Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (526)

Search Parameters:
Keywords = Nontargeted metabolomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1891 KB  
Article
Transcriptomic and Metabolomic Analyses Reveal Differing Phytohormone Regulation in Rhododendron Cultivars in Response to Azalea Lace Bug (Stephanitis pyrioides)
by Bei He, Yu Peng, Jun Tong, Dongyun Xu, Yanfang Dong, Yuan Zhou, Yanping Tang, Si Zhang, Linchuan Fang and Jing Mao
Horticulturae 2025, 11(9), 1005; https://doi.org/10.3390/horticulturae11091005 - 24 Aug 2025
Abstract
Rhododendron spp., valuable ornamental plants, frequently suffer from infestations of the azalea lace bug (Stephanitis pyrioides Scott, ALB). However, the hormonal regulatory mechanisms underlying Rhododendron defense against ALB are not well understood. In this study, integrated transcriptomic and metabolomic analyses were performed [...] Read more.
Rhododendron spp., valuable ornamental plants, frequently suffer from infestations of the azalea lace bug (Stephanitis pyrioides Scott, ALB). However, the hormonal regulatory mechanisms underlying Rhododendron defense against ALB are not well understood. In this study, integrated transcriptomic and metabolomic analyses were performed to investigate the phytohormone responses under ALB stress in two Rhododendron cultivars with distinct insect susceptibility: the resistant ‘Taile’ (TL), and the susceptible ‘Yanzhimi’ (YZM). Transcriptomic sequencing identified 10,052 and 3113 differentially expressed genes (DEGs) in ‘TL’ and ‘YZM’, respectively, after ALB infestation. KEGG pathway enrichment analysis revealed that the DEGs in ‘TL’ were significantly enriched in hormone signal transduction pathways, including gibberellin (GA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH), with 21 out of 25 hormone-related DEGs being upregulated. In contrast, ‘YZM’ exhibited 18 upregulated and 13 downregulated DEGs and suppressed auxin and cytokinin signaling. Non-targeted metabolomic analysis detected increased indole-3-acetic acid (IAA), abscisic acid (ABA), and jasmonoyl–isoleucine (JA-Ile) levels in both cultivars. ‘TL’ also showed elevated levels of SA precursor (benzoic acid) and ethylene precursor (1-aminocyclopropane-1-carboxylate, ACC). These findings indicate that ALB infestation induces endogenous hormone signaling-related genes in Rhododendron leaves and regulates hormones such as SA and JA to counteract insect stress. This study provides theoretical insights into the molecular mechanisms of Rhododendron defense against insect herbivory and lays the foundation for breeding resistant cultivars. Full article
Show Figures

Figure 1

21 pages, 9573 KB  
Article
Comparative Phytochemical Analysis of Gastrodiae Rhizoma Peel and Core and Their Lifespan-Extending Potential in Caenorhabditis elegans
by Baoshan Li, Ke Mo, Lipeng Zhou, Yanjun Wang, Yaping Li, Wei Zhang, Chenghao Zhu and Zhirong Sun
Molecules 2025, 30(17), 3474; https://doi.org/10.3390/molecules30173474 - 23 Aug 2025
Viewed by 50
Abstract
Gastrodiae Rhizoma (tianma, TM), a traditional medicine that has food and medicine homology, faces controversy over retaining its epidermis (tianma pi, TP) during processing due to unclear phytochemical value. This study presents the first integrated approach combining GC–IMS, UHPLC–MS, and Caenorhabditis elegans ( [...] Read more.
Gastrodiae Rhizoma (tianma, TM), a traditional medicine that has food and medicine homology, faces controversy over retaining its epidermis (tianma pi, TP) during processing due to unclear phytochemical value. This study presents the first integrated approach combining GC–IMS, UHPLC–MS, and Caenorhabditis elegans (C. elegans) aging models to compare TP with the tuber core (tianma xin, TX). The results include the following: (1) A total of forty-seven volatile compounds were identified by GC–IMS, including 12 key aroma substances via relative odor activity value (ROAV ≥ 1), of which seven ((Z)-4-heptenal, β-citronellol, hexanal, 1-pentanol, 1-octen-3-one, 2-methylpropanol, and 2-butanone) were enriched in TP. (2) Non-targeted metabolomics revealed 1025 metabolites via UHPLC–MS, highlighting phenylpropanoid biosynthesis as the primary differential pathway (p < 0.05). Phenylpropanoids and polyketides exhibited predominant enrichment in TP (|log2FC| > 2, VIP > 1, p < 0.01). (3) In C. elegans models, TP outperformed TX in pharyngeal pumping (4.16%, p < 0.05), while both extended stress-resistant lifespan (p < 0.01). In conclusion, TP plays an essential role in establishing the characteristic odor profile of TM and retaining bioactive components, particularly phenylpropanoids. Preserving TP during processing optimally maintains the distinctive aroma profile and pharmacological value of TM, which provides valuable guidance for industrial utilization. Full article
Show Figures

