Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (385)

Search Parameters:
Keywords = NiII ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4221 KB  
Article
Selective Chloride Removal by a NiFe LDH/BiOCl Composite Film via Electrically Switched Ion Exchange
by Xiangrong Li, Xiaoyang Guo, Xiaowei An, Peifen Wang, Xuli Ma, Xin Du, Xuejin Ren and Xuemei Wang
Separations 2026, 13(2), 47; https://doi.org/10.3390/separations13020047 - 27 Jan 2026
Abstract
The development of electrode materials that combine high capacity with high anion selectivity is critical for chloride separation from complex aqueous matrices. Here, a NiFe LDH/BiOCl composite film electrode was fabricated on carbon paper via sequential electrodeposition and employed for electrically switched ion [...] Read more.
The development of electrode materials that combine high capacity with high anion selectivity is critical for chloride separation from complex aqueous matrices. Here, a NiFe LDH/BiOCl composite film electrode was fabricated on carbon paper via sequential electrodeposition and employed for electrically switched ion exchange (ESIX) of chloride. The composite delivers higher reversible chloride uptake than either NiFe LDH or BiOCl alone under identical electrochemical conditions, together with enhanced selectivity in mixed−anion solutions. Mechanistically, the synergy originates from the combination of (i) the high anion−exchange capacity and redox−tunable layer charge of NiFe LDH and (ii) halide−affinitive BiOCl domains that facilitate voltage−gated uptake/release; the heterointerface further improves charge/ion transport, enabling more effective electrochemical utilization. The electrode maintains stable cycling performance with high regeneration efficiency over repeated ESIX operation. Compared with representative LDH− or BiOX−based ESIX electrodes reported for halide capture, the proposed composite shows competitive chloride selectivity and reversible cycling, supporting its potential for electrochemical separations and water treatment. Full article
(This article belongs to the Topic Sustainable Technologies for Water Purification)
Show Figures

Figure 1

22 pages, 4846 KB  
Article
Carbon-NiTiO2 Nanosorbent as Suitable Adsorbents for the Detoxification of Zn2+ Ions via Combined Metal–Oxide Interfaces
by Azizah A. Algreiby, Abrar S. Alnafisah, Muneera Alrasheedi, Tahani M. Alresheedi, Ajayb Alresheedi, Abuzar Albadri and Abueliz Modwi
Inorganics 2026, 14(2), 36; https://doi.org/10.3390/inorganics14020036 - 26 Jan 2026
Viewed by 10
Abstract
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. [...] Read more.
Metal ions exemplify one of the most harmful and environmentally detrimental contaminants of water systems. This work describes the creation of an innovative chelated carbon-doped nickel and titanium oxide (C-NiTiO2) hybrid as an adsorbent for the effective elimination of metal ions. The dominance of the TiO2 anatase phase with a ≈ 61 nm crystallite size was verified by XRD and Raman investigation. Morphology investigations exposed polygonal nanoparticles consisting of Ti, C, Ni, and O. The nanostructure exhibited a surface area of 17 m2·g−1, a pore diameter of ≈1.5 nm, and a pore volume of 0.0315 cm3·g−1. The nanostructure was evaluated for the elimination of Zn (II) ions from an aqueous solution. The metal ion adsorption onto the hybrid nanomaterial was described and comprehended using adsorption kinetics and equilibrium models. The adsorption data matched well with the pseudo-second-order kinetics and Langmuir adsorption models, indicating a monolayer chemisorption mechanism and achieving a maximum Zn (II) ion elimination of 369 mg·g−1. Mechanistic investigation indicated film diffusion-controlled adsorption through inner-sphere complexation. The nanosorbent could be regenerated and reused for four rounds without appreciable activity loss, thus demonstrating its potential for water cleanup applications. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

