Assessment of Oral Poliovirus Vaccine Viability and Titer at Delivery Points in Kinshasa, the Democratic Republic of the Congo: Implications for Cold Chain Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Type, Period, and Sites
2.2. Study Units
2.3. Data and Vaccines Sample Collection
2.4. Laboratory Analysis of Vaccine Samples
- Validation of the Analysis Protocol
- b.
- Oral Poliovirus live attenuated vaccine cell culture.
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Protocol Results by Vaccine Type Against Validation Criteria
3.2. Viability and Titer of OPV Vaccines According to the Level of the Health Pyramid
3.3. Viability and Titer of OPV Vaccines According to Immunization Strategies
3.4. Summary of Evaluations of the Two Immunization Strategies According to the Level of the Health Pyramid with OPV Vaccines and Study Sites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
bOPV | Bivalent oral polio vaccine |
CCID50 | Cell culture infectious dose 50% |
CPE | Cytopathic effects |
DRC | Democratic Republic of the Congo |
DPS | Division Provinciale de la Santé |
EPI-DRC | Expanded Program on Immunization in the Democratic Republic of the Congo. |
FBS | Fetal bovine serum |
GPEI | Global Polio Eradication Initiative |
IQRs | Interquartile ranges |
INRB | Institut National de Recherche Biomédicale |
nOPV2 | Novel oral polio vaccine type 2 |
OPV | Oral polio vaccine |
VV | Vaccine viability |
VVM | Vaccine vial monitoring |
WPV1 | Poliovirus serotypes 1 |
WPV2 | Poliovirus serotypes 1 |
WPV3 | Poliovirus serotypes 1 |
WHO | World Health Organization |
Appendix A. Procedure of nOPV2 Titration
Appendix A.1. Equipment
- -
- Indelible ink markers (2 colors);
- -
- Disposable 1 mL and 10 mL plastic pipettes;
- -
- Sterile 15 mL tubes Eppendorf with caps for dilution;
- -
- Vortex mixer;
- -
- Sterile 96-well cell culture microtiter plate, flat-bottomed, with lids;
- -
- Sterile, non-toxic plate sealers (if CO2 incubator is not used);
- -
- Pipettes with aerosol-resistant tips (ART);
- -
- Flask with confluence layer of healthy L20B cells, containing 1 to 2 × 105 cells/mL;
- -
- Vaccine samples nOPV2 to be tested with known titre (105 CCID50/dose);
- -
- Maintenance Medium (Minimal Essential Medium with 2% of SVF.
Appendix A.2. Procedure
- (1)
- 1 Vial of vaccine nOPV2 = 5 mL = 50 doses; 1 dose = 0.1 mL (=105 infectious units)
- (2)
- Label the dilution tubes: 10−2 to 10−9.
- (3)
- Dispense 9 mL of MM into tubes 1 to 8.
- (4)
- Dilute the vaccine in 2% Maintenance Medium This is the 10−1 dilution: 0.1 mL of vaccine in 9.9 of MM.
- (5)
- Draw 1 mL of diluted vaccine from the first tube using a sterile pipette or a pipette with an ART tip.
- (6)
- Cover the tube and vortex gently.
- (7)
- Repeat the dilution steps, transferring 1 mL each time and always changing pipette/pipette tip between dilutions, up to tube 8 (see Figure A1).
- (8)
- Add 100 µL of the Vaccine dilutions (10−6 to 10−9) to 1 to 10 rows A-H, i.e. 20 wells per dilution (Figure A2).
- (9)
- Add 100 µL of maintenance medium to wells A11 to H12 in rows A to H for the cell controls.
- (10)
- Add 100 µL of cells from a cell suspension containing 1 to 2 × 105 cells/mL of L20B to all wells in rows A to H of the plate.
- (11)
- Cover the plate and incubate at 36 °C under CO2.
- (12)
- Examine the development of an EPC using an inverted microscope and record daily measurements for 5 to 7 days. For a valid test, the cell control must contain a complete monolayer of healthy cells.
- (13)
- Calculation of viral titre using Kärber’s formula (Figure A3)log CCID50 = L − d (S − 0.5), where:L = log of the lowest dilution used in the testd = difference between log dilution stepsS = sum of the proportion of ‘positive’ tests (i.e., cultures showing EPC)In this example:L = −6.0; d = 1.0; S = 1 + 0.65 + 0.45 + 0 = 2.10Log CCID50 = −7.60; Virus titre = 107.6 CCID50/0.1 mL
Appendix A.3. Interpretation
- -
- If the small dilution used does not give CPE in 90 to 100% of the wells (the 20), the test is invalid.
