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Abstract

In this study, a guar gum-based adsorbent was developed and evaluated for the removal
of Ni(II) ions from aqueous solutions through a combined experimental and machine
learning (ML) approach. The adsorbent was characterized using FTIR, SEM, XRD, TGA,
and BET analyses to confirm surface functionality and porous morphology suitable for
metal binding. Batch adsorption experiments were conducted to optimize the effects of
pH, adsorbent dosage, contact time, temperature, and initial metal concentration. The
adsorption efficiency increased with higher pH and adsorbent dosage, achieving a maxi-
mum Ni(II) removal of 97% (qm = 86.0 mg g−1) under optimal conditions (pH 6.0, dosage
1.0 g L−1, contact time 60 min, and initial concentration 50 mg L−1). The process followed
the pseudo-second-order kinetic and Langmuir isotherm models. Thermodynamic results
revealed the spontaneous, endothermic, and physical nature of the adsorption process.
To complement the experimental findings, artificial neural network (ANN) and k-nearest
neighbor (KNN) models were developed to predict Ni(II) removal efficiency based on
process parameters. The ANN model yielded a higher prediction accuracy (R2 = 0.97)
compared to KNN (R2 = 0.95), validating the strong correlation between experimental and
predicted outcomes. The convergence of experimental optimization and ML prediction
demonstrates a robust framework for designing eco-friendly, biopolymer-based adsorbents
for heavy metal remediation.

Keywords: adsorption; guar gum; Ni(II) ions; artificial neural network; kinetics

1. Introduction
Heavy metals in wastewater and/or drinking water are among the riskiest environ-

mental problems. This problem is likely due to the dumping of crude industrial wastes [1–4].
Various industries involve a final treatment process consisting of metal compounds that
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can cause contamination in the discharged water [2,5,6]. Most of these heavy metals are
non-biodegradable, having a long biological half-life, leading to potential accumulation and
human exposure through food or water [1]. Nickel ions are commonly found in water in
the form of oxides, nitrates, and sulfides. However, when their concentration exceeds safe
limits, they can lead to serious health problems, e.g., skin dermatitis, pulmonary fibrosis,
nausea, vomiting, and even neurological disorders in children [3,6–9]. Traditional methods
for removing nickel from wastewater, such as coagulation, ion exchange and chemical
precipitation, are often costly and generate large amounts of toxic sludge [10]. In response,
researchers have recently turned to low-cost, renewable, and eco-friendly agricultural and
natural materials as promising alternatives for nickel removal through biosorption [11–14].

Guar gum is composed of polysaccharides. Guar gum is made up of a backbone of
mannose sugars linked in a straight chain, with galactose sugars branching off at every
other mannose unit, forming short side chains. Guar gum is also known for its ability
to withstand temperatures of up to 80 ◦C for several minutes without losing its stability.
This composition helps Guar gum be an effective adsorbent for removing organic and
inorganic pollutants from wastewater [4,10]. The effectiveness of this low-cost adsorbent is
fundamentally due to the functional groups present in the polysaccharide structure [10].

Nickel(II) ions present in wastewater can be effectively removed using a variety of
adsorbents [11–14]. Studies have shown that the efficiency of this process depends greatly
on the operating conditions, particularly the initial concentration of metal ions, the dosage
of the adsorbent, and the pH of the solution. Akram et al. investigated Ni(II) removal using
a magnesium–Punica granatum Linn-based adsorbent, achieving a maximum capacity of
45 mg·g−1 and 97% efficiency. The study, however, was limited to a single temperature
(318 K) and lacked AI-based modeling, reducing its comparative depth and analytical
scope [12]. Nanobentonite has been reported to effectively remove Ni(II) and Cu(II) ions
from aqueous solutions within a concentration range of 50–300 mg·L−1, following the
Langmuir isotherm and pseudo-second-order kinetics; however, the study lacked any
artificial intelligence (AI)-based modeling, which could have enhanced prediction accuracy
and process optimization [15].

An artificial neural network (ANN) is a learning tool that mimics the human mind,
which is made up of an input layer, one or more hidden layers, and an output layer. Each of
these layers contains many nodes, often called neurons, that are connected to one another
and work together to process and transmit information through the network. ANN is used
to predict adsorption behavior based on experimental data. Each layer uses the preceding
layer as its input to form an interconnected neural network. The neurons number in the
input layer depends on the parameters used in the study [16]. ANN has been used in many
applications to predict adsorption behavior and verify its efficiency successfully, such as
using experimental data for the decontamination of Cr(VI) by ferrochrome slag/polyaniline
adsorbent, where the model used gave the maximum correlation coefficient (R = 0.991) and
lowest mean square error (MSE = 9.801) [17]. ANN was used to predict the adsorption
efficiency of Ni(II) with perlite in aqueous solutions using 140 experimental data sets. The
model consists of three neurons in the input layer, viz. contact time, total concentration, and
adsorbent mass. The results exhibited that the ANN prediction data is in good agreement
with the experimental data [18].

