Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,645)

Search Parameters:
Keywords = OAT2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 (registering DOI) - 4 Aug 2025
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 180
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

19 pages, 6083 KiB  
Article
Microwave-Assisted Biodiesel Production Using Activated Oat Hull-Derived Biochar as Catalyst
by Jaime Ñanculeo, Benjamín Nahuelcura, Mara Cea, Norberto Abreu, Karla Garrido-Miranda, Sebastián Meier, Juan Miguel Romero-García and María Eugenia González
Catalysts 2025, 15(8), 729; https://doi.org/10.3390/catal15080729 (registering DOI) - 31 Jul 2025
Viewed by 169
Abstract
This study investigated the effect of KOH activation on biochar, with a focus on how porosity and potassium content influence microwave-assisted catalytic biodiesel production, using experimental design approaches. Activated biochar was synthesized from oat hull waste through KOH activation, followed by pyrolysis under [...] Read more.
This study investigated the effect of KOH activation on biochar, with a focus on how porosity and potassium content influence microwave-assisted catalytic biodiesel production, using experimental design approaches. Activated biochar was synthesized from oat hull waste through KOH activation, followed by pyrolysis under controlled conditions. The biochar was characterized through chemical, morphological, and physical analyses, and its catalytic performance in converting used waste cooking oil (WCO) into biodiesel was evaluated using methanol as the acyl acceptor and microwave irradiation to optimize the reaction via experimental design. Results revealed that increasing the KOH/biomass ratio significantly enhanced the specific surface area (SSA) of the catalyst, achieving a maximum SSA of 637.28 m2/g under optimal pyrolysis conditions: 600 °C for 3 h with a KOH/biomass ratio of 2. A maximum fatty acid methyl ester (FAME) yield of 100% was achieved within 1 min of microwave-assisted reaction using an optimized catalyst dosage of 2.5%, a WCO/MeOH molar ratio of 1/12, and a reaction temperature of 150 °C, with the catalyst being successfully recycled across three cycles. An economic and energy evaluation estimated a catalyst production cost of USD 176.97/kg and a biodiesel production cost of USD 8.9/kg of FAMEs. This research provides a straightforward and cost-effective approach for biofuel production. Full article
(This article belongs to the Special Issue Biochar Development in Catalytic Applications)
Show Figures

Graphical abstract

21 pages, 570 KiB  
Article
The Impact of Cereal-Based Plant Beverages on Wheat Bread Quality: A Study of Oat, Millet, and Spelt Beverages
by Anna Wirkijowska, Piotr Zarzycki, Dorota Teterycz and Danuta Leszczyńska
Appl. Sci. 2025, 15(15), 8428; https://doi.org/10.3390/app15158428 - 29 Jul 2025
Viewed by 224
Abstract
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional [...] Read more.
Cereal-based plant beverages have gained attention as functional ingredients in bakery formulations, offering both nutritional and technological benefits. Replacing water with these beverages may improve the nutritional value of bread by increasing its fiber and unsaturated fatty acid content, while also introducing functional components that affect dough rheology and bread texture. This study examined the effects of substituting water with oat (BO), millet (BM), and spelt (BS) beverages in wheat bread formulations at 25%, 50%, 75%, and 100% levels. Thirteen bread variants were prepared: one control and four substitution levels for each of the three cereal-based beverages, using the straight dough method, with hydration adjusted according to farinograph results. Farinograph tests showed increased water absorption (up to 64.5% in BO100 vs. 56.9% in control) and improved dough stability (10.6 min in BS100). Specific bread volume increased, with BS75 reaching 3.52 cm3/g compared to 3.09 cm3/g in control. Moisture content remained stable during storage, and crumb hardness after 72 h was lowest in BO100 (9.5 N) and BS75 (11.5 N), indicating delayed staling. All bread variants received favorable sensory ratings, with average scores above 3.75 on a 5-point scale. The highest bread yield (149.8%) and lowest baking loss (10.9%) were noted for BS100. Although BO breads had slightly higher fat and energy content, their nutritional profile remained favorable due to unsaturated fatty acids. Overall, oat and spelt beverages demonstrated the greatest potential as functional water substitutes, improving dough handling, shelf-life, and sensory quality while maintaining consumer appeal. Full article
Show Figures