- -
- If the largest dilution gives CPE in more than 10% of its wells, the test is invalid.
Appendix B. Procedure of bOPV Titration
Appendix B.1. Equipment
- -
- Indelible ink markers (2 colors);
- -
- Disposable 1 mL and 10 mL plastic pipettes;
- -
- Sterile 15 mL tubes with caps for dilution;
- -
- Vortex mixer;
- -
- Sterile 96-well cell culture microtiter plate, flat-bottomed, with lids;
- -
- Sterile, non-toxic plate sealers (if CO2 incubator is not used);
- -
- Pipettes with aerosol-resistant tips (ART);
- -
- Flask with confluence layer of healthy L20B cells, containing 1 to 2 × 105 cells/mL;
- -
- Vaccine samples bOPV to be tested with known titre (105.8 CCID50/dose and 106 CCID50/dose);
- -
- 2% MEM maintenance medium
Appendix B.2. Procedure
- -
- Add 0.05 mL of test medium to all wells of the plate for the test vaccine.
- -
- Add 0.05 mL of vaccine dilution to a column of 8 wells. Start by transferring the highest dilution into column 10, and use the same dropper pipette for the whole range.
- -
- Add 0.1 mL of test medium, to equalize the volumes, to each of the cell control wells.
- -
- During this time, wash L20B monolayer flask cultures, trypsinize, count cells and prepare a cell suspension in test medium to contain approximately 1–2 × 105 cells per mL.
- -
- Add 0.1 mL of cell suspension to all wells of the plate. Avoid touching the wells with micropipette tips during this procedure.
- -
- Cover the plates with a sealer.
- -
- Incubate all plates at 36 °C for 5 days.
- -
- During this time, monitor the cell control wells to ensure that the cells are forming a monolayer. Also score the positive wells starting at day 3 and keep good records of the data.
- -
- Calculate the titre in CCID50 per human dose using the Kärber formula.
References
- World Health Organization. Polio Laboratory Manual, 4th ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Fomban Leke, R.G.; King, A.; Pallansch, M.A.; Tangermann, R.H.; Mkanda, P.; Chunsuttiwat, S.; Jack, A.; Kaboré, B.J.; Kane, I.; Khomo, N.E.; et al. Certifying the Interruption of Wild Poliovirus Transmission in the WHO African Region on the Turbulent Journey to a Polio-Free World. Lancet Glob. Health 2020, 8, e1345–e1351. [Google Scholar] [CrossRef] [PubMed]
- Platt, L.R.; Estivariz, C.F.; Sutter, R.W. Vaccine-Associated Paralytic Poliomyelitis: A Review of the Epidemiology and Estimation of the Global Burden. J. Infect. Dis. 2014, 210 (Suppl. S1), S380–S389. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Vaccines: Past, Present and Future. Nat. Med. 2005, 11, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S. History of Vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R.; Black, S.; Lambert, P.H. Vaccine Discovery and Translation of New Vaccine Technology. Lancet 2011, 378, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Global Polio Eradication Initiative. Inactivated Polio Vaccine Now Introduced Worldwide. Available online: https://polioeradication.org/news-post/inactivated-polio-vaccine-now-introduced-worldwide/ (accessed on 4 April 2025).
- Global Polio Eradication Initiative. Independent Experts Advise Move to Next Use Phase for Novel Oral Polio Vaccine Type 2—GPEI. Available online: https://polioeradication.org/news-post/independent-experts-advise-transition-to-next-use-phase-for-novel-oral-polio-vaccine-type-2-nopv2/ (accessed on 4 April 2025).
