Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (174)

Search Parameters:
Keywords = ONOS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3509 KB  
Article
Agricultural Activities and Hydrological Processes Drive Nitrogen Pollution and Transport in Polder Waters: Evidence from Hydrochemical and Isotopic Analysis
by Yalan Luo, Bo Peng, Tingting Li, Mengmeng Chang, Yinghui Guo, Yaojun Liu and Xiaodong Nie
Water 2025, 17(17), 2601; https://doi.org/10.3390/w17172601 - 3 Sep 2025
Viewed by 877
Abstract
Excessive nitrogen export from lowland polders is a key contributor to cultural eutrophication in downstream aquatic ecosystems. This study investigated the spatiotemporal characteristics, migration pathways, and sources of nitrogen pollution in a typical polder system. Eight surface water sampling campaigns were conducted at [...] Read more.
Excessive nitrogen export from lowland polders is a key contributor to cultural eutrophication in downstream aquatic ecosystems. This study investigated the spatiotemporal characteristics, migration pathways, and sources of nitrogen pollution in a typical polder system. Eight surface water sampling campaigns were conducted at 13 sites in Quyuan Polder, Dongting Lake, from 2022 to 2023, combining ArcGIS spatial analysis, multivariate statistics, and dual-isotope (δ15N-NO), δ18O-NO3) techniques. Nitrate and ammonium nitrogen dominated the nitrogen pool, accounting for ~76% of total nitrogen. Concentrations were higher in the dry season (2.48 mg/L) than in the wet season (1.89 mg/L) and differed significantly among hydrological periods (p < 0.05). Within the polder, total nitrogen and ammonium nitrogen were elevated, whereas nitrate nitrogen was higher at the outlet, reflecting distinct nitrogen profiles along the hydrological gradient. Nitrogen transport patterns were largely consistent with flow direction, driven by both upstream inputs and in situ generation. Isotopic signatures indicated that nitrate originated mainly from ammonium fertilizer and soil nitrogen, with contributions from manure and sewage. These findings enhance understanding of nitrogen dynamics in lowland catchments and provide a scientific basis for targeted pollution control in polder waters. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

15 pages, 2189 KB  
Article
Synthesis, Crystal Structures and Magnetic Properties of Lanthanide Complexes with Rhodamine Benzoyl Hydrazone Ligands
by Lin Miao, Dong-Mei Zhu, Cai-Ming Liu, Yi-Quan Zhang and Hui-Zhong Kou
Magnetochemistry 2025, 11(8), 68; https://doi.org/10.3390/magnetochemistry11080068 - 7 Aug 2025
Viewed by 593
Abstract
Given the outstanding magnetic characteristics of lanthanide ions, the development of mononuclear or multinuclear lanthanide complexes becomes imperative. Previous research showed that a series of mononuclear Dy(III) complexes of rhodamine benzoyl hydrazone Schiff base ligands exhibit remarkable single-molecule magnetic properties and fluorescence. In [...] Read more.
Given the outstanding magnetic characteristics of lanthanide ions, the development of mononuclear or multinuclear lanthanide complexes becomes imperative. Previous research showed that a series of mononuclear Dy(III) complexes of rhodamine benzoyl hydrazone Schiff base ligands exhibit remarkable single-molecule magnetic properties and fluorescence. In this study, we used analogous ligands to synthesize lanthanide complexes [Dy(HL1-o)(NO3)2(CH3OH)2]NO3·CH3OH (complex 1·MeOH) and tetranuclear complexes [Ln4(L1-c)2(L2)23-OH)2(NO3)2(CH3OH)4](NO3)2·2CH3CN·5CH3OH·2H2O (Ln = Dy, complex 2; Ln = Gd, complex 3). Magnetic susceptibility measurements show that 1·2H2O is a single-molecule magnet, 2 shows slow magnetic relaxation and 3 is a magnetic cooling material with the magnetic entropy change of 9.81 J kg−1 K−1 at 2 K and 5 T. The theoretical calculations on 1·MeOH indicate that it shows good magnetic anisotropy with the calculated energy barrier of 194.6 cm−1. Full article
Show Figures

