. Their lightweight construction, adaptability with various substrates, and capacity for low-energy production techniques make them formidable contenders for sustainable energy [...] Read more.
Organic photovoltaic (OPV) technology, namely, organic solar cells (OSCs), have garnered attention as a sustainable and adaptable substitute for traditional silicon-based solar panels. Their lightweight construction, adaptability with various substrates, and capacity for low-energy production techniques make them formidable contenders for sustainable energy applications. Nonetheless, due to the swift advancement of OPV technology, there is increasing apprehension that existing life cycle assessment (LCA) studies may inadequately reflect their environmental consequences. This review aggregates and assesses LCA research to ascertain the extent to which existing studies accurately represent the genuine sustainability of OPVs. This paper conducts a comprehensive analysis of materials, manufacturing processes, device architecture, and end-of-life pathways, identifying methodological deficiencies, emphasizing critical environmental performance metrics, and examining how conceptual product design can improve environmental results. The results highlight the necessity for standardized, transparent LCA frameworks adapted to the changing OPV landscape. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

14 pages, 4067 KiB  
Article
Thin Films of PNDI(2HD)2T and PCPDTBT Polymers Deposited Using the Spin Coater Technique for Use in Solar Cells
by Michał Sładek, Patryk Radek, Magdalena Monika Szindler and Marek Szindler
Coatings 2025, 15(5), 603; https://doi.org/10.3390/coatings15050603 - 18 May 2025
Viewed by 468
Abstract
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to [...] Read more.
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to traditional photovoltaic materials. This study investigates the properties of a polymer blend composed of PCPDTBT (donor) and PNDI(2HD)2T (acceptor), used as the active layer in bulk heterojunction (BHJ) solar cells. The motivation behind this research was the search for a novel n-type polymer material with potentially better properties than the commonly used P(NDI2OD-T2). Comprehensive characterization of thin films made from the individual polymers and their blend was conducted using Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Ultraviolet-Visible Spectroscopy (UV-Vis), four-point probe conductivity measurements, and photovoltaic testing. The prepared films were continuous, uniform, and exhibited low surface roughness (Ra < 2.5 nm). Spectroscopic analysis showed that the blend absorbs light in a broad range of the spectrum, with slight bathochromic shifts compared to individual polymers. Electrical measurements indicated that the blend’s conductivity (9.1 µS/cm) was lower than that of pure PCPDTBT but higher than that of PNDI(2HD)2T, with an optical band gap of 1.34 eV. Photovoltaic devices fabricated using the blend demonstrated an average power conversion efficiency (PCE) of 6.45%, with a short-circuit current of 14.37 mA/cm2 and an open-circuit voltage of 0.89 V. These results confirm the feasibility of using PCPDTBT:PNDI(2HD)2T blends as active layers in BHJ solar cells and provide a promising direction for further optimization in terms of polymer ratio and processing conditions. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

13 pages, 2642 KiB  
Review
Advancements in Inorganic Hole-Transport Materials for Perovskite Solar Cells: A Comparative Review
by Johannes Zanoxolo Mbese
Energies 2025, 18(9), 2374; https://doi.org/10.3390/en18092374 - 6 May 2025
Viewed by 937
Abstract
Single-junction perovskite solar cells (PSCs) have been one of the most promising photovoltaic technologies owing to their high-power conversion efficiencies (PCEs) of ~27% and the low-cost fabrication processes involved, which pay off significantly given their distinct structural characteristics. Recently, inorganic hole-transport materials (HTMs) [...] Read more.
Single-junction perovskite solar cells (PSCs) have been one of the most promising photovoltaic technologies owing to their high-power conversion efficiencies (PCEs) of ~27% and the low-cost fabrication processes involved, which pay off significantly given their distinct structural characteristics. Recently, inorganic hole-transport materials (HTMs) such as nickel oxide (NiOx) have been developed and received considerable attention for use in OPVs due to their excellent thermal stability, low-cost materials, and compatibility with scalable deposition methods. Here, we summarize the recent progress on inorganic HTMs for PSCs, which can be divided into three categories: NiOx, copper-based compounds, and emerging new alternatives. The deposition method (sputtering, atomic layer deposition, or a solution-based technique) is one of the most important factors affecting the performance and stability of PSCs. Finally, we review interfacial engineering strategies, such as surface modifications and doping, which can enhance charge transport and extend a device’s lifetime. We also balance the benefits of inorganic HTMs against the key challenges in advancing to commercialization, namely interior defects and environmental degradation. In this review, we summarize the recent progress and challenges toward developing cost-efficient and stable PSCs with inorganic HTMs and provide insights into the future development of these materials. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

