Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (172)

Search Parameters:
Keywords = OAT gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1651 KiB  
Article
Standardization of Germinated Oat Extracts and Their Neuroprotective Effects Against Aβ1-42 Induced Cytotoxicity in SH-SY5Y Cells
by Yu-Young Lee, In-Su Na, Jeong-Eun Kim, Jae-Gwang Song, Chae-Eun Han, Hyung-Wook Kim and Soon-Mi Shim
Molecules 2025, 30(15), 3291; https://doi.org/10.3390/molecules30153291 - 6 Aug 2025
Abstract
The present study aimed to standardize germinated oat extracts (GOEs) by profiling avenanthramides (AVNs) and phenolic acids and evaluate their neuroprotective effects against Aβ1-42-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells. GOEs were standardized to contain 1652.56 ± 3.37 µg/g dry weight [...] Read more.
The present study aimed to standardize germinated oat extracts (GOEs) by profiling avenanthramides (AVNs) and phenolic acids and evaluate their neuroprotective effects against Aβ1-42-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells. GOEs were standardized to contain 1652.56 ± 3.37 µg/g dry weight (dw) of total AVNs, including 468.52 ± 17.69 µg/g AVN A, 390.33 ± 10.26 µg/g AVN B, and 641.22 ± 13.89 µg/g AVN C, along with 490.03 ± 7.83 µg/g dw of ferulic acid, using a validated analytical method. Treatment with AVN C and GOEs significantly inhibited Aβ1-42-induced cytotoxicity (p < 0.05). Furthermore, both AVNs and GOEs markedly reduced Aβ1-42-induced reactive oxygen species (ROS) generation in SH-SY5Y cells, showing significant scavenging activity at concentrations of 25 μg/mL (AVNs) and 50 μg/mL (GOEs) (p < 0.05). RT-PCR analysis revealed that AVNs and GOEs effectively downregulated the expression of inflammation- and apoptosis-related genes triggered by Aβ1-42 exposure. These findings suggest that GOEs rich in AVNs may serve as a potential functional ingredient for enhancing memory function through the inhibition of neuroinflammation and oxidative stress. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

7 pages, 464 KiB  
Case Report
Biallelic Variants in DNAH12 Gene Linked to Male Infertility: Two New Cases and Literature Review
by Faisal H. Aljahdali, Rozana Kamal, Zohor Azher, Ahmed S. Zugail, Abdulaziz Baazeem, Aboulfazl Rad and Gabriela Oprea
Uro 2025, 5(3), 13; https://doi.org/10.3390/uro5030013 - 17 Jul 2025
Viewed by 210
Abstract
Background/Objectives: Although biallelic pathogenic variants in different DNAH gene family members have been associated with infertility, the role of DNAH12 in this disorder is still incompletely understood. To date, few patients have been shown to have infertility due to biallelic variants in this [...] Read more.
Background/Objectives: Although biallelic pathogenic variants in different DNAH gene family members have been associated with infertility, the role of DNAH12 in this disorder is still incompletely understood. To date, few patients have been shown to have infertility due to biallelic variants in this gene. Here, we report two more unrelated patients with infertility who carry homozygous variants in DNAH12. Methods: This study included two male patients with primary infertility and oligoasthenoteratozoospermia (OAT). Patient 1 was a 32-year-old with 1.5 years of infertility and no chronic illnesses or prior assisted reproductive technologies (ARTs). Patient 2 was a 49-year-old with 24 years of infertility, a history of varicocelectomy, and the occasional use of PRN analgesics for bone pain. Using genome sequencing, we identified two homozygous variants: c.3757C>A, p. Pro1253Thr, and c.11086-1G>A, p.?, in patients 1 and 2, respectively. Results: Our findings add supportive evidence that DNAH12 is a gene implicated in rare cases of male infertility. The identification of these homozygous variants in two additional patients supports the association between DNAH12 variants and reproductive dysfunction. Conclusions: This study highlights the need for further research on the role of DNAH12, including functional studies to clarify the mechanisms contributing to infertility. Full article
Show Figures