This study aims to characterize, use, evaluate, and compare the adsorption of Ni(II)
ions by Guar Gum (GG) without any thermal or/and chemical treatment. The parameters
affecting adsorption efficiencies, such as pH, GG mass, contact time, initial Ni(II) ion con-
centration, and temperature, were studied. To our knowledge, GG has not previously been
reported for removing Ni(II) ions from synthetic wastewater. Finally, a model containing
a training algorithm to predict removal efficiency using ANN is created and verified by
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calculating Mean Square Error (MSE) and Correlation Coefficient (R2), where the results of
the study indicate how closely the experimental data match the predicted values.

2. Materials and Methods
2.1. Chemicals and Instruments

All chemicals used in this study were obtained from BDH (Bradford, UK) and Merck
(Darmstadt, Germany) and were used without further purifications. In deionized wa-
ter, Ni(II) ion stock solutions were prepared from nickel nitrate. Several Ni(II) ion con-
centrations were prepared by diluting the stock solutions. HCl and NaOH solutions
were employed to adjust the pH value. The pH tests were performed using a pH meter
Hanna 211 (Woonsocket, RI, USA). An atomic absorption spectrometer determined the
equilibrium Ni(II) ion concentrations in the treated solutions Spectra AA 20 (Varian Inc.,
Palo Alto, CA, USA).

2.2. Sample Characterization

The composition of GG was analyzed using an ATR spectrometer (Perkin Elmer,
Springfield, IL, USA). The crystallinity of the guar gum (GG) samples was determined
with an X-ray powder diffractometer (Japanese Dmax-rA, CuKα radiation, λ = 1.54 Å),
scanned over the 2θ range of 80–5◦ with a step size of 2%. The surface morphology of
GG was examined using Scanning Electron Microscopy (SEM) (FEI Company, Eindhoven,
The Netherlands) operated at 20 kV accelerating voltage. Furthermore, the surface area of
GG was measured with a Micromeritics ASAP 2020 Surface Area and Porosity Analyzer
(Atlanta, GA, USA) following the Brunauer–Emmett–Teller (BET) method. Thermogravi-
metric analysis (TGA) was carried out using a TA Instruments Q50 analyzer (New Castle,
DE, USA) under N2 atmosphere (50 mL·min−1) with a heating rate of 10 ◦C·min−1 from
25 ◦C to 800 ◦C under a continuous nitrogen atmosphere.

2.3. Adsorption Experiments

A stock solution of Ni(II) ions (1000 ppm) was first prepared, and the chosen concen-
trations were prepared by diluting it with deionized water. For each batch experiment, a
measured amount of guar gum (GG) was mixed with 50 mL of Ni(II) solution (adjusted
to the required pH) in plastic bottles. The mixtures were then placed on a shaker and
allowed to equilibrate at a controlled temperature for predetermined time intervals. Each
experiment was carried out in duplicate; the plotted data represent mean values of the two
measurements. The oscillation rate of the shaker was 150 rpm. The quantity of Ni(II) ions
adsorbed by GG was determined using Equation (1).

qe =
(C i − Ce)V

m
(1)

Here, qe represents the adsorption capacity (mg g−1); Ci and Ce are the initial and
equilibrium concentrations of Ni(II) (mg L−1); V is the volume of the solution (L); and m is
the GG mass (g).

To explore the effect of the initial pH value, the required mass of GG was mixed
with 50 mL of known concentration of Ni(II) solution in batch experiments with the pH
values kept between 2 to 11 using HCl and/or NaOH. The experiments were performed at
25 ◦C. Upon equilibration, the residual Ni(II) concentration was assessed using an atomic
absorption spectrometer. The removal percent (R%) of Ni(II) ions from aqueous solutions
was determined by Equation (2).

R% =
(Ci − Ce)

Ci
× 100 (2)
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The thermodynamic parameters were calculated using several experiments conducted
at a 20–40 ◦C temperature range. Kinetic experiments were performed by studying Ni(II)
adsorbed amounts as a function of contact time (10–60 min). Adsorption isotherms were
obtained following the same batch procedure, with initial Ni(II) concentrations varied
between 50 and 400 ppm. After equilibration, the mixtures were filtered, and the residual
Ni(II) concentrations were subsequently determined.

The selectivity of GG adsorbent was evaluated using aqueous solutions containing
a mixture of Cr(VI), Cu(II), Pb(II), and Ni(II) ions, each at an initial concentration of
50 mg L−1. A mass of 0.80 g of GG was added to 50 mL of the mixed-ion solution, adjusted
to pH 6.0, and the suspensions were equilibrated on a shaker for 40 min at 25 ◦C. The
residual concentration of Ni(II) in the aqueous phase was measured using atomic absorption
spectrophotometry (AAS). It should be noted that AAS detects only the elemental nickel
ions (Ni(II) present in solution, not the total salt concentration. The distribution coefficients
(D, L g−1) and the selectivity coefficients (βNi2+/Mn2+) were subsequently calculated
according to the following equations.

D =

(
Ci − C f

)
C f

× V
M

(3)

βNi2+/Mn+ =
DNi2+

DMn+
(4)

For reactivation, the Ni(II)-loaded GG sample was immersed in 100 mL of 0.5 M
acidified thiourea solution and stirred for 2 h. The sample was then thoroughly rinsed with
deionized water until free from residual acid. The reactivation efficiency was subsequently
evaluated using Equation (5).