7 pages, 176 KiB  
Brief Report
Long-Term Persistence of Anti-Poliovirus Antibody Titers After Two-Dose Booster Immunization with Conventional Inactivated Poliovirus Vaccine Among Japanese Adults: 10-Year Observational Study
by Shinji Fukushima, Takashi Nakano, Minetaro Arita, Hiroyuki Shimizu and Atsuo Hamada
Vaccines 2025, 13(5), 447; https://doi.org/10.3390/vaccines13050447 - 23 Apr 2025
Viewed by 580
Abstract
Background/Objectives: Most Japanese adults received two doses of the oral polio vaccine (OPV) during childhood as part of the national immunization program. However, these two doses are considered suboptimal by global standards. The long-term persistence of anti-poliovirus antibodies after booster doses with [...] Read more.
Background/Objectives: Most Japanese adults received two doses of the oral polio vaccine (OPV) during childhood as part of the national immunization program. However, these two doses are considered suboptimal by global standards. The long-term persistence of anti-poliovirus antibodies after booster doses with the conventional inactivated poliovirus vaccine (cIPV) in Japanese adults remains unclear. This study was performed to evaluate long-term immunogenicity over a 10-year period following two cIPV booster vaccinations. Methods: Ten out of sixty-one adult participants in a short-term study were enrolled to assess the long-term immunogenicity of the booster vaccination. They underwent blood sampling at 3, 5, and 10 years after cIPV vaccination. Results: The results indicate that, even 10 years after the booster vaccination, antibodies against poliovirus types 1 and 2 remained at high levels, exceeding the detection limits of neutralization tests. However, some participants showed decreased antibody levels against poliovirus type 3. Conclusions: This study showed that cIPV boosters provided long-lasting protective immunity against poliovirus types 1 and 2 in adults who were vaccinated with OPV. These findings are valuable in assessing the need for IPV booster vaccinations in adults. Full article
(This article belongs to the Special Issue Recent Scientific Development of Poliovirus Vaccines)
17 pages, 3757 KiB  
Article
Phytochemical Composition and Skin-Friendly Activities of the Ethyl Acetate Fraction in Ophioglossum vulgatum Linn., an In Vitro Study
by Sihan Feng, Zhiguang Huang, Yichen Cao, Zixuan Huang, Chen Xu, Yibo Zeng, Yuhang Xu, Lijian Zhu and Bin Ding
Pharmaceuticals 2025, 18(3), 345; https://doi.org/10.3390/ph18030345 - 27 Feb 2025
Viewed by 832
Abstract
Background: Ophioglossum vulgatum Linn. is a medical herb widely distributed in Southwest China. It has been used for the treatment of various diseases, including wounds or dermatitis, since ancient times, but little is known about its pharmacological and pharmaceutical chemistry. Methods: [...] Read more.
Background: Ophioglossum vulgatum Linn. is a medical herb widely distributed in Southwest China. It has been used for the treatment of various diseases, including wounds or dermatitis, since ancient times, but little is known about its pharmacological and pharmaceutical chemistry. Methods: The ethyl acetate fraction of O. vulgatum (OpvE) was prepared with the reflex extraction and fractional extraction method. Its components were detected and identified with the UPLC-Q/TOF-MS system and the SCIEX OS database. The related biological activities and the underlying mechanisms were predicted by computational analysis. HaCaT cells were treated with gradient concentrations of OpvE, and a CCK-8 assay was performed to determine the cell viability. The OpvE-pretreated HaCaT cells were exposed to H2O2 or LPS for antioxidative and anti-inflammatory assessment. DPPH, GSH, SOD, and MDA kits were used to evaluate oxidative stress. A serially diluted microbiota assay and a disc diffusion assay were used to evaluate anti-Staphylococcus aureus activities. The transcription of genes was semi-quantitatively studied by reversed real-time PCR. Protein levels were determined with western blotting. Results: The extract ratio of OpvE was 2.00 ± 0.12% (g/g). A total of 21 ingredients were identified. The computational analysis found that the PI3K/Akt signaling pathway might be a crucial target of OpvE. OpvE (7.5~125 μg/mL) stimulated HaCaT cell proliferation and migration by stimulating the over-expressed collagen type I alpha 1 Chain (COL1A1) and fibronectin 1 (FN1) and upregulating PI3K/AKT/GSK3-β signaling pathway. In the antioxidative assay test, 250 μg/mL OpvE scavenged obvious 97.28% DPPH-released free radicals. Pretreatment of OpvE inhibited H2O2-induced oxidative stress and protected against LPS-induced inflammatory injury by respectively regulating the Nrf2/HO-1/COX2 and TLR4/MYD88 signaling pathways. OpvE also showed anti-S. aureus properties with a MIC of 1.2 mg/mL, and with this concentration, OpvE produced an 8.3 ± 0.16 mm inhibition zone on a bacterial plate. Conclusions: This work highlighted the phytochemical character and some bioactivities, as well as the underline mechanism, which would support the further studies and application of O. vulgatum Linn. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Graphical abstract