Figure 1

23 pages, 8380 KiB  
Article
Characterizing the Fermentation of Oat Grass (Avena sativa L.) in the Rumen: Integrating Degradation Kinetics, Ultrastructural Examination with Scanning Electron Microscopy, Surface Enzymatic Activity, and Microbial Community Analysis
by Liepeng Zhong, Yujun Qiu, Mingrui Zhang, Shanchuan Wei, Shuiling Qiu, Zhiyi Ma, Mingming Gu, Benzhi Wang, Xinyue Zhang, Mingke Gu, Nanqi Shen and Qianfu Gan
Animals 2025, 15(14), 2049; https://doi.org/10.3390/ani15142049 - 11 Jul 2025
Viewed by 275
Abstract
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern [...] Read more.
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern Fujian, were selected as experimental animals. The rumen degradation rate of oat grass was measured at 4, 12, 24, 36, 48, and 72 h using the nylon bag method. Surface physical structure changes in oat grass were observed using scanning electron microscopy (SEM), cellulase activity was measured, and bacterial composition was analyzed using high-throughput 16S rRNA gene sequencing technology. The findings of this study indicate that oat grass had effective degradation rates (ED) of 47.94%, 48.69%, 38.41%, and 30.24% for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acidic detergent fiber (ADF), respectively. The SEM was used to investigate the degradation process of oat grass in the rumen. After 24 h, extensive degradation of non-lignified tissue was observed, resulting in the formation of cavities. At 36 h, significant shedding was observed, and by 72 h, only the epidermis and thick-walled tissue, which exhibited resistance to degradation, remained intact. Surface-attached microorganisms produced β-GC, EG, CBH, and NEX enzymes. The activity of these enzymes exhibited a significant increase between 4 and 12 h and showed a positive correlation with the degradation rate of nutrients. However, the extent of correlation varied. Prevotella and Treponema were identified as key genera involved in the degradation of roughage, with their abundance decreasing over time. Principle Coordinate Analysis (PCOA) revealed no significant differences in the rumen microbial structure across different time points. However, Non-Metric Multidimensional Scaling (NMDS) indicated a discernible diversity order among the samples. According to the Spearman correlation coefficient test, Ruminococcus, Fibrobacter, and Saccharoferments exhibited the closest relationship with nutrient degradation rate and surface enzyme activity, displaying a significant positive correlation. In summary, this study delineates a time-resolved correlative framework linking microbial succession to structural and enzymatic dynamics during oat grass degradation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

16 pages, 8263 KiB  
Article
Genome-Wide Identification of PP2C Gene Family in Oat (Avena sativa L.) and Its Functional Analyses in Response to ABA and Abiotic Stresses
by Panpan Huang, Kuiju Niu, Jikuan Chai, Wenping Wang, Yanming Ma, Yanan Cao and Guiqin Zhao
Plants 2025, 14(13), 2062; https://doi.org/10.3390/plants14132062 - 5 Jul 2025
Viewed by 480
Abstract
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene [...] Read more.
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene family in oat (Avena sativa L.) has remained unexplored. Leveraging the recently published oat genome, we identified 194 AsaPP2C genes, which were unevenly distributed across all 21 chromosomes. A phylogenetic analysis of PP2C classified these genes into 13 distinct subfamilies (A-L), with conserved motif compositions and exon-intron structures within each subfamily, suggesting evolutionary functional specialization. Notably, a promoter analysis revealed an abundance of stress-responsive cis-regulatory elements (e.g., MYB, MYC, ARE, and MBS), implicating AsaPP2Cs in hormones and biotic stress adaptation. To elucidate their stress-responsive roles, we analyzed transcriptomic data and identified seven differentially expressed AsaPP2C (Asa_chr6Dg00217, Asa_chr6Ag01950, Asa_chr3Ag01998, Asa_chr5Ag00079, Asa_chr4Cg03270, Asa_chr6Cg02197, and Asa_chr7Dg02992) genes, which were validated via qRT-PCR. Intriguingly, these genes exhibited dynamic expression patterns under varying stress conditions, with their transcriptional responses being both time-dependent and stress-dependent, highlighting their regulatory roles in oat stress adaptation. Collectively, this study provides the first comprehensive genomic and functional characterization of the PP2C family in oat, offering valuable insights into their evolutionary diversification and functional specialization. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