14 pages, 769 KB  
Article
Histatin 8 Interactions with Copper, Zinc, and Nickel Ions, and Its Antimicrobial Profile in Relation to Histatin 5
by Justyna Sokołowska, Joanna Słowik, Katarzyna Zamłyńska, Jolanta Kutkowska, Paweł Lenartowicz and Danuta Witkowska
Molecules 2026, 31(1), 110; https://doi.org/10.3390/molecules31010110 - 28 Dec 2025
Viewed by 387
Abstract
Histatins are histidine-rich antimicrobial peptides present in human saliva, with histatin 5 (Hst5) demonstrating the most potent antifungal activity. Previous studies have linked the antifungal properties of histatins, particularly those against Candida species, to their ability to bind metal ions such as Cu(II) [...] Read more.
Histatins are histidine-rich antimicrobial peptides present in human saliva, with histatin 5 (Hst5) demonstrating the most potent antifungal activity. Previous studies have linked the antifungal properties of histatins, particularly those against Candida species, to their ability to bind metal ions such as Cu(II) and Zn(II). While the antimicrobial activity of some histatins is well established, the impact of metal ion coordination on this activity remains an area of ongoing investigation. This study focuses on histatin 8 (Hst8), a less-explored member of the histatin family, and compares its metal-binding and antimicrobial properties to those of Hst5. Using isothermal titration microcalorimetry (ITC), we examined the interactions of Hst8 with Cu(II), Zn(II), and Ni(II) ions and evaluated its antimicrobial activity against Escherichia coli, Staphylococcus aureus and two Candida albicans strains. Our findings revealed significant differences in copper and zinc binding between Hst5 and Hst8, with both peptides exhibiting distinct antifungal profiles. Interestingly, it has been shown that copper ions bind to Hst5 in a distinctly different manner than to Hst8. Hst5 exhibits two binding sites with dissociation constants (KDITC) of 0.2 µM and 14.8 µM, whereas Hst8 has only one set of binding sites with a KDITC of 12.3 µM. These results highlight the potential role of metal ion coordination in modulating the antimicrobial efficacy of histatins, providing further insight into their therapeutic potential. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

39 pages, 4489 KB  
Article
High-Resolution 1H NMR Investigation of the Speciation Status of Nickel(II) and Copper(II) Ions in a Cell Culture Medium: Relevance to Their Toxicological Actions
by Deepinder K. Kalra, Kayleigh Hunwin, Katie Hewitt, Olivia Steel and Martin Grootveld
Molecules 2026, 31(1), 85; https://doi.org/10.3390/molecules31010085 - 24 Dec 2025
Viewed by 461
Abstract
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation [...] Read more.
Copper and nickel ions play pivotal, albeit distinct, roles as essential trace elements in living systems, and primarily serve as co-factors for a range of enzymes. However, as with all trace metal ions, excessive concentrations can exert adverse toxicological properties. Interestingly, the incorporation of these in cell culture media can establish novel chemical interactions, with their speciation status markedly influencing characteristics, including cell maturation, and cellular uptake mechanisms. Thus, the primary objective of this study was to investigate and determine the speciation status (i.e., complexation) of nickel(II) and copper(II) ions by biomolecules present in RPMI 1640 mammalian cell culture medium using virtually non-invasive high-resolution proton NMR analysis, an investigation of much relevance to now routine studies of their toxicological actions towards cultured cells. Samples of the above aqueous culture medium were 1H NMR-titrated with increasing added concentrations of 71–670 µmol/L Ni(II)(aq.), and 0.71–6.7, 7.1–67 and 71–670 µmol/L Cu(II)(aq.), in duplicate or triplicate. 1H NMR spectra were acquired on a JEOL ECZ-600 spectrometer at 298 K. Results demonstrated that addition of increasing concentrations of Ni(II) and Cu(II) ions to the culture medium led to the selective broadening of a series of biomolecule resonances, results demonstrating their complexation by these agents. The most important complexants for Ni(II) were histidine > glutamine > acetate ≈ methionine ≈ lysine ≈ threonine ≈ branched-chain amino acids (BCAAs) > asparagine ≈ aspartate > tyrosine ≈ tryptophan, whereas for Cu(II) they were found to be histidine > glutamine > phenylalanine ≈ tyrosine ≈ nearly all remaining aliphatic metabolites (particularly the wealth of amino acids detectable) > 4-hydroxyphenylacetate (trace culture medium contaminant), in these orders. However, Cu(II) had the ability to influence the linewidths of these signals at much lower added levels (≤7 µmol/L) than that of Ni(II), the broadening effects of the latter occurring at concentrations which were approximately 10-fold greater. Virtually all of these added metal ion-induced resonance modifications were, as expected, reversible on addition of equivalent or excess levels of the chelator EDTA. From this study, changes in the co-ordination sphere of metal ions in physiological environments can give rise to marked modifications in their physicochemical properties (e.g., redox potentials, electronic charges, the potential catalytic generation of reactive oxygen species (ROS), and cell membrane passages). Moreover, given that the above metabolites may also function as potent hydroxyl radical (OH) scavengers, these findings suggest that generation of this aggressively reactive oxidant directly from Cu(II) and Ni(II) ions in physiologically-relevant complexes may be scavenged in a ‘site-dependent’ manner. This study is of further relevance to trace metal ion research in general since it enhances our understanding of the nature of their interactions with culture medium biomolecules, and therefore provides valuable information regarding their overall chemical and biological activities, and toxicities. Full article
Show Figures