12 pages, 3532 KiB  
Article
Observation of Molecular Complexes in Oligo-Phenylenevinylene (OPV) Organogels by Neutron Diffraction
by Jean-Michel Guenet, Ayyappanpillai Ajayaghosh and Vakayil K. Praveen
Gels 2025, 11(2), 137; https://doi.org/10.3390/gels11020137 - 15 Feb 2025
Viewed by 637
Abstract
In an earlier report, we conjectured that oligo-phenylenevinylene (OPV) molecules bearing terminal OH groups may form molecular complexes in organogels prepared in benzyl alcohol. This assumption was based on circumstantial evidence only. In this paper, we report on new experimental evidence by means [...] Read more.
In an earlier report, we conjectured that oligo-phenylenevinylene (OPV) molecules bearing terminal OH groups may form molecular complexes in organogels prepared in benzyl alcohol. This assumption was based on circumstantial evidence only. In this paper, we report on new experimental evidence by means of neutron diffraction that unambiguously demonstrates this conjecture. After ascertaining that the thermodynamic properties of OPV gels are not altered by the use of a solvent isotope (hydrogenous vs. deuterated benzyl alcohol), we show that the neutron diffraction pattern in hydrogenous benzyl alcohol differs from that in deuterated benzyl alcohol. These patterns also exhibit additional peaks with respect to those obtained by X-ray. Comparison is further achieved with an OPV molecule without hydrogen bond terminal groups. In the latter case, no molecular complex is formed. These molecular structures may have a direct bearing on the differences observed in the gel morphologies. Full article
Show Figures

Figure 1

16 pages, 3211 KiB  
Article
Brain Functional Connectivity Significantly Improves After Surgical Eradication of Porto-Systemic Shunting in Pediatric Patients
by Gianvincenzo Sparacia, Giuseppe Parla, Roberto Miraglia and Jean de Ville de Goyet
Life 2025, 15(2), 290; https://doi.org/10.3390/life15020290 - 13 Feb 2025
Cited by 1 | Viewed by 1334
Abstract
Purpose: Porto-systemic shunting (PSS) in patients with Abernethy malformation (AM) or obstruction of the portal vein (OVP) is often associated with normal liver parenchyma and hepatic function. This association provides an interesting natural model for studying the brain functional connectivity changes secondary to [...] Read more.
Purpose: Porto-systemic shunting (PSS) in patients with Abernethy malformation (AM) or obstruction of the portal vein (OVP) is often associated with normal liver parenchyma and hepatic function. This association provides an interesting natural model for studying the brain functional connectivity changes secondary to PSS but independently from hepatic (dys)function. Because PSS can be eliminated with appropriate interventions, these particular conditions offer a unique physio-pathological model where the same patient can be studied in both “active PSS” and “absent PSS” conditions (pre- and post-cure analyses). Methods: Four children (<18 years) who were evaluated for Abernethy malformation (n = 2) or portal cavernoma (n = 2) and underwent corrective surgery (living-donor liver transplantation for AM, or Meso-Rex bypass for OPV, respectively) were included in the study. Brain magnetic resonance imaging and resting-state functional magnetic resonance imaging (rest-fMRI) were acquired in all patients before and after the corrective surgery. A functional connectome analysis was performed before (“active PSS” condition) and after (“absent PSS”—physiological condition) the cure of PSS. Results: As a result of the cancelation of PSS, rest-fMRI connectomics revealed a statistically significant (p < 0.05 family-wise error) improvement in global brain functional connectivity in both groups following each surgical procedure. Conclusions: In this clinical model of isolated PSS (with absence of hepatic dysfunction), brain functional connectivity was altered even in young patients and in the absence of hyperammonemia; moreover, specific interventions to cancel out PSS consequently significantly improved brain functional connectivity. Full article
(This article belongs to the Special Issue Advances in Neuroimaging and Functional Brain Analysis)
Show Figures