22 pages, 4164 KiB  
Article
Effects of Low-Temperature Plasma Treatment on Germination, Seedling Development, and Biochemical Parameters of Long-Term-Stored Seeds
by Martin Matějovič, Vladislav Čurn, Jan Kubeš, Eva Jozová, Zora Kotíková and Petra Hlásná Čepková
Agronomy 2025, 15(7), 1637; https://doi.org/10.3390/agronomy15071637 - 4 Jul 2025
Viewed by 371
Abstract
The promising field of low-temperature plasma treatment, known for its non-invasive and environmentally sustainable nature, is being actively investigated for its ability to enhance germination, emergence, yield, and overall plant development in a broad spectrum of crops. For gene bank requirements, low-temperature plasma [...] Read more.
The promising field of low-temperature plasma treatment, known for its non-invasive and environmentally sustainable nature, is being actively investigated for its ability to enhance germination, emergence, yield, and overall plant development in a broad spectrum of crops. For gene bank requirements, low-temperature plasma technologies can also improve germination parameters and promote the development seeds suitable for long-term storage. Seeds from four selected cultivars of wheat, oats, flax, and rapeseed stored in the gene bank for 1, 10, and 20 years were subjected to plasma treatments for 20, 25, and 30 min. The study evaluated the mean root and shoot length, root–shoot ratio, and seedling vigour index. Additionally, the malondialdehyde level, total polyphenol content, total flavonoid content, and total antioxidant capacity were analysed. Plasma treatment displayed varying effects on the morphological characteristics and antioxidant activity of the tested cultivars, which were influenced by treatment duration and cultivar. A positive effect of plasma treatment on seedling length, seedling vigour index, and root–shoot ratio was observed in flax cultivar ‘N-9/62/K3/B’ in all periods and in variants T2 and T3. Conversely, the wheat cultivar ‘Granny’ showed variable results, and the oat cultivar ‘Risto’ showed variable negative results in regards to mean root length and mean shoot length after plasma treatment. The indicators of oxidative stress and antioxidant capacity were affected in all the cultivars studied. A positive effect of plasma treatment on these indicators was observed in the wheat cultivar ‘Granny’, while flax cultivar ‘N-9/62/K3/B’ exhibited inconsistent results. While in cereals, a decrease in malondialdehyde content after plasma treatment was associated with an increase in polyphenol and flavonoid content as the treatment duration increased, small-seeded species responded somewhat differently. The rapeseed cultivar ‘Skrivenskij’ and flax cultivar ‘N-9/62/K3/B’ showed an increase in polyphenol and flavonoid content following a decrease in malondialdehyde levels. This study highlights the potential of low-temperature plasma treatment for long-term-stored seeds and its applicability to plant genetic resources. The findings emphasize the need for the further optimization of low-temperature plasma treatment conditions for different plant species and cultivars. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 5243 KiB  
Article
Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models
by Wen Duan, Bisheng Zheng, Tong Li and Rui Hai Liu
Nutrients 2025, 17(12), 1962; https://doi.org/10.3390/nu17121962 - 9 Jun 2025
Viewed by 950
Abstract
Background/Objectives: Oats and oat bran are rich in dietary fiber, polyphenols and other phytochemicals. Methods: In this study, we evaluated the phytochemical content and established LPS-induced RAW 264.7 macrophage inflammation and DSS-induced Caco-2 cell inflammation models to investigate the anti-inflammatory activities of oat [...] Read more.
Background/Objectives: Oats and oat bran are rich in dietary fiber, polyphenols and other phytochemicals. Methods: In this study, we evaluated the phytochemical content and established LPS-induced RAW 264.7 macrophage inflammation and DSS-induced Caco-2 cell inflammation models to investigate the anti-inflammatory activities of oat and oat bran polyphenols and their molecular mechanisms. Results: The results showed that oat and oat bran polyphenols (free and bound polyphenols) enhanced phagocytosis, decreased the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), reduced the production of NO and ROS, increased the mitochondrial membrane potential, and reduced the inflammatory cytokines (TNF-α, IL-1β, and IL-6) at the gene level in the RAW 264.7 macrophage inflammation model induced by LPS expression, thus demonstrating strong anti-inflammatory activity. In Caco-2 cells, oat and oat bran polyphenols pretreatment attenuated the DSS-induced decrease in trans-epithelial electron resistance value, increased tight junction protein expression, and reduced cell permeability in Caco-2 cell monolayers, which in turn reduced inflammatory damage in the organism. Conclusions: In summary, the present study not only reveals the mechanism by which oat and oat bran polyphenols inhibit macrophage inflammation and impairment of intestinal barrier function at defined concentration in vitro, but also highlights potential for oat bran as a functional food. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