Figure 1

20 pages, 772 KB  
Review
Treatment of Refractory Oxidized Nickel Ores (ONOs) from the Shevchenkovskoye Ore Deposit
by Chingis A. Tauakelov, Berik S. Rakhimbayev, Aliya Yskak, Khusain Kh. Valiev, Yerbulat A. Tastanov, Marat K. Ibrayev, Alexander G. Bulaev, Sevara A. Daribayeva, Karina A. Kazbekova and Aidos A. Joldassov
Metals 2025, 15(8), 876; https://doi.org/10.3390/met15080876 - 6 Aug 2025
Viewed by 785
Abstract
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from [...] Read more.
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from the Shevchenkovskoye cobalt–nickel ore deposit and other Kazakhstan deposits, highlighting the challenges they pose for conventional beneficiation and metallurgical processing. Current industrial practices are analyzed, including pyrometallurgical, hydrometallurgical, and pyro-hydrometallurgical methods, with an emphasis on their efficiency, environmental impact, and economic feasibility. Special attention is given to the potential of hydro-catalytic leaching as a flexible, energy-efficient alternative for treating low-grade ONOs under atmospheric conditions. The results underscore the necessity of developing cost-effective and sustainable technologies tailored to the unique composition of Kazakhstani ONOs, particularly those rich in iron and magnesium. This work provides a strategic framework for future research and the industrial application of advanced leaching techniques to unlock the full potential of Kazakhstan’s nickel resources. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 4411 KB  
Article
Synthesis, Structural Characterization, and In Silico Antiviral Prediction of Novel DyIII-, YIII-, and EuIII-Pyridoxal Helicates
by Francisco Mainardi Martins, Yuri Clemente Andrade Sokolovicz, Morgana Maciél Oliveira, Carlos Serpa, Otávio Augusto Chaves and Davi Fernando Back
Inorganics 2025, 13(8), 252; https://doi.org/10.3390/inorganics13080252 - 23 Jul 2025
Viewed by 900
Abstract
The synthesis and structural characterization of three new triple-stranded helical complexes ([Dy2(L2)3]2Cl∙15H2O (C1), [Y2(L2)3]3(NO3)Cl∙14H2O∙DMSO (C2), and [Eu2(L4) [...] Read more.
The synthesis and structural characterization of three new triple-stranded helical complexes ([Dy2(L2)3]2Cl∙15H2O (C1), [Y2(L2)3]3(NO3)Cl∙14H2O∙DMSO (C2), and [Eu2(L4)3]∙12H2O (C3), where L2 and L4 are ligands derived from pyridoxal hydrochloride and succinic or adipic acid dihydrazides, respectively, were described. The X-ray data, combined with spectroscopic measurements, indicated that L2 and L4 act as bis-tridentate ligands, presenting two tridentate chelating cavities O,N,O to obtain the dinuclear complexes C1C3. Their antiviral profile was predicted via in silico calculations in terms of interaction with the structural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein in the down- and up-states and complexed with the cellular receptor angiotensin-converting enzyme 2 (ACE2). The best affinity energy values (−9.506, −9.348, and −9.170 kJ/mol for C1, C2, and C3, respectively) were obtained for the inorganic complexes docked in the model spike-ACE2, with C1 being suggested as the most promising candidate for a future in vitro validation. The obtained in silico antiviral trend was supported by the prediction of the electronic and physical–chemical properties of the inorganic complexes via the density functional theory (DFT) approach, representing an original and relevant contribution to the bioinorganic and medicinal chemistry fields. Full article
Show Figures