Figure 1

22 pages, 7786 KB  
Article
Exploring the In Vitro Mechanism of Action of β-Acetoxyisovalerylalkannin on Inflammatory Skin Diseases Using Network-Based Pharmacology and Non-Targeted Metabolomics
by Yinglan Ma, Xuehong Ma, Yue Ma, Liuqian Peng, Zixin Zhang, Jinyan Li, Lu Zhang and Jianguang Li
Pharmaceuticals 2025, 18(9), 1249; https://doi.org/10.3390/ph18091249 - 22 Aug 2025
Viewed by 132
Abstract
Objective: Lithospermum erythrorhizon has been extensively used for the clinical treatment of skin diseases, but its material basis and mechanism of action remain unclear. This study integrates network pharmacology, untargeted metabolomics, and in vitro experimental validation to elucidate the anti-inflammatory effects and underlying [...] Read more.
Objective: Lithospermum erythrorhizon has been extensively used for the clinical treatment of skin diseases, but its material basis and mechanism of action remain unclear. This study integrates network pharmacology, untargeted metabolomics, and in vitro experimental validation to elucidate the anti-inflammatory effects and underlying mechanisms of β-acetoxyisovalerylalkannin, a bioactive naphthoquinone compound isolated from Arnebiae Radix, using inflammatory skin disease models. Methods: Core targets for β-Acetoxyisovalerylalkannin and skin inflammation were identified via network pharmacology and validated through molecular docking. In vitro assays assessed β-Acetoxyisovalerylalkannin’s impact on keratinocyte proliferation, migration, apoptosis, and inflammatory factors (CXCL1, CXCL2, CXCL8, CCL20, IFN-γ, MCP-1, TNF-α, NF-κB). Non-targeted metabolomics identified differential metabolites and pathways. Results: Network pharmacology revealed 66 common targets significantly enriched in the MAPK/STAT3 signaling pathway. In vitro, β-Acetoxyisovalerylalkannin suppressed proliferative viability and hypermigration and induced apoptosis in HaCaTs. Moreover, it downregulated the mRNA levels of inflammatory markers (CXCL1, CXCL2, CXCL8, CCL20, IFN-γ, MCP-1, TNF-α, and NF-κB) by inhibiting the activation of the MAPK/STAT3 signaling pathway. Metabolomics identified 177 modified metabolites, associating them with the arginine/proline, glycine/serine/threonine, glutathione, and nitrogen metabolic pathways. Conclusions: β-Acetoxyisovalerylalkannin exerts protective effects against skin inflammation by reducing abnormal cell proliferation and inflammatory responses, promoting apoptosis, and effectively improving the metabolic abnormalities of HaCaTs. β-Acetoxyisovalerylalkannin is, therefore, a potential therapeutic option for mitigating skin inflammation-related damage. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 6299 KB  
Article
Qualitative and Quantitative Metabolite Comparison of Grain, Persimmon, and Apple Vinegars with Antioxidant Activities
by Hyun-Ji Tak, Sowon Yang, So-Young Kim, Na-Rae Lee and Choong Hwan Lee
Antioxidants 2025, 14(8), 1029; https://doi.org/10.3390/antiox14081029 - 21 Aug 2025
Viewed by 398
Abstract
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome [...] Read more.
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome analyses. We profiled non-volatile and volatile metabolites using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultra-high-performance liquid chromatography–orbitrap–tandem mass spectrometry, and headspace–solid-phase microextraction–GC-TOF-MS. Among the 132 identified metabolites, 73 non-volatile and 40 volatile metabolites showed significant differences across the three vinegar types. Amino acids, hydroxy fatty acids, phenolic compounds, aldehydes, pyrazines, and sulfides were abundant in GV. Some phenolic compounds, alcohols, and esters were abundant in PV, whereas carbohydrates, flavonoids, and terpenoids were abundant in AV, contributing to nutrients, tastes, and flavors. Bioactivity assays revealed that GV showed notable antioxidant activity, whereas PV and AV had the highest total phenolic and flavonoid contents, respectively. Through quantitative analysis, we revealed that acetic acid, propionic acid, butanoic acid, lactic acid, and alanine were major components in the three types of vinegar, although their composition was different in each vinegar. Our comprehensive qualitative and quantitative metabolite comparison provides insights into the differences among the three vinegar types, classified according to their raw materials. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