Graphical abstract

17 pages, 1899 KiB  
Article
Oat Fiber Alleviates Loperamide-Induced Constipation in Mice by Modulating Intestinal Barrier Function
by Yufei Shi, Yuchao Han, Jie Jiang, Di Wang, Zhongxia Li, Guiju Sun, Shaokang Wang, Wang Liao, Hui Xia, Da Pan and Ligang Yang
Nutrients 2025, 17(15), 2481; https://doi.org/10.3390/nu17152481 - 29 Jul 2025
Viewed by 227
Abstract
Objective: To investigate the effects of oat fiber on animal constipation and elucidate its underlying mechanisms. Methods: Male BALB/c mice were randomly allocated into five groups: control group (CON), model control group (MODEL), low dose group (LOW), middle dose group (MIDDLE), high dose [...] Read more.
Objective: To investigate the effects of oat fiber on animal constipation and elucidate its underlying mechanisms. Methods: Male BALB/c mice were randomly allocated into five groups: control group (CON), model control group (MODEL), low dose group (LOW), middle dose group (MIDDLE), high dose group (HIGH). Constipation was induced in the mice by intragastric administration of loperamide. Subsequently, the mice (except those in the CON and MODEL groups) were administered oat fiber intragastrically for 21 consecutive days. Results: Compared with the MODEL group, oat fiber significantly increased the number of fecal pellets, fecal wet weight, and fecal water content (p < 0.05), shortened the time to first black stool excretion (p < 0.05), and enhanced the small intestinal propulsion rate in constipated mice. Additionally, oat fiber significantly upregulated motilin (MTL) and gastrin (GAS) levels (p < 0.05), while downregulating vasoactive intestinal peptide (VIP) and somatostatin (SS) levels (p < 0.05). It also significantly reduced the transcription level of Aquaporin 8 (AQP8) (p < 0.05), effectively alleviating intestinal mucosal injury and immune inflammation. The relative expression levels of TNF-α and IL-1β were significantly decreased in the oat fiber group (p < 0.05). Gut microbiota analysis revealed that oat fiber increased both the abundance and diversity of gut microbiota in constipated mice. Specifically, oat fiber was found to enhance the relative abundance of Firmicutes while reducing that of Bacteroidetes. At the genus level, it promoted the proliferation of Lachnospiraceae_NK4A136_group and Roseburia. Conclusions: Oat fiber alleviates constipation in mice by modulating gastrointestinal regulatory peptides, gut microbiota, aquaporin and mitigating intestinal barrier damage and immune-inflammatory responses. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 319
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

25 pages, 1677 KiB  
Article
Effect of Homogenization and Pectin on Chemical, Textural, Antioxidant and Sensory Characteristics of L. bulgaricus-Fermented Oat-Based Product
by Dmitrii V. Khrundin and Elena V. Nikitina
Foods 2025, 14(15), 2615; https://doi.org/10.3390/foods14152615 - 25 Jul 2025
Viewed by 147
Abstract
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the [...] Read more.
The demand for plant-based fermented beverages is being driven by dietary restrictions, health concerns, and environmental concerns. However, the use of plant substrates, such as oats, presents challenges in terms of fermentation and texture formation. The effects of enzymatic hydrolysis, homogenization and the addition of 1% pectin on oat-based beverages fermented with Lactobacillus delbrueckii subsp. bulgaricus were evaluated in this study. The samples were evaluated for a number of characteristics, including physicochemical, rheological, antioxidant and sensory properties. After 6 h fermentation, pectin-containing samples showed a statistically significant decrease in pH (to 3.91) and an increase in titratable acidity (to 92 °T). Homogenization and the addition of pectin were found to significantly increase viscosity (by 1.5–2 times) and water-holding capacity (by 2 times) while reducing syneresis by 96%. The antioxidant activity of L. bulgaricus-fermented samples increased significantly: the radical scavenging activity (RSA) and OH-radical inhibition increased by 40–60%, depending on the treatment. Extractable polysaccharides (PSs) inhibited lipase and glucosidase by 90% and 85%, respectively; significantly higher inhibition was observed in the fermented and pectin-containing groups. Sensory evaluation showed that the homogenized, pectin-enriched samples (Homog+) scored highest for consistency (4.5 ± 0.2), texture (4.9 ± 0.2), and overall acceptability (4.8 ± 0.2); these scores were all statistically higher than those for the untreated samples. These results suggest that combining enzymatic hydrolysis, homogenization and fermentation with L. bulgaricus significantly improves the structural, functional and sensory properties of oat-based beverages, providing a promising approach to producing high-quality, functional non-dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