Figure 1

20 pages, 30581 KB  
Article
Hydrochemical Characteristics, Controlling Factors, and High Nitrate Hazards of Shallow Groundwater in an Urban Area of Southwestern China
by Chang Yang, Si Chen, Jianhui Dong, Yunhui Zhang, Yangshuang Wang, Wulue Kang, Xingjun Zhang, Yuanyi Liang, Dunkai Fu, Yuting Yan and Shiming Yang
Toxics 2025, 13(6), 516; https://doi.org/10.3390/toxics13060516 - 19 Jun 2025
Viewed by 507
Abstract
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, [...] Read more.
Groundwater nitrate (NO3) contamination has emerged as a critical global environmental issue, posing serious human health risks. This study systematically investigated the hydrochemical processes, sources of NO3 pollution, the impact of land use on NO3 pollution, and drinking water safety in an urban area of southwestern China. Thirty-one groundwater samples were collected and analyzed for major hydrochemical parameters and dual isotopic composition of NO315N-NO3 and δ18O-NO3). The groundwater samples were characterized by neutral to slightly alkaline nature, and were dominated by the Ca-HCO3 type. Hydrochemical analysis revealed that water–rock interactions, including carbonate dissolution, silicate weathering, and cation exchange, were the primary natural processes controlling hydrochemistry. Additionally, anthropogenic influences have significantly altered NO3 concentration. A total of 19.35% of the samples exceeded the Chinese guideline limit of 20 mg/L for NO3. Isotopic evidence suggested that primary sources of NO3 in groundwater include NH4+-based fertilizer, soil organic nitrogen, sewage, and manure. Spatial distribution maps indicated that the spatial distribution of NO3 concentration correlated strongly with land use types. Elevated NO3 levels were observed in areas dominated by agriculture and artificial surfaces, while lower concentrations were associated with grass-covered ridge areas. The unabsorbed NH4+ from nitrogen fertilizer entered groundwater along with precipitation and irrigation water infiltration. The direct discharge of domestic sewage and improper disposal of livestock manure contributed substantially to NO3 pollution. The nitrogen fixation capacity of the grassland ecosystem led to a relatively low NO3 concentration in the ridge region. Despite elevated NO3 and F concentrations, the entropy weighted water quality index (EWQI) indicated that all groundwater samples were suitable for drinking. This study provides valuable insights into NO3 source identification and hydrochemical processes across varying land-use types. Full article
Show Figures

Figure 1

28 pages, 2413 KB  
Article
A Performance Evaluation for Software Defined Networks with P4
by Omesh A. Fernando, Hannan Xiao, Joseph Spring and Xianhui Che
Network 2025, 5(2), 21; https://doi.org/10.3390/network5020021 - 11 Jun 2025
Viewed by 923
Abstract
The exponential growth in the number of devices connected via the internet has led to the need to achieve granular programmability for increased performance, resilience, reduced latency, and jitter. Software Defined Networking (SDN) and Programming Protocol independent Packet Processing (P4) are designed to [...] Read more.
The exponential growth in the number of devices connected via the internet has led to the need to achieve granular programmability for increased performance, resilience, reduced latency, and jitter. Software Defined Networking (SDN) and Programming Protocol independent Packet Processing (P4) are designed to introduce programmability into the control and data plane of networks, respectively. Despite their individual potential and capabilities, the performance of combining SDN and P4 remains underexplored. This study presents a comprehensive evaluation of SDN with data plane programmability using P4 (SDN+P4) against traditional SDN with Open vSwitch (SDN+OvS), aimed at answering the hypothesis that combining SDN and P4 strengthens the control and data plane programmability and offers improved management and adaptability, which would provide a platform with faster packet processing with reduced jitter, loss, and processing overhead. Mininet was employed to emulate three distinct topologies: multi-path, grid, and transit-stub. Various traffic types were transmitted to assess performance metrics across the three topologies. Our results demonstrate that SDN+P4 outperform SDN+OvS significantly due to parallel processing, flexible parsing, and reduced overhead. The evaluation demonstrates the potential of SDN+P4 to provide a more resilient and stringent service with improved network performance for the future internet and its heterogeneity of applications. Full article
Show Figures