16 pages, 3032 KB  
Article
Non-Targeted Metabolomics Analysis of Metabolic Differences Between Different Concentrations of Protein Diets in the Longest Dorsal Muscle of Tibetan Pigs
by Feifan Zhang, Jinhui Liang, Hongliang Zhang, Mengqi Duan, Dong Yang, Chamba Yangzom and Peng Shang
Metabolites 2025, 15(8), 555; https://doi.org/10.3390/metabo15080555 - 19 Aug 2025
Viewed by 187
Abstract
Background/Objectives: The aim of this study was to explore the effects of diets with different protein levels on the metabolite composition and metabolic pathways of the longest dorsal muscle of Tibetan pigs, in order to provide a metabolic basis for optimizing the nutritional [...] Read more.
Background/Objectives: The aim of this study was to explore the effects of diets with different protein levels on the metabolite composition and metabolic pathways of the longest dorsal muscle of Tibetan pigs, in order to provide a metabolic basis for optimizing the nutritional regulation strategy of Tibetan pigs. Methods: A total of 32 healthy 180-day-old depopulated male Tibetan pigs were randomly divided into four groups and fed diets with protein levels of 10%, 12%, 14%, and 16%, respectively, with a feeding cycle of 8 weeks. The longest dorsal muscle samples were collected, and their metabolic profiles were systematically analyzed by LC-MS non-targeted metabolomics. Results: The TIC plots of the quality control samples were highly overlapped, indicating a stable instrumental detection process and good consistency of sample processing. Principal component analysis and orthogonal partial least squares discriminant analysis revealed significant metabolic differences between groups with different protein levels. A total of multiple differential metabolites was obtained based on VIP value and p-value screening, and Venn diagram analysis revealed a total of 11 metabolites among the three comparative groups, suggesting that they may have key roles in the protein regulation process. Volcano plots further clarified the number and trend of significantly up- and down-regulated metabolites in each group. KEGG pathway enrichment analysis showed that, with the elevation of protein level, the metabolic pathway response showed a tendency of expanding from basal energy metabolism to the complex network of amino acid synthesis, steroidogenesis, endocrine signaling, and detoxification pathways, especially in the high-protein-treated group. Conclusions: The study showed that different protein intake levels could significantly regulate the metabolites and key metabolic pathways in the longest muscle of Tibetan pigs, which provided theoretical support for the scientific formulation of a protein supply program to optimize the quality and growth performance of Tibetan pork. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