- Tuma, J.N.; Wilkinson, A.L.; Diop, O.M.; Jorba, J.; Gardner, T.; Snider, C.J.; Anand, A.; Ahmed, J. Surveillance to Track Progress Toward Polio Eradication—Worldwide, 2019–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.T.; Bujaki, E.; Dolan, P.T.; Smith, M.; Wahid, R.; Konz, J.; Weiner, A.J.; Bandyopadhyay, A.S.; Van Damme, P.; De Coster, I.; et al. Engineering the Live-Attenuated Polio Vaccine to Prevent Reversion to Virulence. Cell Host Microbe 2020, 27, 736–751.e8. [Google Scholar] [CrossRef] [PubMed]
- WHO. Projet de Plan D’action Mondial Pour la Sécurité des Patients 2021–2030: Vers L’élimination des Préjudices Évitables Dans le Cadre des Soins de Santé, 1st ed.; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Delpeyroux, F.; Colbère-Garapin, F.; Razafindratsimandresy, R.; Sadeuh-Mba, S.; Joffret, M.-L.; Rousset, D.; Blondel, B. Éradication de la poliomyélite et émergence de poliovirus pathogènes dérivés du vaccin: De Madagascar au Cameroun. Med. Sci. 2013, 29, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Llorens, X.; Bandyopadhyay, A.S.; Gast, C.; Leon, T.D.; DeAntonio, R.; Jimeno, J.; Caballero, M.I.; Aguirre, G.; Oberste, M.S.; Weldon, W.C.; et al. Safety and Immunogenicity of Two Novel Type 2 Oral Poliovirus Vaccine Candidates Compared with a Monovalent Type 2 Oral Poliovirus Vaccine in Children and Infants: Two Clinical Trials. Lancet 2021, 397, 27–38. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Poliomyélite. WHO, Soixante-Seizième Assemblée Mondiale de la Santé, A76/13M. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA76/A76_13-fr.pdf. (accessed on 4 April 2025).
- World Health Organization. Poliovirus Sauvage de Type 1 (PVS1)—Malawi. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/wild-poliovirus-type-1-(WPV1)-malawi (accessed on 4 April 2025).
- Global Polio Eradication Initiative. Classification and Reporting of Vaccine-Derived Polioviruses (VDPV). 2016. Available online: https://polioeradication.org/wp-content/uploads/2016/09/Reporting-and-Classification-of-VDPVs_Aug2016_EN.pdf (accessed on 4 April 2025).
- Rai, A.; Uwishema, O.; Uweis, L.; El Saleh, R.; Arab, S.; Abbass, M.; Wellington, J.; Musabirema, F.; Adanur, I.; Patrick Onyeaka, C.V. Polio Returns to the USA: An Epidemiological Alert. Ann. Med. Surg. 2022, 82. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Weekly Epidemiological Record, No 22, 31 May 2024. Available online: https://www.who.int/publications/journals/weekly-epidemiological-record (accessed on 5 June 2025).
- World Health Organization African Region. Weekly Monitoring of Measles Epidemics and Polio Eradication in Central Africa. Available online: https://www.afro.who.int/health-topics/disease-outbreaks/outbreaks-and-other-emergencies-updates (accessed on 5 June 2025).
- Savolainen-Kopra, C.; Blomqvist, S. Mechanisms of Genetic Variation in Polioviruses. Rev. Med. Virol. 2010, 20, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, D.; Pons-Salort, M.; Shaw, A.G.; Grassly, N.C. The Role of Genetic Sequencing and Analysis in the Polio Eradication Programme. Virus Evol. 2020, 6, veaa040. [Google Scholar] [CrossRef] [PubMed]
- Burton, A. WHO and UNICEF Estimates of National Infant Immunization Coverage: Methods and Processes. Bull. World Health Organ. 2009, 87, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.M.; Kalkowska, D.A. Potential Future Use, Costs, and Value of Poliovirus Vaccines. Risk Anal. 2021, 41, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Greene, S.A.; Burns, C.C.; Tallis, G.; Wassilak, S.G. Progress towards Polio Eradication—Worldwide, January 2021–March 2023. Wkly. Epidemiol. Rec. 2023, 12, 195–204. [Google Scholar]
- Zipursky, S.; Boualam, L.; Cheikh, D.O.; Fournier-Caruana, J.; Hamid, D.; Janssen, M.; Kartoglu, U.; Waeterloos, G.; Ronveaux, O. Assessing the Potency of Oral Polio Vaccine Kept Outside of the Cold Chain during a National Immunization Campaign in Chad. Vaccine 2011, 29, 5652–5656. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, T.; Baba, S.S.; Zaria, L.T.; Abdul-Dahiru, E.-Y.; Thilza, I.B. Determination of Thermal Stability of Oral Polio Vaccine (Opv) at Different Temperature under Laboratory Conditions. Stem Cell 2010, 1, 69–73. [Google Scholar]
- Eswaran, S.P.; Praharaj, A.; Chander, Y.; Nagendra, A. Potency Titration of Oral Polio Vaccine by Estimation of Live Virus Content Using Tissue Culture Technique. Med. J. Armed Forces India 2003, 59, 105–107. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Vaccine Supply and Quality Unit. In Manual of Laboratory Methods for Testing of Vaccines Used in the WHO Expanded Programme on Immunization; WHO: Geneva, Switzerland, 1997; No. WHO/VSQ/97.04. [Google Scholar]
- World Health Organization. Polio Laboratory Manual; WHO: Geneva, Switzerland, 2004; No. WHO/IVB/04.10. [Google Scholar]
- WHO Expanded Programme on Immunization; World Health Organization; Division of Communicable Diseases. Manual for the Virological Investigation of Poliomyelitis. In Global Poliomyelitis Eradication by the Year 2000; WHO: Geneva, Switzerland, 1990; No. WHO/EPI/CDS/POLIO/90.1, Unpublished. [Google Scholar]
- LogTag® HAXO-8 Temperature Recorder: Technical Specifications. 2014. Available online: http://www.logtagrecorders.com (accessed on 5 June 2025).