Figure 1

21 pages, 5839 KB  
Article
Organic–Inorganic Fertilization Sustains Crop Yields While Mitigating N2O and NO Emissions in Subtropical Wheat–Maize Systems
by Yan Liu, Lei Hu, Shihang Zhang, Zhisheng Yao, Minghua Zhou and Bo Zhu
Agriculture 2025, 15(10), 1108; https://doi.org/10.3390/agriculture15101108 - 21 May 2025
Viewed by 726
Abstract
Balancing food security with fertilizer-driven climate impacts remains critical in intensive agriculture. While organic–inorganic substitution enhances soil fertility, its effects on nitrous oxide (N2O) and nitric oxide (NO) emissions remain uncertain. This study evaluated N2O/NO emissions, crop yields, and [...] Read more.
Balancing food security with fertilizer-driven climate impacts remains critical in intensive agriculture. While organic–inorganic substitution enhances soil fertility, its effects on nitrous oxide (N2O) and nitric oxide (NO) emissions remain uncertain. This study evaluated N2O/NO emissions, crop yields, and agronomic parameters in a subtropical wheat–maize rotation under four fertilization regimes: inorganic-only (NPK), manure-only (OM), and partial substitution with crop residues (CRNPK, 15%) or manure (OMNPK, 30%), all applied at 280 kg N ha−1 yr−1. Emissions aligned with the dual Arrhenius–Michaelis–Menten kinetics and revised “hole-in-the-pipe” model. Annual direct emission factors (EFd) for N2O and NO were 1.01% and 0.11%, respectively, with combined emissions (1.12%) exponentially correlated to soil nitrogen surplus (p < 0.01). CRNPK and OMNPK reduced annual N2O+NO emissions by 15–154% and enhanced NUE by 10–45% compared with OM, though OMNPK emitted 1.7–2.0 times more N2O/NO than CRNPK. Sole OM underperformed in yield, while partial substitution—particularly with crop residues—optimized productivity while minimizing environmental risks. By integrating emission modeling and agronomic performance, this study establishes CRNPK as a novel strategy for subtropical cereal systems, reconciling high yields with low greenhouse gas emissions. Full article
Show Figures

Graphical abstract

18 pages, 4165 KB  
Article
Using Geochemistry, Stable Isotopes and Statistical Tools to Estimate the Sources and Transformation of Nitrate in Groundwater in Jinan Spring Catchment, China
by Kairan Wang, Mingyuan Fan, Zhen Wu, Xin Zhang, Hongbo Wang, Xuequn Chen and Mingsen Wang
Toxics 2025, 13(5), 393; https://doi.org/10.3390/toxics13050393 - 14 May 2025
Viewed by 576
Abstract
Nitrate (NO3) pollution resulting from anthropogenic activities represents one of the most prevalent environmental issues in karst spring catchments of northern China. In June 2021, a comprehensive study was conducted in the Jinan Spring Catchment (JSC), where 30 groundwater and [...] Read more.
Nitrate (NO3) pollution resulting from anthropogenic activities represents one of the most prevalent environmental issues in karst spring catchments of northern China. In June 2021, a comprehensive study was conducted in the Jinan Spring Catchment (JSC), where 30 groundwater and surface water samples were collected. The sources and spatial distribution of nitrate pollution were systematically investigated through hydrochemical analysis combined with dual-isotope tracing techniques (δ15NNO3 and δ18ONO3). Analytical results revealed that the predominant anion and cation sequences were HCO3 > SO42− > Cl > NO3 and Ca2+ > Na+ > Mg2+ > K+, respectively, with HCO3·SO4-Ca identified as the primary hydrochemical type. Notably, the average NO3 concentration in groundwater (46.62 mg/L) significantly exceeded that in surface water (4.96 mg/L). Among the water samples, 11 locations exhibited substantial nitrate pollution, demonstrating an exceedance rate of 42%. Particularly, the NO3-N concentrations in both the upstream recharge area and downstream drainage area were markedly higher than those in the runoff area. The spatial distribution of NO3 concentrations was primarily influenced by mixing processes, with no significant evidence of denitrification observed. The isotopic compositions ranged from −1.42‰ to 12.79‰ for δ15NNO3 and 0.50‰ to 15.63‰ for δ18ONO3. Bayesian isotope mixing model (MixSIAR) analysis indicated that domestic sewage and manure constituted the principal nitrate sources, contributing 37.1% and 56.9% to groundwater and surface water, respectively. Secondary sources included soil organic nitrogen, rainfall and fertilizer NH4+, and chemical fertilizers, while atmospheric deposition showed the lowest contribution rate. Additionally, potential mixing of soil organic nitrogen with chemical fertilizer was identified. Full article
Show Figures