16 pages, 3190 KB  
Article
GC-MS Non-Target Metabolomics-Based Analysis of the Volatile Aroma in Cerasus humilis After Grafting with Different Rootstocks
by Gaixia Qiao, Jun Xie, Chun’e Zhang, Yujuan Liu, Xiaojing Guo, Qiaoxia Jia, Caixia Zhang and Meilong Xu
Horticulturae 2025, 11(8), 972; https://doi.org/10.3390/horticulturae11080972 - 16 Aug 2025
Viewed by 266
Abstract
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas [...] Read more.
C. humilis is a small shrub belonging to the Rosaceae family, and grafting is one of the main ways for propagation. However, the influence of different rootstocks on volatile aroma is still unclear. In this study, an untargeted metabolomics approach based on gas chromatography–mass spectrometry (GC-MS) was utilized to analyze the volatile differential metabolites between the rootstock–scion combinations and self-rooted seedlings. Furthermore, metabolic pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In total, 191,162 and 150 volatile differential metabolites were identified in different rootstock–scion combinations. The rootstock–scion combinations of ZG/MYT and ZG/BT could improve the volatile aroma in the fruit of C. humilis and made significant contributions to the rose and fruity flavors. KEGG pathway analysis indicated that the differential metabolites were mainly enriched in the butanoate metabolism and glycolysis/gluconeogenesis pathways, showing an increasing trend. Prunus tomentosa and Amygdalus communis can serve as preferred rootstocks for enhancing the aroma quality of C. humilis fruits. These results provide new insight into rootstock-based propagation and breeding and also offer some guidance for graft-based fruit production. Full article
(This article belongs to the Special Issue Genetic Breeding and Germplasm Resources of Fruit and Vegetable Crops)
Show Figures

Figure 1

17 pages, 8385 KB  
Article
The Characterization and Identification of Cyperus Protein: An In Vitro Study on Its Antioxidant and Anti-Inflammatory Potential
by Qian Zhang, Chaoyue Ma, Xiaotong Wu and Huifang Hao
Nutrients 2025, 17(16), 2633; https://doi.org/10.3390/nu17162633 - 14 Aug 2025
Viewed by 334
Abstract
Background: Oxidative stress and inflammation are major drivers of metabolic inflammatory diseases, and natural antioxidant peptides represent promising therapeutic agents. Antioxidant peptides derived from Cyperus protein (CAOP) exhibit high digestibility and bioavailability, but their antioxidant and anti-inflammatory mechanisms remain unclear. Methods: We employed [...] Read more.
Background: Oxidative stress and inflammation are major drivers of metabolic inflammatory diseases, and natural antioxidant peptides represent promising therapeutic agents. Antioxidant peptides derived from Cyperus protein (CAOP) exhibit high digestibility and bioavailability, but their antioxidant and anti-inflammatory mechanisms remain unclear. Methods: We employed in vitro experiments, non-targeted metabolomics, peptide omics, and molecular docking techniques to explore how CAOP exerts dual antioxidant and anti-inflammatory effects. Results: The in vitro experiments showed that in LPS-induced RAW264.7 cells, CAOP not only significantly increased the levels of superoxide dismutase (SOD) and catalase (CAT) but also significantly reduced the gene expression and secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as the phagocytic ability of cells. Metabolomics studies indicate that CAOP protects cells from LPS-induced damage by enhancing intracellular glutathione metabolism pathways, glyceraldehyde and dicarboxylic acid metabolism pathways, pantothenic acid and coenzyme A biosynthesis metabolism pathways, and thiamine metabolism pathways while inhibiting the ferroptosis pathway. CAOP was purified using Sephadex G-25 column chromatography, and its amino acid sequence was determined using LC-MS/MS technology. Subsequently, 25 peptide sequences were screened through bioinformatics analysis. These peptides can target Keap1. Among them, DLHMFVWS (-ICE = 62.8072) and LGHPWGNAPG (-ICE = 57.4345) are most likely to activate the Nrf2-Keap1 pathway. Conclusions: CAOP exerts antioxidant and anti-inflammatory effects by regulating the key metabolic networks, demonstrating its therapeutic promise for associated with oxidative damage and metabolic inflammation disorders. Full article
(This article belongs to the Special Issue Antioxidants in Metabolic Disorders and Inflammatory Diseases)
Show Figures