ID Vaccine | Vaccine Titer (LogCCID50) | Valid Criteria | Cell Culture | Protocol | |||
---|---|---|---|---|---|---|---|
% CPE (First–Last Dilution) | Vaccine Dilution | Volume Per Well (uL) | Interval Dilution (1–10) | ||||
cDC | 8.55 | No | 100–30 | 1/10 | 200 | 6–9 | WHO 1 |
cDC | 7.8 | Yes | 100–0 | 1/100 | 200 | 6–9 | WHO1—This study |
cDC | 7.2 | Yes | 90–0 | 1/100 | 300 | 6–9 | Muhammad—This study |
cDC | 6.4 | Yes | 100–0 | 1/10 | 200 | 3.5–8 | WHO 2 |
ID Vaccine | Vaccine Titer (LogCCID50) | Valid Criteria | Cell Culture | Protocol | |||
---|---|---|---|---|---|---|---|
% CPE (First–Last Dilution) | First Vaccine Dilution | Volume Per Well (uL) | Interval Dilution (1–10) | ||||
rDC 152 | 9.5 | No | 100–100 | 1/10 | 200 | 6–9 | WHO1 |
rDC 152 | 9.15 | No | 100–65 | 1/100 | 200 | 6–9 | WHO1—This study |
rDC 152 | 8.1 | Yes | 100–10 | 1/100 | 300 | 6–9 | Muhammad—This study |
rDC 152 | 7.2 | Yes | 100–0 | 1/10 | 200 | 3.5–8 | WHO2 |
% Cell Culture Per Plate | Viral Titer vs. Reference Viral Titer a,b | Interpretation | |
---|---|---|---|
First Dilution | Last Dilution | ||
80–100 | 0–10 | Viral titer > reference viral titer | Very good |
50–10 | 0–10 | Viral titer > reference viral titer | Good |
50–10 | 0–10 | Viral titer ≤ reference viral titer | Poor |
Type Vaccine | Protocol | Criteria | |
---|---|---|---|
Sample Valid n/N (%) | Sample Not Valid n/N (%) | ||
nOPV2 | WHO2 | 8/10 (80) | 2/10 (20) |
WHO1—This study | 10/10 (100) | 0/10 (0) | |
bOPV | WHO2 | 10/10 (10) | 0/10 (0) |
WHO1—This study | 0/10 (0) | 10/10 (100) |
Health Pyramid Level | Type of Vaccine n/N(%) | Viral Titer Average (10xx CCID50/Dose) a,b (min–max) | Interpretation in Laboratory (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
nOPV2 15/53 (28.3) | bOPV 38/53 (71.7) | nOPV2 | bOPV | nOPV2 | bOPV | |||||
Very Good | Good | Poor | Very Good | Good | Poor | |||||
A | 1/15 (6.7) | 2 (5.3) | 7.2 (single value) | 7.65 (7.20–8.10) | 100 | 0 | 0 | 100 | 0 | 0 |
B | - | 3 (8.0) | - | 8.97 (8.40–9.80) | - | - | - | 100 | 0 | 0 |
Ca | 5 (33.3) | 11 (28.9) | 6.97 (6.50–7.25) | 7.21 (5.80–8.20) | 80 | 20 | 0 | 54 | 36 | 10 |
Cb | 5 (33.3) | 11 (28.9) | 6.57 (5.85–7.15) | 6.45 (5.40–7.90) | 40 | 60 | 0 | 0 | 82 | 18 |
Cc | 4 (26.7) | 11 (28.9) | 6.35 (5.80–6.80) | 7.30 (5.70–8.90) | 0 | 100 | 0 | 54 | 36 | 10 |
Immunization Strategy | % nOPV2 Culture (First–Last Dilution) | Viral Titer nOPV2 a (10xx CCID50/Dose) | Total Samples (N = 15) | Interpretation | |