Figure 1

18 pages, 5008 KB  
Article
Tracking Nitrate Sources in the Lower Kagera River in the Lake Victoria Basin: Insights from Hydrochemistry, Isotopes, and the MixSIAR Model
by Catherine Mathenge, Stephen Mureithi, Pascal Boeckx, Benjamin Nyilitya and Cargele Masso
Hydrology 2025, 12(4), 84; https://doi.org/10.3390/hydrology12040084 - 11 Apr 2025
Cited by 1 | Viewed by 1128
Abstract
Nitrate contamination poses a significant global environmental threat, impacting the water quality in surface and groundwater systems. Despite its considerable impact, there remains a lack of comprehensive understanding of nitrate sources and discharge patterns, particularly in the Lake Victoria basin of East Africa. [...] Read more.
Nitrate contamination poses a significant global environmental threat, impacting the water quality in surface and groundwater systems. Despite its considerable impact, there remains a lack of comprehensive understanding of nitrate sources and discharge patterns, particularly in the Lake Victoria basin of East Africa. To address this gap, a study was conducted in the Kagera River basin, responsible for 33% of Lake Victoria’s surface inflow. This study utilized δ15N and δ18O isotope analysis in nitrate, hydrochemistry, and the Bayesian mixing model (MixSIAR) to identify and quantify nitrate sources. Spatiotemporal data were collected across three seasons: long rains, dry season, and short rains, in areas with diverse land uses. Nitrate isotopic data from water and potential sources were integrated into a Bayesian mixing model to determine the relative contributions of various nitrate sources. Notable spatial variations were observed at sampling sites with concentrations ranging from 0.004 to 3.31 mg L−1. Spatially and temporally, δ15N-NO3 values ranged from +6.0% to +10.2‰, whereas δ18O-NO3 displayed significant spatial differences with mean ranges from −1% to +7‰. MixSIAR analysis revealed important contributions from manure and sewage sources ranging between 49% and 73%. A boron analysis revealed manure was the main source of nitrates in the manure and sewage. These results show that it is necessary to implement improved manure and sewage management practices, especially through proper waste treatment and disposal systems, to enable informed policy decisions to enhance nitrogen management strategies in riparian East Africa, and to safeguard the region’s water resources and ecosystems. Full article
Show Figures