Figure 1

28 pages, 9356 KB  
Article
Integrated Microbiome–Metabolome Analysis and Functional Strain Validation Reveal Key Biochemical Transformations During Pu-erh Tea Pile Fermentation
by Mengkai Hu, Huimin Zhang, Leisa Han, Wenfang Zhang, Xinhui Xing, Yi Wang, Shujian Ou, Yan Liu, Xiangfei Li and Zhenglian Xue
Microorganisms 2025, 13(8), 1857; https://doi.org/10.3390/microorganisms13081857 - 8 Aug 2025
Viewed by 368
Abstract
Fermentation plays a pivotal role in shaping the flavor and overall quality of Pu-erh tea, a microbially fermented dark tea. Here, we monitored physicochemical properties, chemical constituents, and microbial succession at 15 fermentation time points. Amplicon sequencing identified Staphylococcus, Bacillus, Kocuria [...] Read more.
Fermentation plays a pivotal role in shaping the flavor and overall quality of Pu-erh tea, a microbially fermented dark tea. Here, we monitored physicochemical properties, chemical constituents, and microbial succession at 15 fermentation time points. Amplicon sequencing identified Staphylococcus, Bacillus, Kocuria, Aspergillus, Blastobotrys, Thermomyces, and Rasamsonia as dominant genera, with prokaryotic communities showing greater richness and diversity than eukaryotic ones. Beta diversity and clustering analyses revealed stable microbial structures during late fermentation stages. Non-targeted metabolomics detected 347 metabolites, including 56 significantly differential compounds enriched in caffeine metabolism and unsaturated fatty acid biosynthesis. Fermentation phases exhibited distinct metabolic patterns, with volatile aroma compounds (2-acetyl-1-pyrroline, 2,5-dimethylpyrazine) and health-beneficial fatty acids (linoleic acid, arachidonic acid) accumulating in later stages. OPLS-DA and KEGG PATHWAY analyses confirmed significant shifts in metabolite profiles relevant to flavor and biofunctionality. RDA revealed strong correlations between microbial taxa, environmental parameters, and representative metabolites. To functionally verify microbial contributions, 17 bacterial and 10 fungal strains were isolated. Six representative strains, mainly Bacillus and Aspergillus, exhibited high enzymatic activity on macromolecules, confirming their roles in polysaccharide and protein degradation. This integrative multi-omics investigation provides mechanistic insights into Pu-erh tea fermentation and offers a scientific basis for microbial community optimization in tea processing. Full article
(This article belongs to the Special Issue Resource Utilization of Microorganisms: Fermentation and Biosynthesis)
Show Figures

Figure 1

13 pages, 1232 KB  
Article
Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells
by Yu Han, Bo Yu, Wenao Weng, Liangyu Shi and Jing Zhang
Animals 2025, 15(15), 2324; https://doi.org/10.3390/ani15152324 - 7 Aug 2025
Viewed by 222
Abstract
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability [...] Read more.
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability in a concentration- and time-dependent manner. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) revealed distinct metabolic profiles between control and DON-treated groups. Metabolomic analysis identified 127 differential metabolites (VIP > 1, p < 0.05), primarily in purine metabolism, glutathione metabolism, and arginine–proline metabolism. Integration with transcriptomic data confirmed that these pathways play key roles in DON-induced immunotoxicity. Specifically, changes in purine metabolism suggested disrupted nucleotide synthesis and energy balance, while glutathione depletion indicated weakened antioxidant defense. These findings provided a systems biology perspective on DON’s metabolic reprogramming of immune cells and identified potential therapeutic targets to reduce mycotoxin-related immunosuppression in swine. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