Figure 1

23 pages, 5241 KB  
Article
Zeolite Heulandite Modified with N,N′-bis(3-Triethoxysilylpropyl)thiourea—Adsorption of Ni(II) and Cu(II) Ions: A Quantum Chemical Insight into the Mechanism
by Elena G. Filatova, Arailym M. Nalibayeva, Oksana V. Lebedeva, Sergey A. Beznosyuk, Andrey V. Ryabykh, Elizaveta N. Oborina, Yerlan N. Abdikalykov, Mirgul Zh. Turmukhanova, Igor B. Rozentsveig and Sergey N. Adamovich
Molecules 2025, 30(24), 4811; https://doi.org/10.3390/molecules30244811 - 17 Dec 2025
Viewed by 426
Abstract
A new sorption material (GS) was obtained by the modification of heulandite zeolite (G) with N,N′-bis-(3-triethoxysilylpropyl)thiocarbamide (S). The composition, structure, and surface morphology of the GS material were confirmed using elemental analysis, IR-, NMR-spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray [...] Read more.
A new sorption material (GS) was obtained by the modification of heulandite zeolite (G) with N,N′-bis-(3-triethoxysilylpropyl)thiocarbamide (S). The composition, structure, and surface morphology of the GS material were confirmed using elemental analysis, IR-, NMR-spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, and nitrogen adsorption/desorption (BET). The potential of GS as a sorbent for the removal of Cu(II) and Ni(II) ions from concentrated solutions was demonstrated. The nature of the adsorption of Cu(II) and Ni(II) ions was investigated using the Langmuir, Freundlich, and Dubinin–Radushkevich models. The adsorption value of Cu(II) and Ni(II) ions by the GS sorbent was found to be 1.7 and 2.1 times higher than that of heulandite, amounting to 0.128 mmol/g (8.1 mg/g) and 0.214 mmol/g (12.6 mg/g), respectively. The free energy of adsorption E for the adsorption of Cu(II) and Ni(II) ions was determined to be 12.5 and 16.2 kJ/mol, respectively. Calculations of changes in Gibbs energy based on quantum chemical modeling results (ΔG2980 = −38.5 kJ/mol for Ni and ΔG2980 = −56.5 kJ/mol for Cu) confirmed that adsorption of heavy metal ions onto the GS sample occurs through the formation of metal ion coordination complexes with the sorbent’s functional groups (chemosorption). The proposed method of obtaining new sorption materials based on natural heulandite is straightforward and cost-effective, enabling the production of high-capacity sorption products. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