Figure 1

16 pages, 6437 KB  
Article
Cd(II)-Based Coordination Polymers and Supramolecular Complexes Containing Dianiline Chromophores: Synthesis, Crystal Structures, and Photoluminescence Properties
by Nicoleta Craciun, Elena Melnic, Anatolii V. Siminel, Natalia V. Costriucova, Diana Chisca and Marina S. Fonari
Inorganics 2025, 13(3), 90; https://doi.org/10.3390/inorganics13030090 - 18 Mar 2025
Cited by 1 | Viewed by 742
Abstract
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The [...] Read more.
Five new coordination compounds that included three coordination polymers and two supramolecular complexes were obtained by reactions of different cadmium salts (tetrafluoroborate, nitrate, and perchlorate) with dianiline chromophores, 4,4′-diaminodiphenylmethane (ddpm), and 4,4′-diaminodiphenylethane (ddpe). The crystal structures were studied by single-crystal X-ray analysis. The coordination arrays with the ddpm chromophore included {[Cd(OH)(H2O)(ddpm)2](BF4)}n (1) as a one-dimensional (1D) coordination garland chain, {[Cd(NO3)(ddpm)2](H2O)(NO3)}n (2) as a two-dimensional (2D) coordination layer, and [Cd(bpy)2(ddpm)2](ddpm)(NO3)2 (3) as a supramolecular complex. The products with the ddpe chromophore were identified as {[Cd(phen)2(ddpe)](ClO4)2}n (4) in the form of a linear coordination chain and [Cd(phen)3](ClO4)2(ddpe)0.5(CH3CN)0.5 (5) as a supramolecular complex. The extension of coordination arrays in 1, 2, and 4 was achieved via dianiline ligands as bidentate linkers and additionally via bridging of nitrate anions in 2. The diversification of products became possible due to usage of 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) as co-ligands forming the terminal corner fragments [Cd(bpy)2]2+, [Cd(phen)2]2+, and [Cd(phen)3]2+ in 35, respectively. The assembling of coordination entities occurred via the interplay of hydrogen bonds with the participation of amino groups, water molecules, and inorganic anions. Two dianilines were powerful luminophores in the crystalline phase, while the photoluminescence in 15 was considerably weaker than in the pure ddpm and ddpe luminophores and redistributed along the spectrum. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

15 pages, 654 KB  
Article
On Some Novel Soliton Structures for the Beta-Time Fractional Benjamin–Ono Dynamical Equation in Fluids
by Mohammed Ahmed Alomair and Kalim U. Tariq
Fractal Fract. 2025, 9(3), 185; https://doi.org/10.3390/fractalfract9030185 - 17 Mar 2025
Cited by 2 | Viewed by 384
Abstract
This paper consists of an exploration of the wave structures of the Benjamin–Ono equation along with a β-time fractional derivative. The model concerned is utilized to demonstrate internal waves of deep-stratified fluids. Bright, rational, periodic, and many more kinds of solutions for [...] Read more.
This paper consists of an exploration of the wave structures of the Benjamin–Ono equation along with a β-time fractional derivative. The model concerned is utilized to demonstrate internal waves of deep-stratified fluids. Bright, rational, periodic, and many more kinds of solutions for waves are achieved by utilizing the extended sinh-Gordon equation expansion (EShGEE) technique and the improved G/G-expansion scheme. An influence of fractional-order derivatives was also explored which gives the non-existing results. The Mathematica tool is utilized to gain and verify the results. The results are represented by 3-D, 2-D, and contour graphs. A stability analysis is utilized to confirm that results are precise as well as exact. Modulation instability (MI) is also performed for the steady-state solutions to the concerned model. Full article
Show Figures