21 pages, 20797 KiB  
Article
The Urate-Lowering Effects and Renal Protective Activity of Iridoid Glycosides from Paederia foetida in Rats with Hyperuricemia-Induced Kidney Injury: A Pharmacological and Molecular Docking Study
by Haifeng Zhou, Xinyi Yue, Longhai Shen, Lifeng Wu, Xiaobo Li and Tong Wu
Molecules 2025, 30(15), 3098; https://doi.org/10.3390/molecules30153098 - 24 Jul 2025
Viewed by 255
Abstract
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) [...] Read more.
(1) Background: The urate-lowering effects of three iridoid glycosides, which are paederosidic acid, paederosidic acid methyl ester, and paederoside, isolated from Paederia foetida and the protection they provide against hyperuricemia-induced kidney injury were investigated in a rat model. (2) Methods: A hyperuricemia (HUA) rat model was established in Sprague-Dawley (SD) rats through intraperitoneal potassium oxonate (PO) and intragastrical adenine for 2 weeks. Subsequently, rats in the pharmaceutical intervention groups received corresponding drug treatments at a concentration of 40 mg/kg/day, maintained consistently for 7 days. (3) Results: The results showed that three compounds reduced serum urate (SU), creatinine (CRE), and blood urea nitrogen (BUN) levels and that the urinary excretion levels of uric acid, urine urea nitrogen, and creatinine increased. Furthermore, the administration of three iridoid glycosides enhanced renal filtration capacity, as demonstrated by the elevated 24 h creatinine clearance rate (CCR) and 24 h uric acid clearance rate (CUA); improved the fraction excretion of uric acid (FEUA); and attenuated renal damage. Finally, three iridoid glycosides promoted uric acid excretion in HUA rats by downregulating URAT1 and GLUT9 and upregulating ABCG2, OAT1, and OAT3. Moreover, the molecular docking results further corroborated the finding that the three compounds can bind to multiple sites of the uric acid transporter via hydrogen, P-π, and hydrophobic bonds. (4) Conclusions: The three iridoid glycosides were found to lower SU levels by increasing uric acid excretion. They are promising natural products for the prevention of HUA and HUA-induced kidney injury. Full article
Show Figures

Figure 1

20 pages, 4774 KiB  
Article
Study on Pathogen Identification and Biocontrol Fungi Screening of Oat Sheath Rot
by Yichao Shi, Guiqin Zhao, Liang Zeng and Jikuan Chai
Agronomy 2025, 15(8), 1776; https://doi.org/10.3390/agronomy15081776 - 24 Jul 2025
Viewed by 284
Abstract
Oat sheath rot disease significantly reduces commercial oat yields, yet research on its incidence, causative pathogens, and control strategies remains limited, particularly in China. This study investigated the occurrence of oat sheath rot in major oat-producing regions of Northern China. Here, we isolated [...] Read more.
Oat sheath rot disease significantly reduces commercial oat yields, yet research on its incidence, causative pathogens, and control strategies remains limited, particularly in China. This study investigated the occurrence of oat sheath rot in major oat-producing regions of Northern China. Here, we isolated and identified two species of primary pathogenic fungi, Scopulariopsis brevicaulis and Alternaria alternata. Next, we conducted pathogenicity tests to confirm their role in the progression of oat sheath rot disease. Subsequently, we screened putative biocontrol fungi and identified Trichoderma harzianum and Trichoderma koningii as effective antagonistic biocontrol fungi. Both species demonstrated strong inhibitory effects against two primary pathogens through competitive interactions, with T. koningii achieving 100% inhibition in one test. Overall, T. harzianum and T. koningii both exerted strong inhibitory effects against pathogenic fungi via different forms of competition. Most importantly, infection experiments showed that T. harzianum and T. koningii both exerted strong antifungal effects against the pathogenic fungi that cause oat sheath rot. Taken together, our findings provide a foundation for developing biological control strategies to mitigate oat sheath rot in oat cultivation in China. Full article
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 326
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