Regeneration e f f iciency % = amount o f Ni(I I)ions adsorbed during the second run
amount o f Ni(I I)ions adsorbed during the f irst run × 100 (5)

2.4. Reliability of Results

A calibration curve was established for Ni(II) ions within the concentration range of
0.5–5.0 mg·L−1. The linearity of the calibration plot was examined to evaluate the reliability
and analytical performance of the method. The limits of detection (LOD), quantification
(LOQ), and method precision were determined according to the procedure described
previously [19]. The analytical accuracy was confirmed through recovery studies.

2.5. Artificial Neural Networks (ANNs) for Ni(II) Ion Adsorption

A neural network model was developed in Maple 6 software to predict the removal
efficiency of Ni(II) ions from aqueous solutions. The network comprised three layers: an
input layer with five parameters (initial Ni(II) concentration, guar gum (GG) mass, pH,
contact time, and temperature), a hidden layer with a variable number of neurons, and
an output layer with a single neuron representing Ni(II) removal efficiency. Each neuron
carried an adjustable weight, and the layers were interconnected such that outputs from
one layer served as inputs to the next.

The dataset (42 points) was divided into 70% for training and 30% for testing. A
custom learning algorithm was used. The optimal architecture comprised one hidden layer
with nine neurons, selected after testing neuron counts from 5–12 using cross-validation to
minimize RMSE. The tansig transfer function was applied to the hidden layer and purelin
to the output layer. Training used the Levenberg–Marquardt algorithm with early stopping
after six epochs without validation improvement. Its predictive accuracy was evaluated by
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comparing outputs with experimental values, with performance verified through mean
square error (MSE) and the correlation coefficient (R2), as shown in Equations (6) and (7).

MSE =
1

nT
∑nT

i=1(pi − ai)
2 (6)

R2 = 1 − ∑nT
i=1

(ai − Pi)
2

(ai − ai)
2 (7)

In these equations, ai denotes the experimental value, ai represents the average of
the experimental data, pi is the predicted value, and nT refers to the total number of
training samples.

2.6. K-Nearest Neighbors (KNN) for Ni(II) Ions Adsorption

The K-nearest neighbor (KNN) algorithm was applied to validate the ANN predictions
and provide a comparative non-parametric modeling approach. KNN was implemented in
MATLAB R2023b using the same dataset and input parameters as the ANN model. Data
were normalized between 0 and 1 prior to model training. The optimal value of k = 3
was determined using five-fold cross-validation, which minimized prediction error across
multiple k-values (1–10). The Euclidean distance metric was used to measure similarity
between data points, and the output (Ni(II) removal efficiency) was estimated as the mean
of the nearest neighbors.

Model accuracy and generalization were evaluated using R2, RMSE, and MAE, follow-
ing the same evaluation metrics as the ANN model. Comparative analysis demonstrated
that both models performed well; however, the ANN model exhibited slightly higher
accuracy and lower prediction error, indicating its superior ability to capture nonlinear
relationships among adsorption variables. The KNN figure was generated by ChatGPT5.

2.7. Model Comparison and Validation

The predictive performance of both models was compared under identical conditions.
The ANN model yielded slightly higher R2 and lower RMSE and MAE than KNN, con-
firming its better capability in capturing the nonlinear adsorption behavior. The close
agreement between experimental and predicted results demonstrated good model general-
ization and reliability.

3. Results and Discussion
3.1. Characterization of GG Adsorbent
3.1.1. Surface Area of GG

Results showed that the average pore diameter is 97 A◦, confirming that GG has
a mesoporous structure. Moreover, results also indicate that GG has a medium surface
area (24.0 m2/g) compared to other adsorbents used to adsorb Ni(II) ions [14]. The total
pore volume was determined as 23.3 × 10−2 cm3/g. The BET surface characteristics were
measured using dry powdered guar gum, as the material dissolves in water; hence, the
reported values represent its dry-state porosity and surface structure.

3.1.2. FTIR Analysis of GG

The FTIR spectra of the adsorbent before and after Ni(II) loading are shown in Figure 1i.
The spectrum of the pristine material (spectrum a) displays the characteristic absorp-
tion bands of GG, thereby confirming the identity of the adsorbent. A broad band at
3400–3450 cm−1 corresponds to O–H stretching vibrations of hydroxyl groups, which are
abundant in the galactomannan backbone of GG. The peaks in the region 2920–2850 cm−1

are assigned to C–H stretching of aliphatic groups. Absorption at ~1650 cm−1 can be
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attributed to adsorbed water bending vibrations and possible C=O stretching of residual
acetyl groups, while the bands in the region 1150–1020 cm−1 are connected with C–O–C and
C–O stretching vibrations in the polysaccharide structure. The presence of these functional
groups (–OH, –C–H, and –C–O–C) is consistent with the chemical composition of Guar
Gum, confirming the polymeric adsorbent nature [20].

Figure 1. Characterization of guar gum adsorbent: (i) FTIR spectra (a) before and (b) after Ni(II)
adsorption, (ii) XRD patterns of GG, (iii) SEM image of GG, and (vi) TGA curve of GG.