Figure 1

16 pages, 3843 KiB  
Article
Spatial Distribution Characteristics and Relationships of Salt-Based Ions and Nutrients in Old Protected Vegetable Fields
by Nanbiao Zhan, Haotian Yang, Jiayang Li, Xiaodi Shi, Binhao Yang, Yuhang Sun, Gengzi Guo and Xiumin Cui
Horticulturae 2025, 11(2), 126; https://doi.org/10.3390/horticulturae11020126 - 24 Jan 2025
Viewed by 699
Abstract
To achieve a scientific and objective evaluation of soil acidification, secondary salinization, and nutrient imbalance in old protected vegetable fields (OPVs) with over 30 years of cultivation history, a soil surface breeding vigorous moss was investigated. Here, quantitative laboratory analysis and mathematical statistics [...] Read more.
To achieve a scientific and objective evaluation of soil acidification, secondary salinization, and nutrient imbalance in old protected vegetable fields (OPVs) with over 30 years of cultivation history, a soil surface breeding vigorous moss was investigated. Here, quantitative laboratory analysis and mathematical statistics were employed to explore the spatial distribution of soil salinity and nutrients, as well as their relationships. The results revealed that OPVs exhibited slightly acidified values. The measured anions and cations in the soil salt composition constituted approximately 77% of the total ions. Among which, Ca2+ was the dominant cation, while SO42− and NO3 were predominant anions. The total water-soluble salt (TDS) content of the surface soil reached 4.52 g kg−1, exceeding the Chinese Saline Soils standard (1.0 g kg−1) by 350%. In the OPVs, nitrate nitrogen was significantly higher than ammonium nitrogen, and available phosphorus and available potassium were generally abundant. Despite exhibited various soil health concerns, a field visit survey presented consistently high and stable yields in OPVs. We hypothesize that this seemingly contradictory finding may be attributable to several factors, including the abundance of divalent cations (Ca2+ and Mg2+), the soil fertility and water retention capacity of unsaturated salt-based suitable soil, as well as good soil aggregate structure. These factors had the potential to reduce the stresses on the soil. This study provided a foundational understanding of the nutrient and salinity status of soils in OPVs, offering valuable data and theoretical groundwork for future research endeavors. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

13 pages, 1890 KiB  
Article
Development of RT-PCR Assays for Simple Detection and Identification of Sabin Virus Contaminants in the Novel Oral Poliovirus Vaccines
by Olga Singh, Hasmik Manukyan, Erman Tritama, Shwu-Maan Lee, Jerry P. Weir and Majid Laassri
Vaccines 2025, 13(1), 75; https://doi.org/10.3390/vaccines13010075 - 15 Jan 2025
Viewed by 1280
Abstract
Background/Objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) [...] Read more.
Background/Objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) among vaccinees and their contacts. A novel OPV2 vaccine (nOPV2) with enhanced genetic stability was developed recently; type 1 and type 3 nOPV strains were engineered using the nOPV2 genome as a backbone by replacing the capsid precursor polyprotein (P1) with that of Sabin strains type 1 and type 3, respectively. The nOPV vaccines have a high degree of sequence homology with the parental Sabin 2 genome, and some manufacturing facilities produce and store both Sabin OPV and nOPV. Therefore, detecting Sabin virus contaminations in nOPV lots is crucial. Methods: This study describes the development of pan quantitative reverse transcription polymerase chain reaction (panRT-PCR) and multiplex one-step RT-PCR (mosRT-PCR) assays for the straightforward detection and identification of contaminating Sabin viruses when present in significantly higher amounts of nOPV strains. Results: The two assays exhibit high specificity, reproducibility, and sensitivity to detect 0.0001% and 0.00001% of Sabin viruses in nOPV, respectively. Additionally, an analysis of 12 trivalent nOPV formulation lots using both methods confirmed that the nOPV lots were free from Sabin virus contamination. Conclusions: The results demonstrated that the RT-PCR assays are sensitive and specific. These assays are relevant for quality control and lot release of nOPV vaccines. Full article
(This article belongs to the Special Issue Recent Scientific Development of Poliovirus Vaccines)
Show Figures