13 pages, 1239 KiB  
Article
Assessing the Fermentation Quality, Bacterial Composition and Ruminal Degradability of Caragana korshinskii Ensiled with Oat Grass
by Yao Shen, Kun Wang, Benhai Xiong, Fuguang Xue, Yajie Kang, Shichao Liu and Liang Yang
Fermentation 2025, 11(7), 420; https://doi.org/10.3390/fermentation11070420 - 20 Jul 2025
Viewed by 435
Abstract
The purpose of this study was to explore the effects of co-ensiling Caragana korshinskii with different proportions of oat grass on silage fermentation quality, chemical composition, in situ rumen degradability and in vitro rumen fermentation characteristics. C. korshinskii and oat grass were mixed [...] Read more.
The purpose of this study was to explore the effects of co-ensiling Caragana korshinskii with different proportions of oat grass on silage fermentation quality, chemical composition, in situ rumen degradability and in vitro rumen fermentation characteristics. C. korshinskii and oat grass were mixed at different ratios of 100:00, 90:1, 80:2, 70:30, 60:40 and 50:50. Each ratio of mixture was ensiled for 7, 14, 30, 45 and 60 days at room temperature (25 °C), with 30 bags per ratio, for a total of 180 bags. We further investigated the dynamic profiles of the bacterial community during ensiling and in vitro rumen fermentation. The results showed that co-ensiling C. korshinskii and oat grass decreased the pH values and increased the content of lactic acid and acetic acid compared with ensiling C. korshinskii alone. C. korshinskii ensiled with oat grass at a ratio of 70:30 (70% C. korshinskii) showed the best fermentation quality, which was related to higher relative abundance of Lactobacillus and Weissella. The silage with the ratio of 70:30 (70% C. korshinskii) showed higher dry matter digestibility and the more production of gas and total volatile fatty acids, compared with fresh C. korshinskii. In conclusion, C. korshinskii co-ensiled with oat grass at a ratio of 70:30 could enhance the fermentation quality and digestibility of C. korshinskii. Full article
Show Figures

Figure 1

20 pages, 3002 KiB  
Review
Nitrate–Nitrite Interplay in the Nitrogen Biocycle
by Biplab K. Maiti, Isabel Moura and José J. G. Moura
Molecules 2025, 30(14), 3023; https://doi.org/10.3390/molecules30143023 - 18 Jul 2025
Viewed by 252
Abstract
The nitrogen cycle (N-cycle) is a cornerstone of global biogeochemistry, regulating nitrogen availability and affecting atmospheric chemistry, agricultural productivity, and ecological balance. Central to this cycle is the reversible interplay between nitrate (NO3) and nitrite (NO2), mediated [...] Read more.
The nitrogen cycle (N-cycle) is a cornerstone of global biogeochemistry, regulating nitrogen availability and affecting atmospheric chemistry, agricultural productivity, and ecological balance. Central to this cycle is the reversible interplay between nitrate (NO3) and nitrite (NO2), mediated by molybdenum-dependent enzymes—Nitrate reductases (NARs) and Nitrite oxidoreductases (NXRs). Despite catalyzing opposite reactions, these enzymes exhibit remarkable structural and mechanistic similarities. This review aims to elucidate the molecular underpinnings of nitrate reduction and nitrite oxidation by dissecting their enzymatic architectures, redox mechanisms, and evolutionary relationships. By focusing on recent structural, spectroscopic, and thermodynamic data, we explore how these two enzyme families represent “two sides of the same coin” in microbial nitrogen metabolism. Special emphasis is placed on the role of oxygen atom transfer (OAT) as a unifying mechanistic principle, the influence of environmental redox conditions, and the emerging evidence of bidirectional catalytic potential. Understanding this dynamic enzymatic interconversion provides insight into the flexibility and resilience of nitrogen-transforming pathways, with implications for environmental management, biotechnology, and synthetic biology. Full article
Show Figures

Figure 1

7 pages, 464 KiB  
Case Report
Biallelic Variants in DNAH12 Gene Linked to Male Infertility: Two New Cases and Literature Review
by Faisal H. Aljahdali, Rozana Kamal, Zohor Azher, Ahmed S. Zugail, Abdulaziz Baazeem, Aboulfazl Rad and Gabriela Oprea
Uro 2025, 5(3), 13; https://doi.org/10.3390/uro5030013 - 17 Jul 2025
Viewed by 200
Abstract
Background/Objectives: Although biallelic pathogenic variants in different DNAH gene family members have been associated with infertility, the role of DNAH12 in this disorder is still incompletely understood. To date, few patients have been shown to have infertility due to biallelic variants in this [...] Read more.
Background/Objectives: Although biallelic pathogenic variants in different DNAH gene family members have been associated with infertility, the role of DNAH12 in this disorder is still incompletely understood. To date, few patients have been shown to have infertility due to biallelic variants in this gene. Here, we report two more unrelated patients with infertility who carry homozygous variants in DNAH12. Methods: This study included two male patients with primary infertility and oligoasthenoteratozoospermia (OAT). Patient 1 was a 32-year-old with 1.5 years of infertility and no chronic illnesses or prior assisted reproductive technologies (ARTs). Patient 2 was a 49-year-old with 24 years of infertility, a history of varicocelectomy, and the occasional use of PRN analgesics for bone pain. Using genome sequencing, we identified two homozygous variants: c.3757C>A, p. Pro1253Thr, and c.11086-1G>A, p.?, in patients 1 and 2, respectively. Results: Our findings add supportive evidence that DNAH12 is a gene implicated in rare cases of male infertility. The identification of these homozygous variants in two additional patients supports the association between DNAH12 variants and reproductive dysfunction. Conclusions: This study highlights the need for further research on the role of DNAH12, including functional studies to clarify the mechanisms contributing to infertility. Full article
Show Figures