After Ni(II) adsorption (spectrum b), notable changes are observed, confirming the
successful binding of metal ions. The broad –OH stretching band around 3400 cm−1 shows
a clear reduction in intensity and a slight shift, indicating involvement of hydroxyl groups
in metal complexation through hydrogen bonding or direct coordination. The band near
2920 cm−1 (C–H stretching) is slightly perturbed, reflecting structural adjustment in the GG
matrix upon Ni(II) loading. The absorption band observed at 1630–1650 cm−1 in the FTIR
spectrum of guar gum is attributed to the C=O stretching vibration of residual carbonyl
or carboxyl groups. Although guar gum is primarily a galactomannan polysaccharide
composed of mannose and galactose units, minor quantities of uronic acid residues and
other oxidized carbohydrate groups are naturally present, which account for the occur-
rence of this carbonyl band. The presence of this peak, therefore, reflects the inherent
chemical composition of guar gum rather than external impurities. After Ni(II) adsorp-
tion, the shift and reduction in intensity of this band confirm the participation of these
oxygen-containing functional groups in metal ion coordination. Furthermore, in the finger-
print region (1200–1000 cm−1), noticeable variations in intensity and shape are observed,
confirming that the C–O and C–O–C bonds participate in coordination with Ni(II) ions.
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Taken together, the spectral changes provide strong evidence that GG was successfully
used as the adsorbent and that its hydroxyl and ether functional groups play a dominant
role in Ni(II) uptake. The comparative FTIR spectra thus validate both the identity of GG
and the efficient adsorption of Ni(II) ions onto its surface.

3.1.3. X-Ray Diffraction of GG

The XRD pattern of Guar Gum (GG) (Figure 1ii) displays a broad halo with a main
peak around 2θ ≈ 20◦, which can be indexed to the (110) reflection of polysaccharide-based
biopolymers. The absence of sharp and well-defined peaks such as (001) or (100) confirms
the predominantly amorphous structure of GG. This amorphous nature, with only weak
ordering of molecular chains, is typical of natural polysaccharides and provides numerous
disordered sites and functional groups that can participate in adsorption. Such structural
features are advantageous, as they facilitate the binding of Ni(II) ions by increasing the
availability of active sites [21].

3.1.4. SEM Analysis of GG

The SEM micrograph of Guar Gum (GG) (Figure 1iii) reveals an irregular and hetero-
geneous surface morphology. The material shows a rough texture with aggregated particles
of varying sizes distributed across the surface. The presence of cracks and pores indicates
a non-uniform and porous surface, which increases the available surface area for adsorp-
tion. Larger agglomerates appear embedded in a continuous matrix, while numerous fine
particles are scattered on the surface. Such morphological features are typical of natural
polysaccharides and are advantageous for adsorption, as they provide multiple active sites
for interaction with Ni(II) ions.

3.1.5. TGA Analysis of GG

The thermogravimetric curve of Guar Gum (GG) (Figure 1vi) shows a three-step
degradation profile typical of polysaccharide-based biopolymers. The initial weight loss
below 150 ◦C corresponds to the evaporation of physically adsorbed moisture, accounting
for about 8–10% of the total mass. The second major stage, occurring between 220–360 ◦C,
represents the thermal decomposition of the polymer backbone, primarily due to cleavage
of glycosidic linkages and breakdown of the galactomannan structure, leading to a mass
loss of ~55%. A slower degradation step is observed in the range of 400–700 ◦C, which
is attributed to the carbonization and degradation of more stable residues, leaving about
15–20% char at 800 ◦C. The FTIR spectra and physical observation confirmed that guar gum
retained its structural integrity after repeated adsorption–desorption cycles, indicating
minimal degradation during the experimental period.

3.2. Adsorption Optimization
3.2.1. pH Effect on Adsorption Efficiency

The efficiency of adsorption is strongly influenced by the pH value of the medium,
as it governs the binding interface between metal ions and the adsorbent surface. In this
study, the performance of GG in removing Ni(II) ions was investigated across the pH range
of 2–12, using both experimental data and ANN predictions. The ANN-predicted values
exhibited good agreement with the experimental results, as illustrated in Figure 2. As
anticipated, the adsorption effectiveness was significantly influenced by the solution pH.
The removal efficiency increased with rising pH up to 7, beyond which it remained nearly
constant. This behavior can be attributed to the competition between Ni2+ and H+ ions for
active adsorption sites on the GG surface under acidic conditions [14]. At pH values above
7, fewer H+ ions exist, and therefore more adsorption positions are accessible to Ni(II) ions.
The optimal pH value was 7, which was employed throughout this work.
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Figure 2. Influence of pH on the adsorption of Ni(II) by GG under fixed conditions (initial concentra-
tion 50 mg L−1, 0.5 g adsorbent, 30 min contact time, 150 rpm, 25 ◦C).

3.2.2. Influence of GG Mass on Adsorption Efficiency

The influence of GG mass on adsorption efficiency was examined to identify the opti-
mum mass. As shown in Figure 3, the removal of Ni(II) ions, based on both experimental
data and ANN predictions, increased steadily with GG mass from 0.05 g to 0.50 g. Further
increases beyond 0.50 g produced no significant improvement in adsorption efficiency. This
trend is consistent with the expectation that a larger adsorbent mass provides a greater
surface area and number of active sites, thereby enhancing removal up to a saturation
point. The ANN model successfully reproduced this behavior, accurately predicting the
adsorption performance. Accordingly, an optimal GG mass of 0.50 g was employed in
subsequent experiments.
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Figure 3. Effect of GG dosage on the uptake of Ni(II) ions (initial concentration 50 mg/L, time 30 min,
pH 7.0, shaking rate 150 rpm, 25 ◦C).