8 pages, 1472 KB  
Proceeding Paper
Chitosan-Based Biosorption: A Sustainable Approach for Heavy Metal Removal from Wastewater
by Imane Lansari, Khadidja Tizaoui and Belkacem Benguella
Chem. Proc. 2025, 18(1), 37; https://doi.org/10.3390/ecsoc-29-26919 - 28 Nov 2025
Viewed by 420
Abstract
This study investigates the application of natural chitosan as an efficient adsorbent for the removal of heavy metals from aqueous solutions. Experimental results showed that Mn(II), Co(II), and Ni(II) ions were effectively retained on the chitosan surface. Kinetic analysis revealed a preferential adsorption [...] Read more.
This study investigates the application of natural chitosan as an efficient adsorbent for the removal of heavy metals from aqueous solutions. Experimental results showed that Mn(II), Co(II), and Ni(II) ions were effectively retained on the chitosan surface. Kinetic analysis revealed a preferential adsorption order of Co(II) > Mn(II) > Ni(II), following a pseudo-second-order model with rapid kinetics. Equilibrium adsorption capacities were influenced by initial concentration, temperature, and pH. Thermodynamic analysis indicated that the adsorption process was exothermic and physical in nature. Overall, chitosan proved to be a promising and cost-effective adsorbent for water decontamination. Full article
Show Figures

Figure 1

18 pages, 2584 KB  
Article
Analysis of the Response of Chlamydomonas reinhardtii to Cobalt Ions Reveals the Protective Role of Thiols, Ascorbate, and Prenyllipid Antioxidants, and the Negative Impact of Cobalt Toxicity on Photoprotective Mechanisms
by Aylin Kökten and Beatrycze Nowicka
Plants 2025, 14(22), 3496; https://doi.org/10.3390/plants14223496 - 16 Nov 2025
Viewed by 508
Abstract
Cobalt (Co) is an essential micronutrient for many organisms, but, at higher concentrations, it becomes harmful, primarily due to competitive interactions with other metal ions. Enzyme inhibition and disruption of nutrient homeostasis may lead to oxidative stress in Co-exposed cells. Compared to other [...] Read more.
Cobalt (Co) is an essential micronutrient for many organisms, but, at higher concentrations, it becomes harmful, primarily due to competitive interactions with other metal ions. Enzyme inhibition and disruption of nutrient homeostasis may lead to oxidative stress in Co-exposed cells. Compared to other heavy metals, such as Cd, Cu, Cr, Pb, or Ni, this element has been less studied in algae with respect to its toxicity and tolerance. Taking into account Co-induced oxidative stress and antioxidant response, the studies on algae usually did not cover a wider range of antioxidants and ROS-detoxifying enzymes monitored in one model. The aim of this study was to assess the impact of CoCl2 on the model green microalga Chlamydomonas reinhardtii from a broader perspective. We monitored algal growth, photosynthetic pigment content, the maximum quantum yield of photosystem II (Fv/Fm), the efficiency of nonphotochemical quenching of chlorophyll fluorescence (NPQ), and oxidative stress markers (superoxide production, lipid peroxidation). The measured antioxidants included soluble thiols, ascorbate (Asc), proline (Pro), α-tocopherol (α-Toc), and plastoquinol (PQH2-9). The superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were also determined. Exposure to CoCl2 resulted in increased levels of thiols, Asc, α-Toc, PQH2-9, and CAT activity. At lower concentrations of CoCl2, no increase in oxidative stress markers was observed, suggesting efficient antioxidant protection. On the contrary, exposure to higher concentrations of CoCl2 caused the inhibition of growth and chlorophyll (Chl) synthesis, as well as the reduction in the Chl a/Chl b ratio, the Fv/Fm parameter, the efficiency of NPQ induction, and the levels of lipophilic antioxidants, along with an increase in lipid hydroperoxides. An interesting and novel result is the inhibitory effect of Co toxicity on state transitions in exposed algae. Full article
Show Figures