21 pages, 1963 KiB  
Article
Elevated Mutation Burdens in Canadian Oat and Wheat Cultivars Released over the Past Century
by Yong-Bi Fu and Carolee Horbach
Cells 2025, 14(11), 844; https://doi.org/10.3390/cells14110844 - 4 Jun 2025
Viewed by 415
Abstract
Modern high-yielding crop cultivars are known to have narrow genetic bases, making them vulnerable to biotic and abiotic stresses. However, little is known about the extent of deleterious genetic variants (or mutation burden) present in these cultivars. An attempt was made using RNA-Seq [...] Read more.
Modern high-yielding crop cultivars are known to have narrow genetic bases, making them vulnerable to biotic and abiotic stresses. However, little is known about the extent of deleterious genetic variants (or mutation burden) present in these cultivars. An attempt was made using RNA-Seq to screen genome-wide deleterious genetic variants in 141 oat and 142 wheat cultivars released through Canadian breeding programs over the past century. The screening identified 5726 and 3022 deleterious genetic variants across all 21 chromosomes of both the oat and wheat genomes, respectively. These deleterious variants were largely harbored in a few cultivars and were involved with diverse biological processes, cellular components, and molecular functions. More highly deleterious variants were predicted in oat, than in wheat, cultivars, and different gene expression profiles at the early seedling stage were observed between oat and wheat cultivars, illustrating different genetic impacts of the oat and wheat breeding programs. Estimating mutation burdens for each cultivar revealed large variations among both the oat and wheat cultivars. These mutation burdens were found to increase from early to recent oat and wheat cultivars and were associated with higher cultivar yields. Genetic analyses also revealed genetic shifts and expansions from early to recent oat and wheat cultivars. These findings provide the first empirical evidence of elevated mutation burdens in Canadian oat and wheat cultivars and are useful for advancing plant breeding programs to minimize genetic risk. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

27 pages, 8811 KiB  
Article
Participation of Wild Species Genus Avena L. (Poaceae) of Different Ploidy in the Origin of Cultivated Species According to Data on Intragenomic Polymorphism of the ITS1-5.8S rRNA Region
by Alexander A. Gnutikov, Nikolai N. Nosov, Igor G. Loskutov, Alexander V. Rodionov and Victoria S. Shneyer
Plants 2025, 14(10), 1550; https://doi.org/10.3390/plants14101550 - 21 May 2025
Viewed by 434
Abstract
The possible origin of four cultivated species of the genus Avena of different ploidy and different subgenome composition (A. strigosa, A. abyssinica, A. byzantina, and A. sativa) from possible wild species was investigated. The region of the internal [...] Read more.
The possible origin of four cultivated species of the genus Avena of different ploidy and different subgenome composition (A. strigosa, A. abyssinica, A. byzantina, and A. sativa) from possible wild species was investigated. The region of the internal transcribed spacer ITS1 and the 5.8S rRNA gene in the cultivated species was studied with next-generation sequencing (NGS), and the patterns of occurrence and distribution of the ribotypes were compared among them and with those of the wild species. According to these data diploid, A. strigosa is more closely related to the diploid A. hirtula than to polyploid oats, and it could have evolved independently of polyploid cultivated species. The tetraploid Avena abyssinica could be a cultivated derivative of A. vaviloviana. Two hexaploid cultivated species, A. byzantina and A. sativa, could have a different origin; A. sativa could be the cultivated form of A. fatua, whereas A. byzantina could originate independently. It was found that the oat species with the A and C subgenomes, even with strong morphological and karyological differences, could intercross and pass the further stages of introgression producing a new stable combination of genomes. Our data show that almost all species of Avena could form an introgressive interspecies complex. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