20 pages, 4580 KB  
Article
Increased Oxygen Treatment in the Fermentation Process Improves the Taste and Liquor Color Qualities of Black Tea
by Xinfeng Jiang, Xin Lei, Chen Li, Lixian Wang, Xiaoling Wang and Heyuan Jiang
Foods 2025, 14(15), 2736; https://doi.org/10.3390/foods14152736 - 5 Aug 2025
Viewed by 423
Abstract
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation [...] Read more.
Black tea is widely consumed worldwide, and its characteristic taste and color result from fermentation, where polyphenols are enzymatically oxidized to generate major pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). This study investigated the effects of increased oxygen treatment during fermentation on the flavor attributes and chemical properties of Congou black tea. Fresh tea leaves (variety “Fuyun 6”) were subjected to four oxygen treatments: 0 h (CK), 1 h (TY-1h), 2 h (TY-2h), and 3 h (TY-3h), with oxygen supplied at 8.0 L/min. Sensory evaluation revealed that oxygen-treated samples exhibited tighter and deeper-colored leaves, a redder liquor, fuller taste, and a sweeter fragrance compared with CK. Chromatic analysis showed significant increases in redness (a*) and luminance (L*), alongside reduced yellowness (b*), indicating enhanced liquor color. Chemical analyses demonstrated elevated levels of TFs, TRs, and TBs in oxygen treatments, with TRs showing the most pronounced increase. Non-targeted metabolomics identified 2318 non-volatile and 761 volatile metabolites, highlighting upregulated flavonoids, phenolic acids, and lipids, and downregulated catechins and tannins, which collectively contributed to improved taste and aroma. Optimal results were achieved with 2–3 h of oxygen treatment, balancing pigment formation and sensory quality. These findings can provide a scientific basis for optimizing oxygen conditions in black tea fermentation to improve product quality. Full article
(This article belongs to the Collection Advances in Tea Chemistry)
Show Figures

Figure 1

16 pages, 1213 KB  
Article
Elucidating Volatile Flavor Profiles and Metabolic Pathways in Northern Pike (Esox lucius) During Superchilled Storage: A Combined UPLC-Q-TOF/MS and GC-MS Approach
by Shijie Bi, Na Li, Gao Gong, Peng Gao, Jinfang Zhu and Batuer Abulikemu
Foods 2025, 14(15), 2556; https://doi.org/10.3390/foods14152556 - 22 Jul 2025
Viewed by 408
Abstract
Temperature is the most critical factor in fish preservation. Superchilled storage represents a novel technology that effectively retards quality deterioration in aquatic products. This study investigated the flavor variation patterns and deterioration mechanisms in 16 northern pike (Esox lucius) samples during [...] Read more.
Temperature is the most critical factor in fish preservation. Superchilled storage represents a novel technology that effectively retards quality deterioration in aquatic products. This study investigated the flavor variation patterns and deterioration mechanisms in 16 northern pike (Esox lucius) samples during superchilled storage (−3 °C) based on analysis using gas chromatography-ion mobility spectrometry (GC-IMS) and ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The results indicate that GC-MS analysis identified 25 key volatile flavor compounds. These comprised seven ketones, thirteen alcohols, aldehydes including 2-methylbutanal, esters such as 2-heptyl acetate and methyl butyrate, as well as nitrogen-containing compounds, exemplified by pyrazines and indole. Non-targeted metabolomics further revealed four pivotal metabolic pathways, glycerophospholipid metabolism, purine metabolism, the pentose phosphate pathway, and arginine biosynthesis. These metabolic pathways were found to regulate flavor changes through modulation of lipid oxidation, nucleotide degradation, and amino acid metabolism. Notably, the arginine biosynthesis pathway exhibited significant correlations with the development of characteristic cold-storage off-flavors, mediated by glutamate accumulation and fumarate depletion. This investigation provided a theoretical foundation for optimizing preservation strategies in cold-water fish species at the molecular level. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

23 pages, 14728 KB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 448
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