Graphical abstract

23 pages, 2574 KB  
Article
Co(II) Recovery from Hydrochloric Acid Solution Using Menthol-Based Deep Eutectic Solvents (DESs): Application to NMC Battery Recycling
by María Isabel Martín-Hernández, María Lourdes Rodríguez, Irene García-Díaz, Gorka Barquero-Carmona, Lorena Alcaraz, Olga Rodríguez-Largo and Félix A. López
Molecules 2025, 30(22), 4414; https://doi.org/10.3390/molecules30224414 - 14 Nov 2025
Viewed by 697
Abstract
Lithium-ion batteries are essential to ensure electric mobility and reduce CO2 emissions from transportation. One of the most commonly used chemistries is nickel–cobalt–manganese (NMC) batteries, which also have applications beyond the automotive sector. The recycling of these batteries requires the development of [...] Read more.
Lithium-ion batteries are essential to ensure electric mobility and reduce CO2 emissions from transportation. One of the most commonly used chemistries is nickel–cobalt–manganese (NMC) batteries, which also have applications beyond the automotive sector. The recycling of these batteries requires the development of technologies to enable the selective separation and recovery of the metals present in the battery. One of these selective technologies involves the use of deep eutectic solvents (DESs). This research study investigates the different parameters that influence the recovery of Co(II) from hydrochloric acid medium using the deep eutectic solvent 3 Aliquat 336:7 L-Menthol. Firstly, using synthetic Co(II) solutions, the parameters influencing the cobalt extraction process are examined, and then these optimal conditions are applied to the recovery of cobalt from solutions obtained by dissolving NMC 622 battery black mass in 10 M HCl. The obtained results show that the DES used is highly selective for Co(II) recovery compared to other metals present in the solution (Ni, Li and Mn), achieving recoveries of up to 90% of the cobalt initially present in solution. Stripping with H2SO4 0.5 M allows the recovery of cobalt as a crystalline monohydrate salt (CoSO4.H2O). The optimization of the Co/Cu separation conditions is carried out, achieving the separation of Cu(II) using Aliquat 336 in kerosene. Full article
Show Figures

Graphical abstract

473 KB  
Proceeding Paper
Study and Development on the Hydroxamation of Natural Resinic Acids: Synthesis and Computational Studies
by William E. Mendoza-Hernández, Ramón J. Zaragozá and Miguel A. González-Cardenete
Chem. Proc. 2025, 18(1), 81; https://doi.org/10.3390/ecsoc-29-26736 - 12 Nov 2025
Viewed by 132
Abstract
The hydroxamic acid moiety is part of many bioactive molecules, including several clinical drugs, which can be constructed through, generally, the parent carboxylic acid and a source of hydroxylamine by a variety of methods. Hydroxamic acids compose a remarkable group of N-hydroxy amides [...] Read more.
The hydroxamic acid moiety is part of many bioactive molecules, including several clinical drugs, which can be constructed through, generally, the parent carboxylic acid and a source of hydroxylamine by a variety of methods. Hydroxamic acids compose a remarkable group of N-hydroxy amides with high capacity to chelate certain transition metal ions such as Fe(III), considered siderophores in Nature, and Ni(II), for instance. During a synthetic program towards the derivatization of natural resinic acids, it was decided to prepare some corresponding hydroxamic acid derivatives with potential biological activity for further studies. There are few reports on hydroxamate-derived terpenoids. It was predicted that adding a hydroxamic acid moiety to the carbon skeleton could enhance the antiproliferative activities or other pharmacological properties, as it occurs in other terpenoid compounds. In this communication, we describe the several issues that we faced in this generally straightforward conversion. Generally, the carboxylic group needs to be activated towards coupling with hydroxylamine. We screened several methods and realized that the desired conversion is difficult in this kind of substrate. After extensive testing, we propose a new protocol via a phosphate intermediate for better results than standard procedures. A basic computational study on the mechanism of this transformation was also carried out to support our experimental results. Full article
Show Figures