15 pages, 2078 KiB  
Article
Distinct T Cell Subset Profiles and T-Cell Receptor Signatures in Metabolically Unhealthy Obesity
by Yoona Chung, Ji Yeon Chang, Shindy Soedono, Vivi Julietta, Esther Jin Joo, Soon Hyo Kwon, Sung Il Choi, Yong Jin Kim and Kae Won Cho
Int. J. Mol. Sci. 2025, 26(7), 3372; https://doi.org/10.3390/ijms26073372 - 4 Apr 2025
Viewed by 607
Abstract
Metabolically unhealthy obesity (MUO) is associated with increased inflammation and a higher risk of metabolic disorders compared to metabolically healthy obesity (MHO). T cell dysregulation in blood and adipose tissue may contribute to obesity-induced metabolic dysfunction, yet the characteristics of T cell subset [...] Read more.
Metabolically unhealthy obesity (MUO) is associated with increased inflammation and a higher risk of metabolic disorders compared to metabolically healthy obesity (MHO). T cell dysregulation in blood and adipose tissue may contribute to obesity-induced metabolic dysfunction, yet the characteristics of T cell subset profiles and T-cell receptor (TCR) repertoires in MHO and MUO remain unclear. We analyzed T cell subsets and TCR repertoires in peripheral blood and omental adipose tissue (oAT) from age- and BMI-matched MHO and MUO individuals using flow cytometry and high-throughput TCR sequencing. MUO individuals exhibited a higher proportion of memory CD4+ T cells in both compartments, with an increased frequency of central memory T cells. Circulating CD8+ T cells were increased in MUO, whereas CD8+ T cell subset composition remained unchanged in both blood and oAT. The TCR repertoire in oAT was significantly more restricted than in blood and showed greater skewing in MUO, with selective amplification of specific TRB V genes (TRBV12-4, TRBV18, TRBV7-9) and altered CDR3 length distributions. These findings suggest that distinct CD4+ T cell populations and specific TCR signatures may serve as potential biomarkers for metabolic dysfunction in obesity, providing insights into immune mechanisms underlying the transition from MHO to MUO. Full article
(This article belongs to the Special Issue Obesity: From Molecular Mechanisms to Clinical Aspects)
Show Figures

Figure 1

19 pages, 23074 KiB  
Article
Genome-Wide Analysis of the POD Gene Family in Avena sativa: Insights into Lignin Biosynthesis and Responding to Powdery Mildew
by Miaomiao Huang, Yuanbo Pan, Zeliang Ju and Kuiju Niu
Agronomy 2025, 15(4), 852; https://doi.org/10.3390/agronomy15040852 - 29 Mar 2025
Viewed by 549
Abstract
The class III peroxidase (POD) gene family encodes redox enzymes involved in the catalytic processes of hydrogen peroxide, phenolic compounds, and reactive oxygen species. These enzymes play crucial roles in lignin biosynthesis and stress responses. To explore the functions of the oat ( [...] Read more.
The class III peroxidase (POD) gene family encodes redox enzymes involved in the catalytic processes of hydrogen peroxide, phenolic compounds, and reactive oxygen species. These enzymes play crucial roles in lignin biosynthesis and stress responses. To explore the functions of the oat (Avena sativa) POD (AsPOD) gene family in resistance to powdery mildew, we performed a genome-wide analysis and bioinformatics characterization. A total of 97 AsPOD genes were identified, unevenly distributed across 21 chromosomes. Structural predictions indicated that α-helices are the predominant structural components of AsPOD proteins, and phylogenetic analysis revealed six clades of AsPOD proteins, with high homology to POD proteins in the Poaceae family. Cis-regulatory element analysis revealed that three AsPOD genes are associated with hormone signaling, light response, and stress resistance. Analysis of duplication events in the oat POD gene family indicates that there are a total of 55 pairs of gene segment duplications among the 69 AsPOD genes. Expression profiling of powdery mildew-infected oat varieties showed significant up- or downregulation of several AsPOD genes (AsPOD51, AsPOD55, AsPOD63, AsPOD89), identifying them as key candidates for disease resistance studies. Furthermore, resistant oat varieties exhibited higher lignin content than susceptible ones. Correlation analysis indicated that AsPOD51, AsPOD55, AsPOD63, AsPOD88, and AsPOD89 showed a stronger positive association with lignin content in resistant varieties. After inoculation with the powdery mildew pathogen, the H2O2 content rapidly increases, and POD activity first rises and then decreases. Those findings provide a foundation for further research into the role of AsPOD genes in oat disease resistance. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