Figure 1

17 pages, 4491 KB  
Article
CASPT2 Study of the Unimolecular Reactions of Nitromethane—A Look at the Roaming Reactions in the Decomposition of Nitromethane: An Exergonic Route at High Temperatures
by Juan Soto
Reactions 2025, 6(1), 21; https://doi.org/10.3390/reactions6010021 - 12 Mar 2025
Cited by 1 | Viewed by 1427
Abstract
In this work, we studied the main decomposition reactions on the ground state of nitromethane (CH3NO2) with the CASPT2 approach. The energetics of the main elementary reactions of the title molecule have been analyzed on the basis of Gibbs [...] Read more.
In this work, we studied the main decomposition reactions on the ground state of nitromethane (CH3NO2) with the CASPT2 approach. The energetics of the main elementary reactions of the title molecule have been analyzed on the basis of Gibbs free energies obtained from standard expressions of statistical thermodynamics. In addition, we describe a mapping method (orthogonalized 3D representation) for the potential energy surfaces (PESs) by defining an orthonormal basis consisting of two Rn orthonormal vectors (n, internal degrees of freedom) that allows us to obtain a set of ordered points in the plane (vector subspace) spanned by such a basis. Geometries and harmonic frequencies of all species and orthogonalized 3D representations of the PESs have been computed with the CASPT2 approach. It is found that all of the analyzed kinetically controlled reactions of nitromethane are endergonic. For such a class of reactions, the dissociation of nitromethane into CH3 and NO2 is the process with the lower activation energy barrier (ΔG); that is, the C-N bond cleavage is the most favorable process. In contrast, there exists a dynamically controlled process that evolves through a roaming reaction mechanism and is an exergonic reaction at high temperatures: CH3NO2 → [CH3NO2]* → [CH3ONO]* → CH3O + NO. The above assertions are supported by CASPT2 mappings of the potential energy surfaces (PESs) and classical trajectories obtained by “on-the fly” CASSCF molecular dynamics calculations. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

27 pages, 3696 KB  
Article
Synthesis and Characterization of ONO Pincer Ligand Precursors and Metal Complexes with Ethyl, Isopropyl and Tert-Butyl Wingtip Groups
by John R. Miecznikowski, Olivier J. C. Nicaise, Brandon Q. Mercado, Abigail J. Araujo, Natalia R. Bertolotti, Samantha L. Erickson, Joseph P. Trucchio, Michael J. Corbett, Connor J. Padover, Stephanie L. Coulombe, Audrey J. Wheeler and Isaac P. Ouellette
Crystals 2025, 15(3), 227; https://doi.org/10.3390/cryst15030227 - 27 Feb 2025
Viewed by 773
Abstract
We have synthesized novel cobalt(II) and nickel(II) pincer ligand complexes containing novel tridentate ligand precursors that coordinate via oxygen, nitrogen, and oxygen donor atoms. The novel tridentate ONO ligands, which are neutral, incorporate a carbonyl-substituted imidazole functionality and contain R groups of ethyl, [...] Read more.
We have synthesized novel cobalt(II) and nickel(II) pincer ligand complexes containing novel tridentate ligand precursors that coordinate via oxygen, nitrogen, and oxygen donor atoms. The novel tridentate ONO ligands, which are neutral, incorporate a carbonyl-substituted imidazole functionality and contain R groups of ethyl, isopropyl, or tert-butyl. The ligand precursors were thoroughly characterized using NMR spectroscopy, ESI-MS, and IR spectroscopy. The metal complexes were thoroughly characterized using single crystal X-ray diffraction, elemental analysis, ESI-MS, and cyclic voltammetry. The nickel(II) and cobalt(II) complexes with ethyl, isopropyl, and t-butyl wingtip groups had a pseudo-octahedral geometry about the metal center. The nickel(II) complex with R = isopropyl had a monoclinic lattice with C121 space group (a = 21.7639(8); b = 11.0649(5); c = 10.9225(4); alpha = 90.0 degrees; beta = 90.609(3) degrees; gamma = 90.0 degrees). The cobalt(II) complex with R = ethyl had a monoclinic lattice with P21/n space group (a = 17.7907(7); b = 21.5278(6); c = 21.8597(7); alpha = 90.0 degrees; beta = 95.063(3) degrees; gamma = 90.0 degrees). The cobalt(II) complexes were paramagnetic with μeff = 1.59 BM (R = ethyl) and 6.67 BM (R = t-butyl). The nickel(II) complex was paramagnetic with μeff = 2.59 BM. The ligand precursors and metal complexes are redox-active. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