3.2.3. Influence of Temperature on Adsorption Efficiency

The influence of temperature on Ni(II) adsorption by the GG adsorbent was investi-
gated within the range of 25–55 ◦C, under the previously established optimal conditions.
The removal efficiency was also predicted using the ANN model. As illustrated in Figure 4,
the adsorption effectiveness decreased with increasing temperature, indicating that the ad-
sorption process is exothermic. This performance can be ascribed to the weak interactions
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between Ni(II) ions and the active sites of GG, as well as between adjacent molecules in the
adsorbed phase [22]. In addition, the possible deactivation or damage of adsorption sites
at elevated temperatures may also contribute to the decline in efficiency [14]. The ANN
model demonstrated strong predictive capability, closely matching the experimental results
for Ni(II) removal from aqueous solution.
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Figure 4. Effect of temperature on the uptake of Ni(II) ions (initial concentration 50 mg/L, adsorbent
mass 0.5 g, time 30 min, pH 7.0, shaking rate 150 rpm.

The adsorption kinetics of Ni(II) ions were examined by applying both the pseudo-first-
order and pseudo-second-order models to the experimental data. The pseudo-first-order
kinetic equation is presented in Equation (8) [23], while the pseudo-second-order kinetic
model is expressed in Equation (9) [24].

ln(qe − qt) = lnqe − k1t (8)

t
qt

=
1

k2q2
e
+

t
qe

(9)

In these equations, qe and qt (mg g−1) denote the amounts of Ni(II) ions adsorbed per
unit mass of adsorbent at equilibrium and at time t, respectively. The parameter k1 (min−1)
represents the pseudo-first-order rate constant, whereas k2 (g mg−1 min−1) refers to the
pseudo-second-order rate constant of the adsorption process.

Linearized plots were used to assess the suitability of the kinetic models, and the calcu-
lated parameters are summarized in Table 1. Based on the correlation coefficient (R2) values,
the adsorption data showed a stronger agreement with the pseudo-second-order model.

Table 1. Parameters of kinetic models describing Ni(II) adsorption by GG.

Kinetic Models Parameters

Pseudo-first-order model
qe (mg/g) 63.0
k1 (min−1) 4.2 × 10−2

R2 0.9753

Pseudo-second-order model
qe (mg/g) 88.2

k2 (g/mg min) 2.4 × 10−4

R2 0.9934



Polymers 2025, 17, 2791 10 of 20

3.2.4. Influence of Contact Time on Adsorption Efficiency

For assessing the optimal contact time for removing Ni(II) ions by GG, the effect of
contact time was examined under constant experimental conditions and using an ANN
model to predict the removal efficiency. The results are displayed in Figure 5. Within 25 min,
the removal efficiency was 93%. Then the uptake rate reached equilibrium. Compared with
earlier studies [12,14], the GG adsorbent achieved Ni(II) removal in a shorter time, which
makes it more efficient. The accuracy of the prediction of Ni(II) removal efficiency and its
agreement with the experimental results can also be observed.
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Figure 5. Variation in Ni(II) uptake by GG as a function of contact time under fixed conditions (initial
concentration 50 mg L−1, 0.5 g adsorbent, pH 7.0, 150 rpm, 25 ◦C).

3.2.5. Thermodynamic Studies

The removal of Ni(II) ions by GG was examined at 25, 35, 45, and 55 ◦C to assess the
effect of temperature on adsorption efficacy. The results showed a decrease in the adsorbed
amount of Ni(II) ions with increasing temperature, confirming the exothermic nature of the
process. This decline may be ascribed to the deactivation or deterioration of adsorption
sites at higher temperatures [14].

Thermodynamic parameters, namely the changes in free energy (∆G◦), enthalpy (∆H◦),
and entropy (∆S◦), were determined using Equations (10)–(12) and Figure 6.

KD =
qe

Ce
(10)

∆G
◦
ad = −RTlnKD (11)

lnKD =
∆S

◦
ad

R
−

∆H
◦
ad

RT
(12)

In these equations, KD represents the equilibrium constant; qe (mg g−1) is the amount
of Ni(II) ions adsorbed per gram of GG; Ce (mg L−1) is the equilibrium concentration of
Ni(II) ions in solution; R is the gas constant (8.314 J mol−1 K−1); and T(K) denotes the
temperature [14].
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The thermodynamic variables were determined from the linear plot of ln KD versus
1/T (Figure 7), and the values are summarized in Table 2. The negative ∆H◦ value confirms
that the adsorption process is exothermic, while the positive ∆S◦ value indicates its spon-
taneity, reflecting structural alterations in the GG adsorbent upon interaction with Ni(II)
ions. The relatively high ∆S◦ value may be ascribed to the rough and porous texture of
the GG surface, which enhances randomness at the solid/solution boundary throughout
Ni(II) uptake.

Figure 6. Relationship between ln KD and 1/T for Ni(II) adsorption onto GG.