Scheme 1

20 pages, 2126 KB  
Article
Evaluation of Silkworm Cocoon-Derived Biochar as an Adsorbent for the Removal of Organic and Inorganic Contaminants from Rainwater
by Anna Marszałek, Ewa Puszczało, Mariusz Dudziak, Anna Pajdak and Jakub Frankowski
Materials 2025, 18(21), 5053; https://doi.org/10.3390/ma18215053 - 6 Nov 2025
Viewed by 544
Abstract
This study presents evaluation of biochar derived from silkworm cocoons for the adsorption of organic and inorganic contaminants from rainwater. The material was characterised using BET surface area analysis, scanning electron microscopy (SEM), and the point of zero charge (pHPZC). The [...] Read more.
This study presents evaluation of biochar derived from silkworm cocoons for the adsorption of organic and inorganic contaminants from rainwater. The material was characterised using BET surface area analysis, scanning electron microscopy (SEM), and the point of zero charge (pHPZC). The prepared biochar exhibited a well-developed surface area and demonstrated adsorption capacity toward both heavy metals and benzotriazole. The model rainwater was prepared by spiking real rainwater samples with Cu(II), Ni(II), Zn(II) ions, and benzotriazole (BT). Adsorption experiments were carried out under laboratory conditions to evaluate the effects of contact time, pH, and sorbent dosage. The experimental data were fitted to pseudo-first-order and pseudo-second-order kinetic models, as well as Langmuir/and Freundlich isotherms. The results showed that the adsorption of Cu(II) followed the Langmuir/Freundlich model, while the adsorption of Ni(II) benzotriazole was more consistent with the Freundlich model. Adsorption kinetics were best described by the pseudo-second-order model. The highest removal efficiencies were observed for Cu(II) (96%) and Ni(II) (88.8%), while Zn(II) removal was limited. Benzotriazole was also effectively adsorbed (97%), rapid adsorption occurred mainly within the first minute. Overall, the study highlights the selective adsorption behaviour of silkworm cocoon biochar and provides a comparative insight into the removal of organic and inorganic pollutants using a waste-derived adsorbent with surface properties comparable to those of activated carbon. Full article
Show Figures

Figure 1

21 pages, 1990 KB  
Article
Heavy Metal Adsorption and Desorption Behavior of Raw Sepiolite: A Study on Cd(II), Cu(II), and Ni(II) Ions
by Anna Bourliva
Minerals 2025, 15(11), 1110; https://doi.org/10.3390/min15111110 - 25 Oct 2025
Viewed by 1366
Abstract
This study investigates the adsorption behavior of natural sepiolite for the removal of cadmium (Cd2+), copper (Cu2+), and nickel (Ni2+) ions from aqueous solutions under batch conditions. The sepiolite was extensively characterized prior to adsorption experiments. Mineralogical [...] Read more.
This study investigates the adsorption behavior of natural sepiolite for the removal of cadmium (Cd2+), copper (Cu2+), and nickel (Ni2+) ions from aqueous solutions under batch conditions. The sepiolite was extensively characterized prior to adsorption experiments. Mineralogical analysis confirmed the presence of crystalline sepiolite, while DTG-TGA revealed thermal stability with distinct weight loss linked to surface and structural water. BET analysis indicated a high surface area of 194 m2/g and a mesoporous structure favorable for adsorption. Batch experiments evaluated the effects of contact time, pH, adsorbent dosage, and initial metal concentration. Adsorption was highly pH-dependent, with maximum removal near-neutral pH values. Higher adsorbent dosages reduced in a lower adsorption capacity per unit mass, primarily because the fixed amount of solute was distributed over a larger number of available sites, leading to unsaturation of the adsorbent surface and possible particle agglomeration. Isotherm modeling revealed that the Langmuir model provided the best fit, indicating monolayer adsorption with maximum adsorption capacities of 15.95 mg/g for Cd(II), 37.31 mg/g for Cu(II), and 17.83 mg/g for Ni(II). Langmuir constants indicated favorable interactions. Kinetics showed rapid adsorption within the first hour, reaching equilibrium at 240 min through surface adsorption and intraparticle diffusion. Cu(II) exhibited the fastest uptake, while Ni(II) adsorbed more slowly, suggesting differences in diffusion rates among the metal ions. Desorption using 0.1 N HCl achieved over 80% efficiency for all metals, confirming sepiolite reusability. Overall, raw sepiolite is an effective, low-cost adsorbent for removing potentially toxic elements from water. Full article
Show Figures