9 pages, 3812 KB  
Communication
Thorium(IV) and Uranium(IV) Complexes with 2,6-Dipicolinoylbis(N,N-diethylthiourea) Ligands
by Christelle Njiki Noufele, Juliane März and Ulrich Abram
Molbank 2025, 2025(1), M1957; https://doi.org/10.3390/M1957 - 22 Jan 2025
Viewed by 1164
Abstract
The reaction of thorium nitrate hydrate with 2,6-dipicolinoylbis(N,N-diethylthiourea), H2Lpic, results in the hydrolysis of the organic ligand and the formation of [Th(2,6-dipicolinolate)2(H2O)4] (1). Hydrolysis can be avoided [...] Read more.
The reaction of thorium nitrate hydrate with 2,6-dipicolinoylbis(N,N-diethylthiourea), H2Lpic, results in the hydrolysis of the organic ligand and the formation of [Th(2,6-dipicolinolate)2(H2O)4] (1). Hydrolysis can be avoided by the use of [ThCl4(DME)2] (DME = 1,2-dimethoxyethane) as the starting material and the exclusion of water. The product, [Th(Lpic)3]2− (2), crystallizes as diammonium salt in form of yellow crystals in moderate yields. The thorium ion in the complex is nine-coordinate by the central O,N,O donor atoms of three deprotonated {Lpic}2− ligands. The sulfur atoms of the ligands do not bind to the actinide ion, but establish hydrogen bonds to the ammonium counter ions. A similar coordination sphere is also observed in the uranium(IV) complex [UAu2(Lpic)3}] (3), which was obtained from a reaction between H2Lpic, [U2I6(1,4-dioxane)3] and [AuCl(tht)] (tht = tetrahydrothiophene) in the presence of triethylamine. Charge compensation is established by the linear coordination of two Au+ ions between each two sulfur atoms of the ligands. The products have been studied by X-ray diffraction and IR spectroscopy. The actinide ions in both {Lpic}2− complexes have coordination number nine, but establish slightly different coordination spheres. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

17 pages, 3498 KB  
Review
Application of Google Earth Engine to Monitor Greenhouse Gases: A Review
by Damar David Wilson, Gebrekidan Worku Tefera and Ram L. Ray
Data 2025, 10(1), 8; https://doi.org/10.3390/data10010008 - 11 Jan 2025
Cited by 5 | Viewed by 4952
Abstract
Google Earth Engine (GEE) is a cloud-based platform revolutionizing geospatial analysis by providing access to vast satellite datasets and computational capabilities for monitoring environmental and societal issues. It incorporates machine learning (ML) techniques and algorithms as part of its tools for analyzing and [...] Read more.
Google Earth Engine (GEE) is a cloud-based platform revolutionizing geospatial analysis by providing access to vast satellite datasets and computational capabilities for monitoring environmental and societal issues. It incorporates machine learning (ML) techniques and algorithms as part of its tools for analyzing and processing large geospatial data. This review explores the diverse applications of GEE in monitoring and mitigating greenhouse gas emissions and uptakes. GEE is a cloud-based platform built on Google’s infrastructure for analyzing and visualizing large-scale geospatial datasets. It offers large datasets for monitoring greenhouse gas (GHG) emissions and understanding their environmental impact. By leveraging GEE’s capabilities, researchers have developed tools and algorithms to analyze remotely sensed data and accurately quantify GHG emissions and uptakes. This review examines progress and trends in GEE applications, focusing on monitoring carbon dioxide (CO2), methane (CH4), and nitrous oxide/nitrogen dioxide (N2O/NO2) emissions. It discusses the integration of GEE with different machine learning methods and the challenges and opportunities in optimizing algorithms and ensuring data interoperability. Furthermore, it highlights GEE’s role in pinpointing emission hotspots, as demonstrated in studies monitoring uptakes. By providing insights into GEE’s capabilities for precise monitoring and mapping of GHGs, this review aims to advance environmental research and decision-making processes in mitigating climate change. Full article
Show Figures

Figure 1

Back to TopTop