15 pages, 6191 KiB  
Article
Genome-Wide Identification and Expression Profile Analysis of the NADPH Oxidase Gene Family in Avena sativa L.
by Qingxue Jiang, Xinyue Zhou, Jun Tang, Dengxia Yi, Lin Ma and Xuemin Wang
Int. J. Mol. Sci. 2025, 26(6), 2576; https://doi.org/10.3390/ijms26062576 - 13 Mar 2025
Viewed by 565
Abstract
The plant respiratory burst oxidase homologs (RBOHs) are crucial enzymes responsible for the production of reactive oxygen species (ROS) in plants, playing a pivotal role in regulating various aspects of plant growth, development, and stress responses. While RBOH family members have [...] Read more.
The plant respiratory burst oxidase homologs (RBOHs) are crucial enzymes responsible for the production of reactive oxygen species (ROS) in plants, playing a pivotal role in regulating various aspects of plant growth, development, and stress responses. While RBOH family members have been identified across a wide range of plant species, the functions and characteristics of the RBOH gene family in oats remain poorly understood. In this study, 35 members of the RBOH gene family in the oat genome were identified using bioinformatics approaches. Conserved motif and gene structure analyses revealed that most AsRBOH genes contain Motif4 and Motif5. Phylogenetic tree analysis demonstrated that the AsRBOHs can be classified into five distinct subfamilies. Synteny analysis indicated that AsRBOHs share the highest number of syntenic gene pairs with wheat. Additionally, cis-regulatory element analysis identified several elements associated with drought and hypoxia-specific responses in AsRBOHs. Expression analysis using qRT-PCR showed that 28 AsRBOH genes were upregulated under drought stress, while 18 were downregulated under salt stress. Notably, the genes 7DG1382190 and 7AG1225850 were found to be involved in both drought and salt stress responses. In conclusion, these findings provide a valuable foundation for future functional studies of the AsRBOH gene family in oats, offering insights that could contribute to the improvement and innovation of oat varieties and germplasm. Full article
(This article belongs to the Special Issue The Role and Mechanism of Hydrogen Sulfide and ROS in Plants)
Show Figures

Figure 1

22 pages, 1379 KiB  
Review
Genetic and Genomic Tools in Breeding for Resistance to Fusarium Stalk Rot in Maize (Zea mays L.)
by Desmond Darko Asiedu and Thomas Miedaner
Plants 2025, 14(5), 819; https://doi.org/10.3390/plants14050819 - 5 Mar 2025
Cited by 1 | Viewed by 3876
Abstract
Maize (Zea mays L.) is the world’s most productive cereal crop, yet it is threatened by several diseases. Among them, Fusarium stalk rot (FSR) causes an average global yield loss of 4.5%. The mycotoxins deoxynivalenol, zearalenone, fumonisins, and moniliformin persist in grain and [...] Read more.
Maize (Zea mays L.) is the world’s most productive cereal crop, yet it is threatened by several diseases. Among them, Fusarium stalk rot (FSR) causes an average global yield loss of 4.5%. The mycotoxins deoxynivalenol, zearalenone, fumonisins, and moniliformin persist in grain and silage after harvest and pose a risk to human and animal health. This review describes the lifestyle of the fungal pathogens that cause FSR, studies how to optimize resistance evaluation, identifies quantitative trait loci (QTLs) and candidate genes (CGs), and, finally, considers the methods for selecting FSR resistance, especially through genomic selection. To screen maize genotypes for FSR resistance, several artificial inoculation methods have been employed in most studies, including toothpick insertion, ball-bearing pellets, root infection, and the oat kernel method. However, these methods have several limitations in effectively inducing FSR disease infection. Needle injection of inoculum into the stem is recommended, especially when combined with a quantitative or percentage scale because it effectively phenotypes maize populations for FSR resistance. Nine studies with larger populations (≥150 progenies) investigated the genetic architecture of FSR resistance. The inheritance is clearly quantitative. Four major QTLs and several minor QTLs are reported to confer resistance to FSR pathogens, and a few CGs have been identified. Genomic selection is recommended as an effective method for developing routinely FSR-resistant maize, but only two studies have explored this area. An omics analysis (proteomics, transcriptomics, and metabolomics) of the expression of candidate genes should validate their role in FSR resistance, and their use might accelerate selection. Full article
(This article belongs to the Special Issue Disease Resistance Breeding of Field Crops)
Show Figures