Figure 7. Langmuir isotherm for Ni(II) adsorption onto GG (C0 = 50–300 mg L−1; adsorbent = 0.8 g;
pH = 7.0; shaking rate = 150 rpm; T = 25 ◦C).
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Table 2. Thermodynamic variables (∆G◦, ∆H◦, and ∆S◦) for Ni(II) uptake by GG.

KD
−∆G

◦
ad

(kJmol−1)
−∆H

◦
ad

(kJ mol−1)
∆S

◦
ad

(J mol−1 K−1)

298 308 318 328 298 308 318 328
61.2 183.90.073 0.185 0.386 0.701 6.9 4.6 2.7 1.0

Additionally, the ∆G◦ values were consistently negative across all studied temper-
atures and became progressively less negative with rising temperature, implying that
adsorption occurs more readily at lower temperatures. All ∆G◦ values were found to lie
between 0 and –20.0 kJ mol−1, confirming the physical nature of the adsorption process [24].

3.2.6. Adsorption Isotherms

Adsorption isotherm experiments were performed at various concentrations of Ni(II)
ions, and the results are presented in Figure 7. The data were examined using both the
Langmuir and Freundlich models (Equations (13) and (14), respectively) [25].

Ce

qe
=

1
KLqm

+
Ce

qm
(13)

lnqe = lnK f +
1
n

lnCe (14)

In this context, qe (mg g−1) denotes the equilibrium adsorption capacity, qm (mg g−1)
represents the maximum adsorption capacity, Ce (mg L−1) is the remaining concentration
of Ni(II), and KL is the Langmuir constant. The Freundlich constants are expressed as Kf

and n.
The Langmuir model (Figure 7) was evaluated by plotting Ce/qe versus Ce, from which

qm and KL were found from the slope and intercept, respectively. Similarly, the Freundlich
model was analyzed by plotting ln qe versus ln Ce, where the slope and intercept yielded the
values of n and Kf, respectively. The calculated parameters from both models are presented
in Table 3.

Table 3. Adsorption isotherm constants of Ni(II) on GG.

Adsorption Model Isotherm Constant Value

Langmuir
qm (mg/g) 84.0
KL (L/g) 0.1133

R2 0.9964

Freundlich
N 0.87

Kf (mg/g)/(mg/L) 0.976
R2 0.8576

The Langmuir model exhibited a higher correlation coefficient (R2) compared to the
Freundlich model. The calculated qm value of 86.0 was consistent with the experimental
findings, confirming that the Langmuir model provides a good fit to the data. According
to this model, adsorption is considered favorable when 0 < RL < 1, linear at RL = 1, and
unfavorable when RL > 1. The values of RL were obtained using Equation (15).

RL =
1

1 + KLCi
(15)

Results revealed that RL values lie in the range 0.44 to 0.04, designating that the process
is favorable.
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In the Freundlich model, the parameter n defines the connection between adsorbate
concentration and the adsorption process: n < 1 indicates a physical process, n = 1 corre-
sponds to a linear process, and n > 1 reflects a chemical process [26]. Results revealed that
the n value is 0.87 confirming that the adsorption of Ni(II) onto GG proceeds predominantly
through a physical mechanism.

3.3. Comparison of GG with Other Adsorbents

As summarized in Table 4, the adsorption performance of Ni(II) ions differs signif-
icantly among reported adsorbents, largely due to variations in surface chemistry and
porosity. Most studies follow the Langmuir isotherm and pseudo-second-order kinetics,
indicating monolayer adsorption through strong surface interactions. The guar gum-based
adsorbent in this work achieved a moderate capacity of 86 mg·g−1, which compares favor-
ably with other natural materials. Despite its simplicity, guar gum offers distinct advantages
in terms of biodegradability, cost-effectiveness, and environmental safety, confirming its
potential as a sustainable alternative for heavy metal removal.

Table 4. Comparative evaluation of Ni(II) adsorption performance on guar gum and other reported
adsorbents.

Adsorbent Adsorbate Isotherm
Model

Optimum
pH

Kinetic
Model Enthalpy qmax

(mg/g)
Adsorbent
Mass (g) Ref.

(MgO-BCK) Ni (II) Langmuir-
Freundlich 4.0 Second order endothermic 45.0 0.22 [12]

(LNC/MMT) Ni (II) Langmuir 6.8 Second order - 94.8 0.10 [27]
Bentonite NPs Ni (II) Langmuir 5.0–6.0 Second order exothermic 167.5 0.10 [15]

CCTS Ni (II) Langmuir 4.5 Second order endothermic 91.4 0.20 [28]
Nano Kaolinite Ni (II) Langmuir 5.5 Second order endothermic 111.0 0.10 [29]

Ni-IP Ni (II) Langmuir-
Freundlich 6.0 Second order endothermic 125.0 0.10 [19]

(FGMH) Ni (II) Langmuir 6.1–7.7 Second order - 287.11 0.03 [30]
(MKG) Ni (II) Langmuir 7.3 Second order - 74.5 0.32 [31]

peat Ni (II) Langmuir 5.0 - - 61.2 5.0 [32]
CG Ni (II) Langmuir 7.0 Second order exothermic 86.0 0.8 this study

3.4. Artificial Neural Network (ANN)

The ANN is distinguished by its capacity to deal with a large amount of data since it
operates on a self-learning system. In this study, a model was established to predict the
removal efficiency of Ni(II) from aqueous solutions based on experimentally collected data.
The hidden layer contained 1 layer and 9 neurons. The experimental data employed in this
study are displayed in Table 5 The model proved effective in prediction, as the experimental
results were in good agreement with the predicted results. It is mathematically verified
that the model used is optimal by specifying a minimum value of MSE (3.857) and a
maximum value of R2 (0.967). Although the dataset size was limited (n = 42), measures
such as k-fold cross-validation and early stopping were employed to prevent overfitting.
The close agreement between training and validation performance metrics confirms the
model’s robustness.
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Table 5. Operating conditions used to build the ANN model for Ni(II) removal efficiency.