22 pages, 5356 KB  
Article
Seaweed, Used as a Water-Retaining Agent, Improved the Water Distribution and Myofibrillar Protein Properties of Plant-Based Yak Meat Burgers Before and After Freeze–Thaw Cycles
by Yujiao Wang, Xinyi Chang, Yingzhen Wang, Jiahao Xie, Ge Han and Hang Qi
Foods 2025, 14(14), 2541; https://doi.org/10.3390/foods14142541 - 21 Jul 2025
Viewed by 535
Abstract
This study investigated quality changes in seaweed–yak patties before and after freeze–thaw by varying seaweed addition levels (10–70%). Macroscopically, the effects on water-holding capacity, textural properties, and oxidative indices of restructured yak patties were evaluated. Microscopically, the impact of seaweed-derived bioactive ingredients on [...] Read more.
This study investigated quality changes in seaweed–yak patties before and after freeze–thaw by varying seaweed addition levels (10–70%). Macroscopically, the effects on water-holding capacity, textural properties, and oxidative indices of restructured yak patties were evaluated. Microscopically, the impact of seaweed-derived bioactive ingredients on patty microstructure and myofibrillar protein characteristics was examined. LF-NMR and MRI showed that 40% seaweed addition most effectively restricted water migration, reduced thawing loss, and preserved immobilized water content. Texture profile analysis (TPA) revealed that moderate seaweed levels (30–40%) enhanced springiness and minimized post-thaw hardness increases. SEM confirmed that algal polysaccharides formed a denser protective network around the muscle fibers. Lipid oxidation (MDA), free-radical measurements, and non-targeted metabolomics revealed a significant reduction in oxidative damage at 40% seaweed addition, correlating with increased total phenolic content. Protein analyses (particle size, zeta potential, hydrophobicity, and SDS-PAGE) demonstrated a cryoprotective effect of seaweed on myofibrillar proteins, reducing aggregation and denaturation. These findings suggest that approximately 40% seaweed addition can improve the physicochemical stability and antioxidant capacity of frozen seaweed–yak meat products. This work thus identifies the optimal seaweed addition level for enhancing freeze–thaw stability and functional quality, offering practical guidance for the development of healthier, high-value restructured meat products. Full article
Show Figures

Figure 1

20 pages, 7380 KB  
Article
Copper Pyrithione Induces Hepatopancreatic Apoptosis and Metabolic Disruption in Litopenaeus vannamei: Integrated Transcriptomic, Metabolomic, and Histopathological Analysis
by Jieyu Guo, Yang Yang, Siying Yu, Cairui Jiang, Xianbin Su, Yongfeng Zou and Hui Guo
Animals 2025, 15(14), 2134; https://doi.org/10.3390/ani15142134 - 18 Jul 2025
Viewed by 337
Abstract
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies [...] Read more.
Copper pyrithione (CuPT), an emerging biocide used in ship antifouling coatings, may accumulate in marine sediments and pose risks to non-target organisms. However, current research on CuPT toxicity remains limited. Litopenaeus vannamei, one of the world’s most important aquaculture shrimp species, relies heavily on its hepatopancreas for energy metabolism, detoxification, and immune responses. Due to their benthic habitat, these shrimps are highly vulnerable to contamination in sediment environments. This study investigated the toxicological response in the hepatopancreas of L. vannamei exposed to CuPT (128 μg/L) for 3 and 48 h. Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) fluorescence staining revealed increased apoptosis, deformation of hepatic tubule lumens, and the loss of stellate structures in the hepatopancreas after CuPT 48 h exposure. A large number of differentially expressed genes (DEGs) were identified by transcriptomics analysis at 3 and 48 h, respectively. Most of these DEGs were related to detoxification, glucose transport, and immunity. Metabolomic analysis identified numerous significantly different metabolites (SDMs) at both 3 and 48 h post-exposure, with most SDMs associated with energy metabolism, fatty acid metabolism, and related pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolomics and transcriptome revealed that both DEGs and SDMs were enriched in arachidonic acid metabolism, fatty acid biosynthesis, and glycolysis/gluconeogenesis pathways at 3 h, while at 48 h they were enriched in the starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, and galactose metabolism pathways. These results suggested that CuPT disrupts the energy and lipid homeostasis of L. vannamei. This disruption compelled L. vannamei to allocate additional energy toward sustaining basal physiological functions and consequently caused the accumulation of large amounts of reactive oxygen species (ROS) in the body, leading to apoptosis and subsequent tissue damage, and ultimately suppressed the immune system and impaired the health of L. vannamei. Our study elucidates the molecular mechanisms of CuPT-induced metabolic disruption and immunotoxicity in L. vannamei through integrated multi-omics analyses, providing new insights for ecological risk assessment of this emerging antifoulant. Full article
(This article belongs to the Special Issue Ecology of Aquatic Crustaceans: Crabs, Shrimps and Lobsters)
Show Figures