Figure 1

28 pages, 2109 KB  
Article
Chemical Contaminants in Cerumen Samples from Ecuadorian Stingless Bees: Reporting Glyphosate, Aminomethylphosphonic Acid, and the Presence of Metals and Metalloids
by Joseline Sofía Ocaña-Cabrera, Jorge Ron-Román, Sarah Martin-Solano and Claude Saegerman
Insects 2025, 16(11), 1079; https://doi.org/10.3390/insects16111079 - 22 Oct 2025
Viewed by 1210
Abstract
Stingless bee cerumen is a mixture of wax and plant resins. Foragers of stingless bees are exposed to various chemical contaminants during their plant visits and collection activities. These contaminants have the potential to be transferred into the nest. This study aimed to [...] Read more.
Stingless bee cerumen is a mixture of wax and plant resins. Foragers of stingless bees are exposed to various chemical contaminants during their plant visits and collection activities. These contaminants have the potential to be transferred into the nest. This study aimed to elucidate the existence of chemical contaminants in Ecuadorian cerumen. To this end, the following aims were established: (i) to determine and quantify glyphosate (GLY), aminomethylphosphonic acid (AMPA), some other pesticides, metals and metalloids in cerumen and (ii) to establish possible risks associated with the presence of these chemical contaminants to the health of stingless bees and humans. The quantification of chemical contaminants was conducted using gas chromatography (GC), liquid chromatography (LC), and ion chromatography (IC) coupled to mass spectrometry (MS). Glyphosate (0.02–0.2 mg/kg) and AMPA (0.028 mg/kg) were detected in four of the pooled samples (n = 14) from the northern and southern highland regions. Other pesticide traces were not detected in any cerumen samples. Metals (Cd, Cr, Pb, Ni, Sn) and metalloids (As, Sb, Se) were found in all samples, including highlands and the lower Amazon. The potential risks of exposure to glyphosate and AMPA for stingless bees and humans appear to be minimal (except for the specific conditions given for Tetragonisca angustula) and safe, respectively. It seems that cerumen may serve as an effective biomonitoring matrix for assessing the environmental health of stingless bee nests. Establishing guidelines and regulations for the safe use and handling of products derived from the stingless bee consumption is therefore imperative. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

20 pages, 1943 KB  
Article
Experimental and Machine Learning Modelling of Ni(II) Ion Adsorption onto Guar Gum: Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN) Comparative Study
by Ismat H. Ali, Malak F. Alqahtani, Nasma D. Eljack, Sawsan B. Eltahir, Makka Hashim Ahmed and Abubakr Elkhaleefa
Polymers 2025, 17(20), 2791; https://doi.org/10.3390/polym17202791 - 18 Oct 2025
Viewed by 664
Abstract
In this study, a guar gum-based adsorbent was developed and evaluated for the removal of Ni(II) ions from aqueous solutions through a combined experimental and machine learning (ML) approach. The adsorbent was characterized using FTIR, SEM, XRD, TGA, and BET analyses to confirm [...] Read more.
In this study, a guar gum-based adsorbent was developed and evaluated for the removal of Ni(II) ions from aqueous solutions through a combined experimental and machine learning (ML) approach. The adsorbent was characterized using FTIR, SEM, XRD, TGA, and BET analyses to confirm surface functionality and porous morphology suitable for metal binding. Batch adsorption experiments were conducted to optimize the effects of pH, adsorbent dosage, contact time, temperature, and initial metal concentration. The adsorption efficiency increased with higher pH and adsorbent dosage, achieving a maximum Ni(II) removal of 97% (qₘ = 86.0 mg g−1) under optimal conditions (pH 6.0, dosage 1.0 g L−1, contact time 60 min, and initial concentration 50 mg L−1). The process followed the pseudo-second-order kinetic and Langmuir isotherm models. Thermodynamic results revealed the spontaneous, endothermic, and physical nature of the adsorption process. To complement the experimental findings, artificial neural network (ANN) and k-nearest neighbor (KNN) models were developed to predict Ni(II) removal efficiency based on process parameters. The ANN model yielded a higher prediction accuracy (R2 = 0.97) compared to KNN (R2 = 0.95), validating the strong correlation between experimental and predicted outcomes. The convergence of experimental optimization and ML prediction demonstrates a robust framework for designing eco-friendly, biopolymer-based adsorbents for heavy metal remediation. Full article
(This article belongs to the Special Issue Application of Natural-Based Polymers in Water Treatment)
Show Figures