---|---|---|---|---|---|
Campaign | 100–10 | 6.9 ± 0.3 | 6/15 (40%) | Very good | |
80–100 | 0–10 | ||||
50–10 | 6.4 ± 0.4 | 9/15 (60%) | Good | ||
50–79 | 0–10 | ||||
50–10 | ≤5 | 0 | Poor | ||
50–79 | 0–10 | ||||
Immunization Strategy | % bOPV Culture (First–Last Dilution) | Viral Titer bOPV b (10 xx CCID50/Dose) | Total Samples (N = 38) | Interpretation | |
Routine | 100–10 | 8.2 ± 0.7 | 17/38 (44.74%) | Very good | |
80–100 | 0–10 | ||||
50–10 | 6.7 ± 0.6 | 17/38 (44.74%) | Good | ||
50–79 | 0–10 | ||||
50–10 | 5.7 ± 0.2 | 4/38 (10.5%) | Poor | ||
50–79 | 0–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashitu-Mujinga, G.; Makaka-Mutondo, A.; Matondo-Kuamfumu, M.; Mambu-Mbika, F.; Bulabula-Penge, J.; Kabeya-Mampuela, T.; Nkawa, F.; Wanet-Tayele, G.; Nsunda-Makanzu, B.; Nsele-Muntatu, P.; et al. Assessment of Oral Poliovirus Vaccine Viability and Titer at Delivery Points in Kinshasa, the Democratic Republic of the Congo: Implications for Cold Chain Management. Vaccines 2025, 13, 680. https://doi.org/10.3390/vaccines13070680
Kashitu-Mujinga G, Makaka-Mutondo A, Matondo-Kuamfumu M, Mambu-Mbika F, Bulabula-Penge J, Kabeya-Mampuela T, Nkawa F, Wanet-Tayele G, Nsunda-Makanzu B, Nsele-Muntatu P, et al. Assessment of Oral Poliovirus Vaccine Viability and Titer at Delivery Points in Kinshasa, the Democratic Republic of the Congo: Implications for Cold Chain Management. Vaccines. 2025; 13(7):680. https://doi.org/10.3390/vaccines13070680
Chicago/Turabian StyleKashitu-Mujinga, Gracia, Anguy Makaka-Mutondo, Meris Matondo-Kuamfumu, Fabrice Mambu-Mbika, Junior Bulabula-Penge, Trésor Kabeya-Mampuela, Frida Nkawa, Grace Wanet-Tayele, Bibiche Nsunda-Makanzu, Pierre Nsele-Muntatu, and et al. 2025. "Assessment of Oral Poliovirus Vaccine Viability and Titer at Delivery Points in Kinshasa, the Democratic Republic of the Congo: Implications for Cold Chain Management" Vaccines 13, no. 7: 680. https://doi.org/10.3390/vaccines13070680
APA StyleKashitu-Mujinga, G., Makaka-Mutondo, A., Matondo-Kuamfumu, M., Mambu-Mbika, F., Bulabula-Penge, J., Kabeya-Mampuela, T., Nkawa, F., Wanet-Tayele, G., Nsunda-Makanzu, B., Nsele-Muntatu, P., Kabamba, L., Nkuba-Ndaye, A., Cikomola, A. M. w. b., Mukamba-Musenga, E., & Ahuka-Mundeke, S. (2025). Assessment of Oral Poliovirus Vaccine Viability and Titer at Delivery Points in Kinshasa, the Democratic Republic of the Congo: Implications for Cold Chain Management. Vaccines, 13(7), 680. https://doi.org/10.3390/vaccines13070680