Figure 1

19 pages, 1318 KiB  
Article
Decoding Plant-Based Beverages: An Integrated Study Combining ATR-FTIR Spectroscopy and Microscopic Image Analysis with Chemometrics
by Paris Christodoulou, Stratoniki Athanasopoulou, Georgia Ladika, Spyros J. Konteles, Dionisis Cavouras, Vassilia J. Sinanoglou and Eftichia Kritsi
AppliedChem 2025, 5(3), 16; https://doi.org/10.3390/appliedchem5030016 - 16 Jul 2025
Viewed by 888
Abstract
As demand for plant-based beverages grows, analytical tools are needed to classify and understand their structural and compositional diversity. This study applied a multi-analytical approach to characterize 41 commercial almond-, oat-, rice- and soy-based beverages, evaluating attenuated total reflectance Fourier transform infrared (ATR-FTIR) [...] Read more.
As demand for plant-based beverages grows, analytical tools are needed to classify and understand their structural and compositional diversity. This study applied a multi-analytical approach to characterize 41 commercial almond-, oat-, rice- and soy-based beverages, evaluating attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, protein secondary structure proportions, colorimetry, and microscopic image texture analysis. A total of 26 variables, derived from ATR-FTIR and protein secondary structure assessment, were employed in multivariate models, using partial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA) to evaluate classification performance. The results indicated clear group separation, with soy and rice beverages forming distinct clusters while almond and oat samples showing partial overlap. Variable importance in projection (VIP) scores revealed that β-turn and α-helix protein structures, along with carbohydrate-associated spectral bands, were the key features for beverages’ classification. Textural features derived from microscopy images correlated with sugar and carbohydrate content and color parameters were also employed to describe beverages’ differences related to sugar content and visual appearance in terms of homogeneity. These findings demonstrate that combining ATR-FTIR spectral data with protein secondary structure data enables the effective classification of plant-based beverages, while microscopic image textural and color parameters offer additional extended product characterization. Full article
Show Figures

Figure 1

11 pages, 1134 KiB  
Article
Consumer Acceptability of Various Gluten-Free Scones with Rice, Buckwheat, Black Rice, Brown Rice, and Oat Flours
by Jihyuk Chae, Sukyung Kim, Jeok Yeon, Sohui Shin and Seyoung Ju
Foods 2025, 14(14), 2464; https://doi.org/10.3390/foods14142464 - 14 Jul 2025
Viewed by 458
Abstract
Due to consumer needs and the prevalence of gluten-related disorders such as celiac disease, the gluten-free food market is expanding rapidly and is expected to surpass USD 2.4 billion by 2036. The objective of this study was to substitute wheat flour with oat, [...] Read more.
Due to consumer needs and the prevalence of gluten-related disorders such as celiac disease, the gluten-free food market is expanding rapidly and is expected to surpass USD 2.4 billion by 2036. The objective of this study was to substitute wheat flour with oat, black rice, brown rice, buckwheat, and rice flours in the production of gluten-free scones, to assess consumer acceptability, and to identify factors contributing to consumer acceptability using check-all-that-apply questions. The 10 attributes of appearance, color, texture, grainy flavor, sweetness, familiar flavor, novelty, familiarity, moistness, and consistency exhibited statistically significant differences among the samples (p < 0.001). One hundred consumers evaluated 18 attributes using a nine-point hedonic scale, and all attributes demonstrated statistically significant differences across six samples (p < 0.001). The samples from buckwheat and wheat scored the highest in consumer acceptability. The results indicate a strong positive correlation between overall liking and purchase intention, with sensory attributes such as nutty flavor, cohesiveness, appearance, moistness, color, texture, and inner softness positively influencing consumer acceptability. The attributes affecting negatively were thick throat sensation, unique flavor, and stuffiness. This study is expected to provide data to aid in the development of better-tasting gluten-free products that meet customer and market needs. Full article
Show Figures

Figure 1

Back to TopTop