Figure 1

28 pages, 13856 KiB  
Article
Utilizing Multi-Omics Analysis to Elucidate the Molecular Mechanisms of Oat Responses to Drought Stress
by Xiaojing Chen, Jinghui Liu, Baoping Zhao, Junzhen Mi and Zhongshan Xu
Plants 2025, 14(5), 792; https://doi.org/10.3390/plants14050792 - 4 Mar 2025
Cited by 1 | Viewed by 732
Abstract
The oat is a crop and forage species with rich nutritional value, capable of adapting to various harsh growing environments, including dry and poor soils. It plays an important role in agricultural production and sustainable development. However, the molecular mechanisms underlying the responses [...] Read more.
The oat is a crop and forage species with rich nutritional value, capable of adapting to various harsh growing environments, including dry and poor soils. It plays an important role in agricultural production and sustainable development. However, the molecular mechanisms underlying the responses of oat to drought stress remain unclear, warranting further research. In this study, we conducted a pot experiment with the drought-resistant cultivar JiaYan 2 (JIA2) and water-sensitive cultivar BaYou 9 (BA9) during the booting stage under three water gradient treatment conditions: 30% field capacity (severe stress), 45% field capacity (moderate stress), and 70% field capacity (normal water supply). After 7 days of stress, root samples were collected for transcriptome and proteome analyses. Transcriptome analysis revealed that under moderate stress, JIA2 upregulated 1086 differential genes and downregulated 2919 differential genes, while under severe stress, it upregulated 1792 differential genes and downregulated 4729 differential genes. Under moderate stress, BA9 exhibited an upregulation of 395 differential genes, a downregulation of 669, and an upregulation of 886 differential genes, and it exhibited 439 downregulations under severe stress. Under drought stress, most of the differentially expressed genes (DEGs) specific to JIA2 were downregulated, mainly involving redox reactions, carbohydrate metabolism, plant hormone signal regulation, and secondary metabolism. Proteomic analysis revealed that in JIA2, under moderate stress, 489 differential proteins were upregulated and 394 were downregulated, while 493 differential proteins were upregulated and 701 were downregulated under severe stress. In BA9, 590 and 397 differential proteins were upregulated under moderate stress, with 126 and 75 upregulated differential proteins under severe stress. Correlation analysis between transcriptomics and proteomics demonstrated that compared with no drought stress, four types of differentially expressed proteins (DEPs) were identified in the JIA2 differential gene–protein interaction network analysis under severe stress. These included 13 key cor DEGs and DEPs related to plant hormone signal transduction, biosynthesis of secondary metabolites, carbohydrate metabolism processes, and metabolic pathways. The consistency of gene and protein expression was validated using qRT-PCR, indicating their key roles in the strong drought resistance of JIA2. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