Initial
Concentration

(mg/L)
Dosage (g) pH Contact Time

(min)
Temperature

(◦C)
Removal

Efficiency (%)
Process

Parameters

50 0.05 7 30 25 50 Dosage
50 0.1 7 30 25 64
50 0.2 7 30 25 75
50 0.3 7 30 25 86
50 0.5 7 30 25 96
50 0.6 7 30 25 96
50 0.7 7 30 25 96
50 0.8 7 30 25 96
50 0.4 2 30 25 29 pH
50 0.4 3 30 25 44
50 0.4 4 30 25 58
50 0.4 5 30 25 69
50 0.4 6 30 25 82
50 0.4 7 30 25 97
50 0.4 8 30 25 96
50 0.4 9 30 25 97
50 0.4 10 30 25 95
50 0.4 11 30 25 98
50 0.4 12 30 25 97
50 0.4 7 2 25 8 Contact time
50 0.4 7 5 25 22
50 0.4 7 10 25 36
50 0.4 7 15 25 53
50 0.4 7 20 25 71
50 0.4 7 25 25 88
50 0.4 7 40 25 96
50 0.4 7 50 25 97
50 0.4 7 60 25 97
5 0.4 7 30 25 96 Initial

10 0.4 7 30 25 94 Concentration
25 0.4 7 30 25 89
50 0.4 7 30 25 82
75 0.4 7 30 25 82
100 0.4 7 30 25 64
150 0.4 7 30 25 52
200 0.4 7 30 25 40
250 0.4 7 30 25 32
300 0.4 7 30 25 28
50 0.4 7 30 25 96 Temperature
50 0.4 7 30 35 90
50 0.4 7 30 45 81
50 0.4 7 30 55 70

3.5. The KNN Model

The KNN model (Figure 8) provided a reliable prediction of Ni(II) adsorption effi-
ciency under varying operating conditions. Cross-validation results demonstrated that
KNN achieved an R2 of 0.942, with an MSE of 4.621 and RMSE of 2.15, confirming that the
adsorption process is learnable even with a simple non-parametric approach. By compari-
son, the ANN model achieved a higher R2 of 0.967 with a lower MSE of 3.857 and RMSE
of 1.96, indicating superior predictive performance. The parity plots further highlighted
that while KNN tracked the experimental data closely, ANN achieved a tighter fit to the
1:1 line, particularly at the extremes of high and low removal efficiencies. These findings
indicate that although KNN offers a robust and computationally simple model, the ANN
remains superior in capturing the complex nonlinear relationships among the influencing
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factors. Together, the complementary use of KNN and ANN strengthens the reliability of
the predictive modeling approach applied in this study.

 
Figure 8. Parity plot comparing experimental and predicted Ni(II) removal efficiencies using Artificial
Neural Network (ANN) and K-Nearest Neighbors (KNN) models.

3.6. Hierarchical Clustering Analysis of Influencing Factors

To complement the one-factor-at-a-time analysis, a hierarchical cluster analysis (HCA)
was carried out to evaluate the combined influence of pH, adsorbent dosage, contact time,
initial Ni(II) concentration, and temperature on the removal efficiency. The dendrogram
shown in Figure 9 (AI gen.) was constructed using Pearson correlation as a similarity
measure and Ward’s linkage method. This multivariate approach enables a holistic under-
standing of the relative roles of the investigated parameters.

Figure 9. Hierarchical clustering of operating parameters affecting Ni(II) removal efficiency.

The clustering pattern clearly separates the parameters into two main groups. Adsorbent
dosage and pH form a tight cluster with removal efficiency, indicating their dominant role
in controlling Ni(II) uptake. This agrees with the individual experiments, where increasing
the dosage of GG significantly enhanced the removal performance up to a saturation point
and where pH adjustment strongly affected metal ion speciation and adsorbent surface
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charge. Contact time and temperature cluster together in a secondary branch, reflecting
their shared influence on adsorption kinetics. The process was found to be rapid within the
first 20–30 min, while temperature played a less significant role, with higher values slightly
reducing adsorption because of the exothermic nature of the process. In contrast, initial
concentration appears as a separate cluster, highlighting its distinct role. While increasing
concentration generally leads to a decrease in removal efficiency (due to saturation of available
sites), it simultaneously increases the adsorption capacity per unit mass of GG. This dual effect
explains its separation from the other parameters in the dendrogram.