Figure 1

16 pages, 2096 KB  
Article
Environmental Antidepressants Disrupt Metabolic Pathways in Spirostomum ambiguum and Daphnia magna: Insights from LC-MS-Based Metabolomics
by Artur Jędreas, Sylwia Michorowska, Agata Drobniewska and Joanna Giebułtowicz
Molecules 2025, 30(14), 2952; https://doi.org/10.3390/molecules30142952 - 13 Jul 2025
Viewed by 599
Abstract
Pharmaceuticals such as fluoxetine, paroxetine, sertraline, and mianserin occur in aquatic environments at low yet persistent concentrations due to their incomplete removal in wastewater treatment plants. Although frequently detected, these neuroactive compounds remain underrepresented in ecotoxicological assessments. Given their pharmacodynamic potency, environmentally relevant [...] Read more.
Pharmaceuticals such as fluoxetine, paroxetine, sertraline, and mianserin occur in aquatic environments at low yet persistent concentrations due to their incomplete removal in wastewater treatment plants. Although frequently detected, these neuroactive compounds remain underrepresented in ecotoxicological assessments. Given their pharmacodynamic potency, environmentally relevant concentrations may induce sublethal effects in non-target organisms. In this study, we applied untargeted LC-MS-based metabolomics to investigate the sublethal effects of four widely used antidepressants—paroxetine, sertraline, fluoxetine (SSRIs), and mianserin (TeCA)—on two ecologically relevant freshwater invertebrates: S. ambiguum and D. magna. Organisms were individually exposed to each compound for 48 h at a concentration of 100 µg/L and 25 µg/L, respectively. Untargeted metabolomics captured the sublethal biochemical effects of these antidepressants, revealing both shared disruptions—e.g., in glycerophospholipid metabolism and cysteine and methionine metabolism—and species-specific responses. More pronounced pathway changes observed in D. magna suggest interspecies differences in metabolic capacity or xenobiotic processing mechanisms between taxa. Among the four antidepressants tested, sertraline in D. magna and fluoxetine in S. ambiguum exerted the most extensive metabolomic perturbations, as evidenced by the highest number and pathway impact scores. In D. magna, fluoxetine and mianserin produced similar metabolic profiles, largely overlapping with those of sertraline, whereas paroxetine affected only a single pathway, indicating minimal impact. In S. ambiguum, paroxetine and mianserin elicited comparable responses, also overlapping with those of fluoxetine, while sertraline triggered the fewest changes. These results suggest both compound-specific effects and a conserved metabolic response pattern among the antidepressants used. They also underscore the considerable potential of metabolomics as a powerful and sensitive tool for ecotoxicological risk assessments, particularly when applied across multiple model organisms to capture interspecies variations. However, further research is essential to identify which specific pathway disruptions are most predictive of adverse effects on organismal health. Full article
(This article belongs to the Special Issue Advances in the Mass Spectrometry of Chemical and Biological Samples)
Show Figures

Graphical abstract

Back to TopTop