24 pages, 3411 KiB  
Article
Comparative Analysis of Proximal Tubule Cell Sources for In Vitro Studies of Renal Proximal Tubule Toxicity
by Courtney Sakolish, Han-Hsuan D. Tsai, Hsing-Chieh Lin, Piyush Bajaj, Remi Villenave, Stephen S. Ferguson, Jason P. Stanko, Richard A. Becker, Philip Hewitt, Weihsueh A. Chiu and Ivan Rusyn
Biomedicines 2025, 13(3), 563; https://doi.org/10.3390/biomedicines13030563 - 24 Feb 2025
Cited by 1 | Viewed by 1155
Abstract
Background/Objectives: The kidneys are essential for eliminating drugs and chemicals from the human body and renal epithelial cells are particularly vulnerable to damage caused by xenobiotics and their metabolites. Drug-induced kidney toxicity is a major cause of drug attrition during preclinical and clinical [...] Read more.
Background/Objectives: The kidneys are essential for eliminating drugs and chemicals from the human body and renal epithelial cells are particularly vulnerable to damage caused by xenobiotics and their metabolites. Drug-induced kidney toxicity is a major cause of drug attrition during preclinical and clinical development and the ability to predict renal toxicity remains a pressing challenge, necessitating more predictive in vitro models. However, the abundance of commercially available renal proximal tubule epithelial cell (RPTEC) sources complicates the selection of the most predictive cell types. Methods: This study compared a wide range of RPTEC sources, including primary cells (Lonza) and various RPTEC lines from different vendors, such as ciPTECs (Cell4Pharma), TERT1/RPTECs (ATCC), and HEK293 (GenoMembrane), including OAT1-overexpressing variants. HepG2 cells were included for a comparison of organ specificity. The different cells were cultured in 96- or 384-well plates and exposed to 12 drugs for 72 h at a concentration yielding a response (0.3–300 µM) to evaluate their ability to predict clinical outcomes. The CellTiterGlo® assay was used to measure cell viability, and transcriptome data from unexposed cells was analyzed using the TempO-seq® S1500+ platform. Results: Gene expression data showed that the primary kidney cells most closely matched the transcriptome of the human kidney medulla, followed by the TERT1 and ciPTEC lines, with the HEK lines showing the lowest similarity. The RPTEC sources showed clustering by cell type, with OAT1 overexpression driving changes in metabolic, detoxification, and immune pathways, especially in TERT1 cells. Cell viability data were used to determine points of departure (PODs) which were compared to human serum Cmax values to assess safety margins. The TERT1 and ciPTEC RPTEC lines demonstrated the highest predictive performance for nephrotoxicity, with OAT1 overexpression significantly enhancing sensitivity, accuracy, and overall predictive power (MCC scores: 0.764 and 0.667, respectively). In contrast, HepG2 cells showed the lowest performance across all metrics, highlighting the critical role of cell type and transporter expression in nephrotoxicity prediction. Conclusions: This study highlights important differences among RPTEC sources and their utility in drug safety studies of the renal proximal tubule. We show that while improved cell options for renal proximal tubule are needed, OAT1-overexpressing RPTECs are a superior model to the background cell type. Full article
Show Figures

Figure 1

15 pages, 3081 KiB  
Article
Biocontrol of Seedborne Fungi on Small-Grained Cereals Using Bacillus halotolerans Strain B33
by Tatjana Popović Milovanović, Renata Iličić, Ferenc Bagi, Goran Aleksić, Nenad Trkulja, Vojislav Trkulja and Aleksandra Jelušić
J. Fungi 2025, 11(2), 144; https://doi.org/10.3390/jof11020144 - 13 Feb 2025
Cited by 1 | Viewed by 968
Abstract
The development of biological pesticides is rapidly becoming an integral aspect of pest management in sustainable agriculture. This study was conducted to evaluate the effectiveness of Bacillus halotolerans strain B33 against three common seedborne fungal pathogens—Fusarium graminearum, Alternaria alternata, and [...] Read more.
The development of biological pesticides is rapidly becoming an integral aspect of pest management in sustainable agriculture. This study was conducted to evaluate the effectiveness of Bacillus halotolerans strain B33 against three common seedborne fungal pathogens—Fusarium graminearum, Alternaria alternata, and Aspergillus flavus. B33 strain identity was determined using the 16S rRNA and tuf gene sequences. Commercial wheat, barley, oat, and rye seeds were artificially infected by fungal isolates and then treated with B33 overnight culture in Nutrient Broth. The obtained results indicate high efficacy against F. graminearum (83.55–94.38%) and A. alternata (85.05–96.70%), whereby the highest efficacy was noted on wheat seed and the lowest was detected on rye seed. On the other hand, B33 achieved 100% efficacy against A. flavus on barley, rye, and oat seeds, while being 96.24% effective against this pathogen on wheat. Principal component analysis indicated the highest treatment influence on A. flavus. The effect of all tested treatments on seed germination was statistically significant compared to the controls, whereby the number of germinated seeds declined as the seed infection rate increased. B. halotolerans strain B33 effectively managed seedborne fungal pathogens, thereby enhancing seed germination. Full article
(This article belongs to the Special Issue Crop Fungal Diseases Management)
Show Figures

Figure 1

Back to TopTop