Figure 1

22 pages, 1024 KiB  
Review
Immunodeficiency-Related Vaccine-Derived Poliovirus (iVDPV) Infections: A Review of Epidemiology and Progress in Detection and Management
by Concepcion F. Estivariz, Elisabeth R. Krow-Lucal and Ondrej Mach
Pathogens 2024, 13(12), 1128; https://doi.org/10.3390/pathogens13121128 - 20 Dec 2024
Cited by 1 | Viewed by 1888
Abstract
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in [...] Read more.
Individuals with certain primary immunodeficiency disorders (PID) may be unable to clear poliovirus infection after exposure to oral poliovirus vaccine (OPV). Over time, vaccine-related strains can revert to immunodeficiency-associated vaccine-derived poliovirus (iVDPVs) that can cause paralysis in the patient and potentially spread in communities with low immunity. We reviewed the efforts for detection and management of PID patients with iVDPV infections and the epidemiology through an analysis of 184 cases reported to the World Health Organization (WHO) during 1962–2024 and a review of polio program and literature reports. Most iVDPV patients (79%) reported in the WHO Registry were residents in middle-income countries and almost half (48%) in the Eastern Mediterranean Region. Type 2 iVDPV was most frequently isolated (53%), but a sharp decline was observed after the switch to bivalent OPV in 2016, with only six cases reported during 2017–2024 compared to 63 during 2009–2016. Patients with common variable immunodeficiency have longer excretion of iVDPV than with other PID types. Implementation of sensitive sentinel surveillance to detect cases of iVDPV infection in high-risk countries and offer antiviral treatment to patients is challenged by competition with other health priorities and regulatory hurdles to the compassionate use of investigational antiviral drugs. Full article
(This article belongs to the Special Issue Human Poliovirus)
Show Figures

Figure 1

15 pages, 2348 KiB  
Article
Fine Tuning the Glass Transition Temperature and Crystallinity by Varying the Thiophene-Quinoxaline Copolymer Composition
by Xun Pan and Mats R. Andersson
Materials 2024, 17(24), 6031; https://doi.org/10.3390/ma17246031 - 10 Dec 2024
Viewed by 1055
Abstract
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high [...] Read more.
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps. Therefore, an easily synthesised amorphous thiophene−quinoxaline donor polymer, TQ1, has attracted our attention. An analogue, TQ-EH that has the same polymer backbone as TQ1 but with short branched side-chains, was previously reported as a donor polymer with increased crystallinity. We have synthesised copolymers with varied ratios between octyloxy and branched (2-ethylhexyl)oxy-substituted quinoxaline units having the same polymer backbone, with the aim to control the aggregation/crystallisation behaviour of the resulting copolymers. The optical properties, glass transition temperatures and degree of crystallinity of the new copolymers were systematically examined in relation to their copolymer composition, revealing that the composition can be used to fine-tune these properties of conjugated polymers. In addition, multiple sub-Tg transitions were found from some of the polymers, which are not commonly or clearly seen in other conjugated polymers. The new copolymers were tested in photovoltaic devices with a fullerene derivative as the acceptor, achieving slightly higher performances compared to the homopolymers. This work demonstrates that side-chain modification by copolymerisation can fine-tune the properties of conjugated polymers without requiring complex organic synthesis, thereby expanding the number of easily synthesised polymers for future upscaling of OPVs. Full article
Show Figures

Figure 1

Back to TopTop