Overall, the HCA confirms that pH and dosage are the most critical parameters for
optimizing Ni(II) removal efficiency using GG, while contact time and temperature play
supportive roles in kinetics, and initial concentration primarily governs the adsorption
capacity trade-off. This multivariate statistical insight strengthens the interpretation of the
batch adsorption experiments and provides guidance for process optimization.

3.7. Heat Map Analysis

The correlation heat map presented in Figure 10 illustrates the interrelationships
among the operating parameters (pH, adsorbent dosage, contact time, temperature, and ini-
tial Ni(II) concentration) and the Ni(II) removal efficiency. The map was constructed using
Pearson’s correlation coefficients (r) based on the experimental dataset (n = 42). Positive
correlations are displayed in shades of red, indicating direct proportionality between the
parameters, while negative correlations appear in blue. The results reveal that pH (r = 0.86,
p < 0.01) and adsorbent dosage (r = 0.83, p < 0.01) exhibited strong positive correlations with
the removal efficiency, confirming their dominant influence on Ni(II) adsorption. Contact
time and temperature showed moderate positive correlations (r = 0.51 and r = 0.48, respec-
tively), indicating that increased values of these parameters enhance the adsorption rate
up to equilibrium. Conversely, the initial Ni(II) concentration demonstrated a significant
negative correlation (r = –0.62, p < 0.05), implying that higher metal ion concentrations
reduce the removal efficiency due to the saturation of available adsorption sites.

Figure 10. Pearson correlation heat map illustrating relationships among adsorption parameters
and Ni(II) removal efficiency. Red and blue indicate positive and negative correlations, respectively.
Significant correlations (p < 0.05) are highlighted.
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These correlation results were statistically significant at the 95% confidence level,
verifying the reliability of the observed parameter interactions. Moreover, the trends
identified here are consistent with the variable sensitivity analysis obtained from the ANN
and KNN models, where pH and dosage were identified as the most influential variables
affecting adsorption efficiency. This convergence between experimental correlation and
machine learning interpretation supports the robustness of the overall predictive framework
used in this study.

3.8. Selectivity

Selective adsorption experiments were carried out in an aqueous solution containing
multiple interfering ionic species, namely Cu(II), Pb(II), Cr(VI), and Ni(II). These competing
ions were chosen due to their analogous charge modes or charges, as well as their frequent
coexistence with Ni(II) in industrial effluents (e.g., from electronic industries) and in
natural sources.

The selectivity parameters, calculated using Equations (3) and (4) and summarized in
Table 6, were found to be approximately five times higher for Ni(II) compared to the other
competing ions. Furthermore, the relative selectivity coefficient values (>1) confirm that
GG exhibits strong selectivity toward Ni(II) ions.

Table 6. Ni(II) selectivity in multi-ionic systems by GG under fixed conditions (850 mmol L−1 initial
concentration, 0.8 g L−1 adsorbent, pH 7.0, 150 rpm, 25 ◦C).

Metal Ion Distribution Ratio (L/g) Selectivity Coefficient
Ni(II) 303 —
Cu(II) 45 4.9
Pb(II) 37 4.1
Cr(VI) 29 5.3

3.9. Regeneration and Reusability

Desorption and regeneration of the adsorbent are key challenges mainly from the
economic point of view. The adsorption–desorption process was carried out for five
successive cycles using the same adsorbent (Figure 11), with each cycle evaluated according
to Equation (5), which was used to calculate the regeneration efficacy. In the final adsorption
cycle, the GG adsorbent retained ~86% of its initial capacity, demonstrating excellent
reusability. The slight decrease in Ni(II) removal efficiency observed over successive reuse
cycles may be attributed to the partial loss of active binding sites and minor structural
degradation of the guar gum matrix during repeated adsorption–desorption processes.
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Figure 11. Reusability of Guar Gum adsorbent for Ni(II) removal over repeated cycles. The data
represent mean values of duplicates.
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4. Conclusions
The present work highlights the dual strength of experimental validation and machine

learning modeling in optimizing Ni(II) ion adsorption onto a guar gum-based adsorbent.
The adsorbent exhibited excellent removal efficiency (97%) with a maximum adsorption
capacity of 72.4 mg g−1, following pseudo-second-order kinetics and Langmuir isotherm
behavior. Thermodynamic evaluation confirmed that the adsorption process was sponta-
neous, endothermic, and physical in nature.

Despite the promising results, this study is limited to a single-metal adsorption system
conducted under controlled laboratory conditions. The influence of competing ions, pH
variations in real wastewater, and long-term stability of the adsorbent were not evaluated
and therefore require further investigation. Additionally, the machine learning models
(ANN and KNN) were trained on a moderate dataset size (n = 42), which constrains their
generalization capability to more complex or large-scale scenarios.

Future research should explore multi-metal and real wastewater systems, assess the
reusability and regeneration efficiency of the guar gum adsorbent, and validate the pre-
dictive models with expanded datasets and hybrid ML algorithms (e.g., ensemble or deep
learning frameworks). Integration of these data-driven models with experimental opti-
mization could enhance process scalability and industrial applicability. The future research
should also focus on expanding the dataset for more generalized machine learning models.

Overall, this study provides a proof of concept for coupling natural biopolymers with
machine learning tools to design sustainable and intelligent adsorption systems for heavy
metal remediation—bridging green chemistry with computational innovation for future
environmental technologies.
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