Figure 1

20 pages, 9190 KB  
Article
Nanostructured K- and Na-Substituted Aluminosilicates for Ni(II) Ions Removal from Liquid Media: Assessment of Sorption Performance and Mechanism
by Ekaterina Nekhludova, Nikita Ivanov, Sofia Yarusova, Oleg Shichalin, Yulia Parotkina, Alexander Karabtsov, Vitaly Mayorov, Natalya Ivanenko, Kirill Barkhudarov, Viktoriya Provatorova, Viktoriya Rinchinova, Vladimir Afonchenko, Sergei Savin, Vasilii Ivanovich Nemtinov, Anton Shurygin, Pavel Gordienko and Eugeniy Papynov
J. Compos. Sci. 2025, 9(10), 530; https://doi.org/10.3390/jcs9100530 - 1 Oct 2025
Viewed by 763
Abstract
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. [...] Read more.
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. SEM and XRD confirmed an X-ray amorphous structure attributable to fine crystallite size. The sodium-substituted material Na2Al2Si2O8 exhibited the lowest specific surface area (48.3 m2/g) among the tested composites. However, it demonstrated the highest Ni(II) sorption capacity (64.6 mg/g, 1.1 mmol/g) and the most favorable sorption kinetics, as indicated by a Morris-Weber coefficient of 0.067 ± 0.008 mmol/(g·min1/2). Potassium-substituted analogs with higher Si/Al ratios showed increased surface area but reduced capacity. Analysis by XPS and SEM-EDS established that Ni(II) uptake occurs through a complex mechanism, involving ion exchange, surface complexation, and chemisorption resulting in the formation of new nickel-containing composite surface phases. The results indicate that optimal sorption performance for Ni(II) is achieved with sodium-based aluminosilicates at a low Si/Al ratio (Si/Al = 1). The functional characteristics of Na2Al2Si2O8 compare favorably with other silicate-based sorbents, suggesting its potential utility for wastewater treatment. Further investigation is needed to elucidate the precise local coordination environment of the adsorbed nickel. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

14 pages, 2152 KB  
Article
Sustainable Solid-Phase Extractant Based on Spent Coffee Waste-Derived Activated Carbon Functionalized with 1,10-Phenanthroline-5-Amine for Trace Metals from Groundwater Samples
by Awadh O. AlSuhaimi
Sustainability 2025, 17(18), 8404; https://doi.org/10.3390/su17188404 - 19 Sep 2025
Cited by 3 | Viewed by 873
Abstract
In this work, spent coffee grounds, an abundant agro-waste, were transformed into activated carbon, providing a sustainable substrate for immobilizing 1,10-phenanthroline-5-amine chelating agent, to develop a solid-phase extractant for trace metals. ATR-IR, TGA, and XPS analyses confirmed successful functionalization and revealed the material’s [...] Read more.
In this work, spent coffee grounds, an abundant agro-waste, were transformed into activated carbon, providing a sustainable substrate for immobilizing 1,10-phenanthroline-5-amine chelating agent, to develop a solid-phase extractant for trace metals. ATR-IR, TGA, and XPS analyses confirmed successful functionalization and revealed the material’s physicochemical properties. Sorption studies showed optimal uptake at pH 6.0–6.5, enabling rapid extraction of Mn(II), Cd(II), Ni(II), and Pb(II) within 30 min, with capacities of 13.5, 8.4, 13.3, and 8.5 mg g−1, respectively. The prepared chelator was employed as a packed sorbent in standard SPE cartridges operated with a conventional SPE apparatus, achieving efficient extraction and preconcentration of the studied ions from both certified reference material (BCR-609) and real groundwater. The results obtained closely matched certified values, while spiked recoveries ranged from 96.00% to 106.80%. These findings highlight the effective valorization of agricultural waste into a reusable, high-performance SPE sorbent with strong potential for water purification and trace metal recovery. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop